

ISSN 1213-6972 Volume 15, Number 1-3, 2007

Journal of
WSCG

An international journal of algorithms, data structures and techniques for
computer graphics and visualization, surface meshing and modeling, global
illumination, computer vision, image processing and pattern recognition,
computational geometry, human interaction and virtual reality, animation,
multimedia systems and applications in parallel, distributed and mobile
environment.

EDITOR – IN - CHIEF

Václav Skala
University of West Bohemia

Journal of WSCG

Editor-in-Chief: Vaclav Skala
 University of West Bohemia, Univerzitni 8, Box 314
 306 14 Plzen
 Czech Republic
 skala@kiv.zcu.cz
Managing Editor: Vaclav Skala

Author Service Department & Distribution:

 Vaclav Skala - UNION Agency
 Na Mazinach 9
 322 00 Plzen
 Czech Republic

Hardcopy: ISSN 1213 – 6972 ISBN 978-80-86943-00-8
CD ROM: ISSN 1213 – 6980
On-line: ISSN 1213 – 6964

WSCG 2007

International Programme Committee

Alexa, Marc (Germany)

Bartz, Dirk (Germany)

Bekaert, Philippe (Belgium)

Benes, Bedrich (U.S.A.)

Bengtsson, Ewert (Sweden)

Bieri, Hanspeter (Switzerland)

Biri, Venceslas (France)

Bouatouch, Kadi (France)

Chen, Min (U.K.)

Chrysanthou, Yiorgos (Cyprus)

Coquillart, Sabine (France)

Davis, Larry (U.S.A.)

Deussen, Oliver (Germany)

du Buf, Hans (Portugal)

Ferguson, Stuart (U.K.)

Ferko, Andrej (Slovakia)

Goebel, Martin (Germany)

Groeller, Eduard (Austria)

Hauser, Helwig (Austria)

Hege, Hans-Christian (Germany)

Jansen, Frederik (The Netherlands)

Klosowski, James T. (U.S.A.)

Kobbelt, Leif (Germany)

Kruijff, Ernst (Austria)

Magnor, Marcus (Germany)

Midkiff, Sam (U.S.A.)

Myszkowski, Karol (Germany)

Pasko, Alexander (Japan)

Peroche, Bernard (France)

Puppo, Enrico (Italy)

Purgathofer, Werner (Austria)

Rauterberg, Matthias (The Netherlands)

Rokita, Przemyslaw (Poland)

Rossignac, Jarek (U.S.A.)

Rudomin, Isaac (Mexico)

Sbert, Mateu (Spain)

Schilling, Andreas (Germany)

Schumann, Heidrun (Germany)

Shamir, Ariel (Israel)

Skala, Vaclav (Czech Republic)

Sochor, Jiri (Czech Republic)

Teschner, Matthias (Germany)

Theoharis, Theoharis (Greece)

Veltkamp, Remco (The Netherlands)

Weiskopf, Daniel (Canada)

Wu, Shin-Ting (Brazil)

Wyvill, Brian (Canada)

Zemcik, Pavel (Czech Republic)

WSCG 2007 Board of Reviewers

Adzhiev,Valery (U.K.)

Alessandro, Piva (Italy)

Ammon, Lorenz (Switzerland)

Ancuti, Cosmin (Belgium)

Andreadis, Ioannis (Greece)

Andujar, Carlos (Spain)

Aspragathos, Nikos (Greece)

Aveneau, Lilian (France)

Bamidis, Panagiotis (Greece)

Bargouli, Maria (Greece)

Bartz, Dirk (Germany)

Battiato, Sebastiano (Italy)

Bekaert, Philippe (Belgium)

Bellon, Olga (Brazil)

Benes, Bedrich (USA)

Bengtsson, Ewert (Sweden)

Beyer, Johanna (Austria)

Bieri, Hanspeter (Switzerland)

Bilbao, Javier J. (Spain)

Biri, Venceslas (France)

Bottino, Andrea (Italy)

Bouatouch, Kadi (France)

Bourdin, Jean-Jacques (France)

Brunet, Pere (Spain)

Bruni, Vittoria (Italy)

Brunnet, Guido (Germany)

Buehler, Katja (Austria)

Butz, Andreas (Germany)

Callieri, Marco (Italy)

Clasen, Malte (Germany)

Coleman, Sonya (U.K.)

Coquillart, Sabine (France)

Crosnier, Andre (France)

Daniel, Marc (France)

Davis, Larry (USA)

de Geus, Klaus (Brazil)

Deussen, Oliver (Germany)

Dingliana, John (Ireland)

du Buf, Hans (Portugal)

Duce, David (U.K.)

Durikovic, Roman (Slovakia)
Egges, Arjan (The The
Netherlands)

Eisemann, Martin (Germany)

Erbacher, Robert (USA)

Faudot, Dominique (France)

Feito, Francisco (Spain)

Felkel, Petr (Czech Republic)

Ferguson, Stuart (U.K.)

Ferko, Andrej (Slovakia)

Fernandes, Antonio (Portugal)

Fischer, Jan (Germany)

Flaquer, Juan (Spain)

Galin, Eric (France)

Galo, Mauricio (Brazil)

Ganovelli, Fabio (Italy)

Garcia-Alonso, Alejandro (Spain)

Gautron, Pascal (France)

Giannini, Franca (Italy)

Goebel, Martin (Germany)

Gonzalez, Pascual (Spain)

Grammalidis, Nicolaos (Greece)

Gresh, Donna (USA)

Groeller, Eduard (Austria)

Gutierrez, Diego (Spain)

Habbecke, Martin (Germany)

Haber, Tom (Belgium)

Hadwiger, Markus (Austria)

Harding, Bruce (USA)

Haro, Antonio (USA)

Hast, Anders (Sweden)

Hauser, Helwig (Austria)

Havran, Vlastimil (Czech Republic)

He, Xiangjian (Australia)

Hege, Hans-Christian (Germany)

Horain, Patrick (France)

Hornung, Alexander (Germany)

House, Donald (USA)

Chen, Min (U.K.)

Chin, Seongah (Korea)

Chover, Miguel (Spain)

Chrysanthou, Yiorgos (Cyprus)

Iglesias, Andres (Spain)

Ihrke, Ivo (Germany)

Jaillet, Fabrice (France)

Jansen, Frederik (The The
Netherlands)

Joan-Arinyo, Robert (Spain)

Kähler, Ralf (Germany)

Kalantari, Leila (Canada)
Karabassi, Evaggelia-Aggeliki
(Greece)

Kersten, Marta (Germany)

Kinuwaki, Shinichi (Germany)

Kjelldahl, Lars (Sweden)

Klajnsek, Gregor (Slovenia)

Klosowski, James T. (USA)

Knight, Michael (U.K.)

Kobbelt, Leif (Germany)

Kohlmann, Peter (Austria)

Kolcun, Alexej (Czech Republic)

Kruijff, Ernst (Austria)

Lamecker, Hans (Germany)

Lanquetin, Sandrine (France)

Larboulette, Caroline (Austria)

Lee, Seungyong (Korea)

Leitao, Miguel (Portugal)

Lensch, Heindrik (Germany)

Lewis, J.P. (USA)

Linz, Christian (Germany)

Magillo, Paola (Italy)

Magnor, Marcus (Germany)

Malik, Muddassir (Austria)

Mandl, Thomas (Germany)

Mantler, Stephan (Austria)

Matey, Luis (Spain)

Mattausch, Oliver (Austria)

McMenemy, Karen (U.K.)

Megali, Giuseppe (Italy)

Meneveaux, Daniel (France)

Moccozet, Laurent (Switzerland)

Mokhtari, Marielle (Canada)

Mollá Vayá, Ramón (Spain)

Montrucchio, Bartolomeo (Italy)

Mould, David (Canada)

Mudur, Sudhir (Canada)

Muller, Heinrich (Germany)

Muntean, Adrian (Germany)

Myszkowski, Karol (Germany)

Nedel, Luciana P. (Brazil)

Neveu, Marc (France)

Nielsen, Frank (Japan)

Ogayar, Carlos,J. (Spain)

Oliveira, Manuel (U.K.)

Pasko, Alexander (Japan)

Patel, Daniel (Austria)

Patow, Gustavo (Spain)

Paulin, Mathias (France)

Pavic, Darko (Germany)

Pedrini, Helio (Brazil)

Peroche, Bernard (France)

Pettifer, Steve (U.K.)

Platis, Nikos (Greece)

Plemenos, Dimitri (France)

Podorelec, David (Slovenia)

Ponchio, Federico (Italy)

Popov, Stefan (Germany)

Prakash, Edmond (U.K.)

Pratikakis, Ioannis (Greece)

Přikryl, Jan (Czech Republic)

Puppo, Enrico (Italy)

Purgathofer, Werner (Austria)
Rauterberg, Matthias (The The
Netherlands)

Redon, Stephane (France)

Remolar, Inmaculada (Spain)

Renaud, Christophe (France)

Revelles, Jorge (Spain)

Ribelles, Jose (Spain)

Robert, Philippe (Switzerland)

Rodeiro, Javier (Spain)

Rodrigues, Marcos (U.K.)

Rojas-Sola, José Ignacio (Spain)

Rokita, Przemyslaw (Poland)

Rossignac, Jarek (USA)

Roth, Peter,M. (Austria)

Rudomin, Isaac (Mexico)

Sanna, Andrea (Italy)

Sbert, Mateu (Spain)

Scateni, Riccardo (Italy)

Segura, Rafael (Spain)

Sellent, Anita (Germany)

Semwal, Sudhanshu (USA)

Shamir, Ariel (Israel)

Scheiblauer, Claus (Austria)

Schilling, Andreas (Germany)

Schmidt, Thomas (Germany)

Schneider, Bengt-Olaf (USA)

Schumann, Heidrun (Germany)

Sips, Mike (USA)

Sirakov, Nikolay Metodiev (USA)

Sochor, Jiri (Czech Republic)

Solis, Ana Luisa (Mexico)

Sousa, A.Augusto (Portugal)

Stroud, Ian (Switzerland)

Suarez Rivero, Jose (Spain)

Suescun, Angel (Spain)

Szekely, Gabor (Switzerland)
Štulić, Radovan (Serbia and
Montenegro)

Tang, Wen (U.K.)

Tawara, Takehiro (Japan)

Tecchia, Franco (Italy)

Teschner, Matthias (Germany)

Theußl, Thomas (Austria)

Tobler, Robert (Austria)

Tonet, Oliver (Italy)

Turini, Giuseppe (Italy)

Tytkowski, Krzysztof (Poland)

Vanecek, Petr (Czech Republic)

Vasa, Libor (Czech Republic)

Veiga, Luis (Portugal)
Veltkamp, Remco (The The
Netherlands)
Vergeest, Joris (The The
Netherlands)

Vitulano, Domenico (Italy)

Wan, Taoruan (U.K.)

Weigel, Christian (Germany)

Weiskopf, Daniel (Canada)

Wenger, Thomas (Switzerland)

Wu, Shin-Ting (Brazil)

Wyvill, Brian (Canada)

Zach, Christopher (Austria)

Zachmann, Gabriel (Germany)

Zalik, Borut (Slovenia)

Zemcik, Pavel (Czech Republic)

Zhu, Ying (USA)

Zimeras, Stelios (Greece)

 i

Contents

Code
Code

Title

Page

G31 Lee,J.K., Newman,T.S.: New Method for Opacity Correction in Oversampled Volume
Ray Casting (United States)

 1

B03 Holst,M., Schumann,H.: Normal Mapping for Surfel-Based Rendering (Germany) 9

G19 Kim,S.-S., Nam,S.-W., Kim,D.-H., Lee,I.-H.: Hardware-Accelerated Ray-Triangle
Intersection Testing for High-Performance Collision Detection (Korea)

 17

D11 Hutter,M., Fuhrmann,A.: Optimized Continuous Collision Detection for Deformable
Triangle Meshes (Germany)

 25

F07 Spillmann,J., Becker,J.M., Teschner,M.: Non-iterative Computation of Contact Forces
for Deformable Objects (Germany)

 33

B71 Vivanloc,V., Hoelt,J.Ch., Hong,C.-B., Paulin,M.: Light Octree: Global Illumination Fast
Reconstruction and Realtime Navigation (France)

 41

C89 Linsen,L., Mueller,K., Rosenthal,P.: Splat-based Ray Tracing of Point Clouds
(Germany)

 51

B17 Scheider,M., Klein,R.: Efficient and Accurate Rendering of Vector Data on Virtual
Landscapes (Germany)

 59

B29 Bade,R., Konrad,O., Preim,B.: Reducing Artifacts in Surface Meshes Extracted from
Binary Volumes (Germany

 67

C71 Shi,K., Theisel,H., Weinkauf,T., Hauser, H., Hege,H.-C., Seidel,H.-P.: Extracting
Separation Surfaces of Path Line Oriented Topology in Periodic 2D Time-Dependent
Vector Fields (Germany)

 75

E37 Kohlmann,P.,Bruckner,S.,Kanitsar,A.,Gröller,E.: Evaluation of a Bricked Volume
Layout for a Medical Workstation based on Java (Austria)

 83

E61 Schafhitzel,T., Falk,M., Ertl,T.: Real-Time Rendering of Planets with Atmospheres
(Germany)

 91

C31 Amjoun,R.: Efficient Compression of 3D Dynamic Mesh Sequences (Germany) 99

F53 Medek,P., Benes,P., Sochor,J.: Computation of Tunnels in Protein Molecules using
Delaunay Triangulation (Czech Republic)

 107

B07 Götzelmann,T., Götze,M., Ali,K., Hartmann,K., Strothotte,Th.: Annotating Images
through Adaptation: An Integrated Text Authoring and Illustration Framework
(Germany)

 115

G67 Habel,R., Wimmer,M., Jeschke,S.: Instant Animated Grass (Austria) 123

F47 Lourakis,M., Argyros,A.: Refining Single View Calibration With the Aid of Metric Scene
Properties (Greece)

 129

G59 Bottino,A., De Simone,M., Laurentini,A.: Recognizing Human Motion using
Eigensequences (Italy)

 135

H61 Ancuti,C., Bekaert,P.: A Scale Invariant Detector Based on Local Energy Model for
Matching Images (Belgium)

 143

A47 Chu,Ch., Shih,Z.-Ch.: Painterly Rendering Framework from Composition (Taiwan) 151

New Method for Opacity Correction in Oversampled Volume
Ray Casting

Jong Kwan Lee
Department of Computer Science
University of Alabama in Huntsville

Huntsville, AL 35899 USA
jlee@cs.uah.edu

Timothy S. Newman
Department of Computer Science
University of Alabama in Huntsville

Huntsville, AL 35899 USA
tnewman@cs.uah.edu

ABSTRACT

A new opacity correction approach for oversampled volume ray casting is introduced. While the only existing opacity correction
method in the literature is based on the assumption of dataset homogeneity, the new opacity correction method introduced in this
paper is a faster, generalized voxel-by-voxel approach which does not assume dataset homogeneity. The new opacity correction
avoids the dataset homogeneity assumption by introducing a new opacity correction factor for the samples in each voxel. Its
performance improvement over the existing opacity correction approach is also exhibited for real volumetric datasets.

Keywords: Volume visualization, Volume ray casting, Oversampling, Opacity Correction

1 INTRODUCTION

Volume visualization has been a powerful aid to knowl-
edge discovery in many application areas. Direct vol-
ume rendering (DVR) is one of the classes of volume
visualization approaches. DVR involves constructing
an image representation for a volumetric dataset with-
out first building any intermediate representation (e.g.,
a mesh of triangles).

Volume ray casting (VRC) is one of the widely stud-
ied and applied DVR techniques (e.g., [Lev88, Mor02,
Wei03, Kle05]). Ray casting involves forming an image
by passing rays from image locations through the vol-
umetric dataset and integrating light effects on the rays
(e.g., integrating light transmissions along the rays).
Samples are composited along each ray in a front-to-
back or back-to-front manner. Equations (1) and (2)
are the discretized formulations of the front-to-back and
back-to-front compositions, respectively:

It =
n

∑
i=0

Ii ×
i−1

∏
j=0

(1−α j) , (1)

It =
n

∑
i=0

Ii ×
n

∏
j=i+1

(1−α j) , (2)

where It is the final composited intensity for a ray, n
is the number of samples for a ray, Ii is the intensity

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

Copyright UNION Agency – Science Press, Plzen, Czech Republic.

of the ith sample, and α j is the opacity of the jth sam-
ple. The term (1−α j) in Equations (1) and (2) is the
transparency of the jth sample. Front-to-back compo-
sition has an advantage of allowing early ray termina-
tion since the accumulated transparency from previous
samples is kept. The intensity, Ii, of a sample in these
formulations can be modeled as:

Ii = Ci ×αi , (3)

where Ci is the color of the sample.
The number of sample points on each ray can vary

as long as it is above the Nyquist sampling frequency
to avoid aliasing [Lic98, Swa97]. Moreover, to better-
simulate the continuous integration of the light effects
in a discrete space, a high sampling rate can be used.
However, the result of the ray sample composition
should not be negatively impacted when the number of
samples on each ray exceeds a unit-sampling rate. That
is, when there is oversampling, the opacity must be
corrected such that the final composited opacity value
is not over-composited. In addition, since the ray in-
tensity composition is not a simple linear composition,
as seen in Equations (1) and (2), the opacity correction
should be applied in a non-linear way.

Figs. 1 and 2 show the impact of over-composited
opacity. In Figs. 1 (a) and 2 (a), isosurface renderings
of CT datasets of an engine block and a foot are shown,
respectively. Five times oversampled renderings are
shown for each of these in Fig. 1 (b) and Fig. 2 (b),
respectively. (For these figures, a gradient-based local
reflection model was used to determine the sample col-
ors.) In these oversampled renderings, it is harder to see
the details of the structures due to the over-composited
opacity. For example, the interior structures of the en-
gine block are not visible in Fig. 1 (b) and the bone

Journal of WSCG ISSN 1213-6972 1 ISBN 978-80-86943-00-8

(a) (b)

(c) (d)

Figure 1: Renderings (Engine, 256×256×256 CT) from (a) Marching Cubes isosurfacing and (b-d) over-
sampled (5 times) volume ray casting: (b) without opacity correction, (c) with Lacroute/Lichtenbelt et al.’s
opacity correction, and (d) with new opacity correction.

structures are not clear in Fig. 2 (b). Thus, when over-
sampling, an opacity correction is needed to correct
such artifacts.

In this paper, we describe a new method to address
the issue of over-compositing of opacity in oversampled
volume ray casting.

2 RELATED WORK

In this section, related work is discussed. Lichtenbelt
et al. [Lic98] have discussed the problem of over-
composited opacity and described an opacity correc-
tion formula based on the assumption that the datasets
are homogeneous (i.e., all sample values are the same).
(However, most real volumetric datasets are not homo-
geneous.) When the dataset is homogeneous and front-
to-back composition is used, the method to correct
opacity described by Lichtenbelt et al. uses the ratio-
nale that the unit-sampled intensity in a voxel should be
equal to the oversampled intensity in the voxel. Thus,

C×α = C×α ′ +{C×α ′ (1−α ′)}
+
{

C×α ′ (1−α ′)2
}

+ . . .

+
{

C×α ′ (1−α ′)N−1
}

,

(4)

where C is the color, α is the original opacity deter-
mined by an opacity transfer function, α ′ is the cor-
rected opacity, and N is the oversampling factor. Based
on this expression, Lichtenbelt et al. [Lic98] derived
the opacity correction formula:

α ′ = 1− N
√

1−α . (5)

This correction is applied on a voxel-by-voxel basis
(i.e., a separate correction is computed for each sample
in each voxel). However, Equation (5)’s opacity adjust-
ment will only be appropriate when the assumption of
dataset homogeneity holds.

The opacity correction described in Lichtenbelt et al.
[Lic98] was motivated by work by Lacroute [Lac95],
who presented an opacity correction formula in terms of
sample spacing for the shear-warp factorization-based
rendering. Lacroute’s formula is equivalent to Equa-
tion (5). Others [Pfi05, Sch03, Wei00] have also used
or discussed use of this opacity correction formula.
Schulze et al. [Sch03] have suggested that an opac-
ity correction factor be computed using the formula in
Equation 5 with the corrected opacity used to correct
the color as follows:

C′
i = Ci × α ′

i

αi
, (6)

Journal of WSCG ISSN 1213-6972 2 ISBN 978-80-86943-00-8

where C′
i is the corrected color. Schulze et al. applied

their corrections to undersampled ray casting.
Although Lacroute [Lac95] and Lichtenbelt et al.

[Lic98] have noted that the opacity correction in Equa-
tion 5 can be implemented by a lookup table for α ′ as
a function of α , discretizing the opacity can result in
loss of information. Thus, in the experiments we report
later, a lookup table for α ′ is not used.

2.1 Toward the New Approach

The new opacity correction method introduced here is
an efficient approach; it can be computed much faster
than the existing approach. It is also able to produce
renderings of comparable quality to those of the prior
(i.e., Lacroute/Lichtenbelt et al.) approach. Moreover,
it is not based on the assumption of homogeneity of the
data. We note that it is also possible to employ a lookup
table for the new opacity correction method, but we do
not use a lookup table for it for the reason we mentioned
above.

(a) (b)

(c) (d)

Figure 2: Renderings (Foot, 256×256×256 CT)
from (a) Marching Cubes isosurfacing and (b-
d) oversampled (5 times) volume ray casting:
(b) without opacity correction, (c) with prior
(Lacroute/Lichtenbelt et al.’s) opacity correction,
and (d) with new opacity correction.

3 NEW OPACITY CORRECTION AP-
PROACH

The new opacity correction method we introduce here
is derived from a generalized form of an opacity-based
derivation similar to Equation (5)’s derivation. Like the
prior method, it is a voxel-by-voxel approach, although
it does not assume homogeneity of the dataset.

3.1 Application Conditions
In the work here, we have used two color transfer func-
tions. Both transfer functions used trilinear interpola-
tion to interpolate samples that were not on the grid
points.

The first is for gray-scaled application:

Ci =
Di

M
, (7)

where M is the maximum sample data value in the
dataset and Di and Ci are the sample data value and
color, respectively, for the ith sample in a cell. For
generic application, especially for 8-bit data, the sim-
ple linear transfer function in Equation (7) is suitable.

The second transfer function is for color-scaled ap-
plication:

Ci = local_re f lection_model (Gi) , (8)

where Gi is the gradient of the ith sample and Ci is the
color that is associated with the ith sample in a cell.
The local reflection model utilizes ambient, diffuse, and
specular light components and uses the sample gradi-
ent as the surface normal. For the sample gradient, we
employed two different approximation schemes (which
produce visually similar results): (1) using trilinear in-
terpolation of the linear central-difference gradients at
the 8 grid points in the voxel and (2) using linear central
differences at the sample points. (Figs. 1, 5, and 6 use
scheme (1); Fig. 2 uses scheme (2).) For the opacity
transfer function, we have used a simple linear transfer
function similar to Equation (7) (i.e., αi = Di/M, where
αi is the opacity for the ith sample in a cell).

3.2 New Opacity Correction
In this subsection, the derivation of the new opacity
correction formulation is shown. Then, we show an
approximation that allows fast computation of the new
opacity.

For a unit-sampling versus an oversampling in one
voxel, our model assumes the unit-sampled composited
transparency and the oversampled composited trans-
parency should be equivalent for the voxel. For exam-
ple, for the case of two times oversampling, the com-
posited transparency within a voxel should be:

(1−αu1) = (1− pαo1)× (1− pαo2) , (9)

where αui is the unit-sampled opacity for the ith sample
in the voxel, αoi is the oversampled opacity of the ith

sample in the voxel (i.e., αu1 = αo1), and p is the new
opacity correction factor. As seen in Equation (9), our
opacity correction does not depend on dataset homo-
geneity (i.e., when there are different αi values for dif-
ferent samples). Then, Equation (9) can be rearranged
as follows:

F : (αo1 αo2) p2 − (αo1 +αo2) p+αo1 = 0 . (10)

Journal of WSCG ISSN 1213-6972 3 ISBN 978-80-86943-00-8

(−1)0

(
N

∏
s=1

αos

)
pN

+(−1)1

{
N

∑
t=1

(
N

∏
s=1,s �=t

αos

)}
pN−1

+(−1)2

{
N−1

∑
u=1

N

∑
t=u+1

(
N

∏
s=1,s �=t,u

αos

)}
pN−2

+(−1)3

{
N−2

∑
v=1

N−1

∑
u=v+1

N

∑
t=u+1

(
N

∏
s=1,s �=t,u,v

αos

)}
pN−3

...

+(−1)N αo1 p0 = 0.

(11)

In the new method, the expression in Equation (10)
is solved for p. Similar formulas can be obtained for
oversamplings of more than two times. Those formulas
can be generalized, as we show above in Equation (11),
for large N, where N is the oversampling factor.

For the general case, our approach’s opacity correc-
tion factor, p (0 ≤ p ≤ 1), can be determined for each
voxel by solving Equation (11) for p for the voxel; we
need to solve Equation (11) for p for each voxel.

For example, the opacity correction expression F
when N = 3 is:

F (p) = (αo1αo2αo3) p3

−(αo1αo2 +αo2αo3 +αo1αo3) p2

+(αo1 +αo2 +αo3) p

−αo1 ,

(12)

where F(p) = 0 for the value of p that produces the
proper correction.

However, Equation (11) can contain high-order poly-
nomials when the oversampling rate is high. To avoid
complex computations for solving the high-order poly-
nomials (i.e., N ≥ 3), we approximate them by fitting
2nd degree polynomials and then solving for p. This
approximating expression has the form:

F̂ (p) = A× p2 +B× p+C , (13)

with F̂(p) = 0 for the p that satisfies the condition.
In particular, we have used p0 = 0.0, p1 = 0.5, and
p2 = 1.0 for the 2nd degree polynomial fittings (i.e., the
fitted polynomial is forced to pass through these three
points). For example, at p1 = 0.5, we have F̂(0.5) =
A× (0.5)2 +B× (0.5)+C = F(0.5).

The evaluations of Equation (13) produce the system:
 p2

0 p0 1
p2

1 p1 1
p2

2 p2 1




 A

B
C


=


 F(p0)

F(p1)
F(p2)


 , (14)

where F(pi) are from Equation (11). Thus, the solution
(A,B,C) is:


 A

B
C


=


 p2

0 p0 1
p2

1 p1 1
p2

2 p2 1




−1
 F(p0)

F(p1)
F(p2)


 . (15)

Once (A,B,C) have been determined, Equation (13)
can be solved for the best p using standard quadratic
equation solution methods. This process of determin-
ing p must be performed for each voxel (i.e., a unique
p will be determined for each voxel), although the
matrix of p0, p1, p2 values will not change. Thus, a
final form of our new opacity correction is as follows:

p = f (α̂) ,

α ′ = p×α ,
(16)

where the function f solves a second degree polynomial
given a set of samples, α̂ = {α0,α1, ...,αN−1}, in the
voxel and α ′ is the corrected opacity.

A lookup table can be used in implementing the new
opacity correction. However, our reports here are not
based on lookup table use.

4 EXPERIMENTAL RESULTS

In this section, we consider the behavior (including
some limitations) of the new opacity correction and
compare the performances of the existing opacity cor-
rection and the new opacity correction.

4.1 Analysis Within A Voxel

First, we consider the within-voxel behavior of the
Lacroute/Lichtenbelt et al.’s opacity correction and of
our new opacity correction.

Journal of WSCG ISSN 1213-6972 4 ISBN 978-80-86943-00-8

(a) (d)

(b) (e)

(c) (f)

Figure 3: Oversampling’s (2 times) resultant opaci-
ties in (a)-(c): (a) without correction, (b) with prior
(Lacroute/Lichtenbelt et al.’s) correction, and (c)
with new correction. Corresponding composited in-
tensity surfaces shown in (d)-(f): (d) without correc-
tion, (e) with prior correction, and (f) with new cor-
rection. All surfaces exhibit results over the universe
of possible combinations of sample values for 8-bit
data.

4.1.1 Synthetic Data-Testing All Combinations

The characteristics of different opacity corrections can
be observed using synthetic data to compare the re-
sultant opacity surfaces and composited intensity sur-
faces. Here, we consider two times oversampling for
the cases of (1) compositing without opacity correction,
(2) compositing with the prior (Lacroute/Lichtenbelt et
al.’s) opacity correction, and (3) compositing with the
new opacity correction. The resultant opacity surfaces
and composited intensity surfaces for all possible com-
binations of sample values of 8-bit data are shown in
Fig. 3. Parts (a)-(c) show the resultant opacities for
these three cases. Corresponding composited intensity
surfaces (i.e., composited intensities for all combina-
tions of two samples) for Figs. 3 (a)-(c) are shown in

(a) Resultant Opacities

(b) Composited Intensities

Figure 4: Example comparison of resul-
tant/composited opacities and intensities for a
voxel: Rays within a voxel for unit-sampling,
oversampling without correction, oversampling
with Lacroute/Lichtenbelt et al.’s correction, over-
sampling with new correction from top to bottom,
respectively. (All oversamplings: 5 times)

Figs. 3 (d)-(f). While the resultant opacity surface with-
out correction in Fig. 3 (a) is linear, the resultant opac-
ity surface with the prior opacity correction and with
the new correction in Figs. 3 (b) and (c), respectively,
show non-linear variations for different sample values.
In addition, the resultant opacity surface in Fig. 3 (c)
for the new method shows a more complicated, non-
linear variation in its shape. There are more apparent
differences between the composited intensity surfaces
in Fig. 3 (e) for the prior opacity correction and Fig. 3
(f) for the new correction. For the case of two times
oversampling, the homogeneity assumption of the prior
opacity correction does not allow the correction to vary
suitably in the cases where values are the least homo-
geneous (e.g., the combination of one small and one
large value). Specifically, when the first sample has a
low value and the second sample has a high value, the
second sample should have very little impact on the in-
tensity composition within a voxel. Fig. 3 (f) shows that

Journal of WSCG ISSN 1213-6972 5 ISBN 978-80-86943-00-8

(a)

(b) (c) (d)

(e) (f) (g)

Figure 5: Renderings (lobster, 120×120×34 CT) from (a) Marching Cubes isosurfacing and (b-g) oversam-
pled (5 times) volume ray casting, (top: using color transfer function in Equation (7), bottom: using color
transfer function in Equation (8)), (b, e) without opacity correction, (c, f) with Lacroute/Lichtenbelt et al.’s
opacity correction, and (d, g) with new opacity correction.

our new opacity correction produces intensity composi-
tion in which the second sample has little impact on the
intensity composition when the first sample has a low
value and the second sample has a high value. How-
ever, as shown in Fig. 3 (e), the prior opacity correc-
tion over-composited the second sample value which
resulted in a higher composited intensity for the same
case. Moreover, when the second sample has a zero
value, the resultant opacities within a voxel should be
linearly changed as the first sample values vary lin-
early. Fig. 3 (c) shows that our new opacity correc-
tion produces more linear resultant opacities when the
first sample values vary linearly and the second sam-
ples have zero values. (However, Lacroute/Lichtenbelt
et al.’s correction produces non-linear resultant opaci-
ties for the same cases in Fig. 3 (b).)

4.1.2 Real Data Tests

We have examined the behaviors of different correc-
tions by comparing the resultant opacities and compos-
ited intensities within a voxel using the sample values
extracted from real volumetric datasets.

Fig. 4 shows a typical example of opacity and in-
tensity compositions in which we can observe the be-
haviors of different oversamplings within a voxel. In
the figures, the rays, from top to bottom, are for unit-
sampling, oversampling without correction, oversam-
pling with Lacroute/Lichtenbelt et al.’s correction, and
oversampling with the new correction. The ′×′ marks
represent the sample points on each ray. The sam-

ple value of the unit-sampling was 67.0 and the sam-
ple values of the oversampling from left to right were
67.0, 69.2, 73.4, 78.6, and 84.8. The resultant opacities
and composited intensities using these sample values
are shown in the figure. In this example, the uncor-
rected oversampling produced over-composited inten-
sity which was caused by the over-composited opaci-
ties.

Based on empirical tests on several real datasets (enu-
meration omitted here due to space limits), we con-
clude the following three behaviors of different correc-
tions within a voxel: (1) uncorrected oversampling al-
ways over-composites the opacities and the intensities
and (2) both Lacroute/Lichtenbelt et al.’s opacity cor-
rection and our new opacity correction limit the false
over-composition of opacities and intensities.

4.2 Differences in Renderings

Next, we compare the quality of the renderings pro-
duced by the new and the existing opacity corrections.
We consider real datasets using visual comparison. We
also quantitatively compare the accuracy of different
opacity corrections versus a gold standard. Since we
do not know the analytical distribution of values for
the real datasets, our gold standard rendering considers
an analytical function. (Since the unit-sampled render-
ing is only a discrete approximation (i.e., Riemann sum
approximation) to a continuous light integral, the unit-
sampling renderings are not suitable to be used as the
gold standard of the opacity-corrected oversamplings.)
Thus, we have used the Marschner and Lobb analyti-

Journal of WSCG ISSN 1213-6972 6 ISBN 978-80-86943-00-8

(a) (b) (c)

Figure 6: Comparison of opacity correction results. (a) Unit-sampled rendering with a region highlighted,
(b) Lacroute/Lichtenbelt et al.’s correction for 5 times oversampling in the highlighted region, (c) new opac-
ity correction for 5 times oversampling in the highlighted region.

cal function [Mar94] as the basis of a gold standard to
compare the oversampled renderings.

First we discuss the real data results. We have applied
the new and the prior (Lacroute [Lac95]/Lichtenbelt
et al. [Lic98]) opacity corrections to 40 real volumet-
ric datasets. Some example renderings are shown in
Figs. 1, 2, and 5. These figures show the renderings
from Marching Cubes isosurfacing (i.e., (a) in each fig-
ure) and from oversampled VRC without opacity cor-
rection, with the prior opacity correction, and with our
new opacity correction for three of the real datasets.
For the VRC renderings, all of the figures used shad-
ing based on the color transfer function in Equation (8)
except the figures in Figs. 5 (b)-(d), which used the
gray-scaled color transfer function in Equation (7). All
the oversampled renderings without opacity correction
(i.e., Fig. 1 (b), Fig. 2 (b), and Figs. 5 (b) and (f))
suffered from over-composited opacity. The oversam-
pling without any opacity correction tends to become
darker or brighter when the samples from the front
slices have low values or high values, respectively. The
prior opacity correction and our new opacity correction
tend to produce rendering results (i.e., Figs. 1 (c) and
(d), Figs. 2 (c) and (d), and Figs. 5 (c) and (d), and (g)
and (f)) that are similar. Fig. 6 illustrates how close the
oversampled renderings are using the prior opacity cor-
rection and the new correction. Fig. 6 (b) and (c) show
the zoomed-in renderings (of the region marked by a
red box in Fig. 6 (a)) with the prior opacity correction
and with the new correction. As seen in the figures, the
difference in the oversampled renderings is very small.

Fig. 7 shows the differences of ray casting renderings
for the Marschner and Lobb function. Fig. 7 (a) shows
the rendering that has been analytically computed,
Fig. 7 (b)-(d) show the five times oversampled render-
ing without correction, with Lacroute/Lichtenbelt et
al.’s correction, and with the new correction, respec-
tively. The average pixel-by-pixel difference between
Fig. 7 (a) and Fig. 7 (b)-(d) were 0.1200, 0.0895,

and 0.0894, respectively. Thus, the results may be
considered to be comparable.

(a)

(b) (c) (d)

Figure 7: Ray cast renderings (Marschner-Lobb
function, 64×64×64) for (a) analytical integration
and (b-g) oversamplings (5 times): (b) without opac-
ity correction, (c) with existing opacity correction,
and (d) with new opacity correction.

4.3 Processing Times

While the oversampled renderings of both opacity cor-
rections were similar when using the color transfer
function in Equation (7), the processing time with the
new opacity correction was faster than the time for the
Lacroute/Lichtenbelt et al.’s correction. One source of
the speedup is that the inverse matrix of p0, p1, and p2

in Equation (15) can be computed once and be continu-
ously re-used. In addition, each opacity correction fac-
tor p is re-used N times within a voxel. The computa-
tional speed advantage of the approach proposed here
is the chief reason to use the new approach when using
the color transfer function in Equation (7).

Some shortcomings of the new correction are as fol-
lows: (1) the inverse matrix of p0, p1, and p2 in Equa-
tion (15) has to be re-computed when the sampling rate

Journal of WSCG ISSN 1213-6972 7 ISBN 978-80-86943-00-8

changes, and (2) when a lookup table is used, the di-
mension of the lookup table depends on the sampling
rate and one lookup table for every sampling rate has to
be pre-computed.

Table 1 shows three measures (i.e., maximum, av-
erage, and minimum) of the new opacity correction’s
speedup over the Lichtenbelt et al.’s correction for the
40 real datasets when oversampling 5 times. For the
speedup of the opacity correction itself (shown in Ta-
ble 1’s upper row), all non-correction processing steps
(e.g., interpolation of sample values and ray compo-
sitions) are ignored; only the processing time for the
opacity correction itself is measured. On average, the
new opacity correction has a speedup of about 12.36
when considering only the correction itself. In Table 1’s
bottom row, the overall speedup for the new opacity-
corrected VRC rendering (versus VRC with correction
by the Lacroute/Lichtenbelt et al.’s method) is shown;
on average, the new approach allows an overall speedup
in VRC of about 1.85. We have found that the speedup
tends to get higher as the oversampling rate increases.

× 5 Max. Avg. Min.
Opacity Correction 14.724 12.359 6.785

Overall 1.997 1.846 1.767

Table 1: Speedup of new correction versus
Lacroute/Lichtenbelt et al.’s correction for 40
datasets, for 5 times oversampling.

4.4 Approximation Error
The use of approximation in the new approach’s
quadratic curve fitting in Equation (13) is a source of
error. We performed one experiment to evaluate the
error. It involved measuring the absolute differences
between the true opacity correction factor and the
approximated opacity correction factor using the
(120x120x34) lobster dataset shown in Fig. 5. The
average fitting error for five times oversampling for one
ray-casting on the dataset was 0.0031 and the standard
deviation was 0.012. In addition, only 0.09% of all the
fitting errors exceeded 0.1 in magnitude.

5 CONCLUSION
In this paper, a new opacity correction method for over-
sampled volume ray casting was described. The new
correction method is a generalized voxel-by-voxel ap-
proach which avoids the assumption of dataset homo-
geneity. The new correction limits the false increase
in opacity from over-composition of the opacity and it
is faster than the only existing opacity correction. The
new method can be applied about 12 times faster than
the existing approach which yields an overall speedup
in VRC of about 1.85.

In the future, we intend to work on further improve-
ments to the speed and accuracy of opacity correction.

ACKNOWLEDGMENT
The work reported here was strengthened by the sug-
gestions of the reviewers.

REFERENCES
[Kle05] Klein, T., Stegmaier, M., Stegmaier, S., and

Ertl, T., Exploiting Frame-to-frame Coherence
for Accelerating High-quality Volume Raycast-
ing on Graphics Hardware, Proc., Visualization
’05, Minneapolis, pp. 223-230, 2005.

[Lac95] Lacroute, P., Fast Volume Rendering Using a
Shear-Warp Factorization of the Viewing Trans-
formation, Doctoral Dissertation (Technique Re-
port CSL-95-678), Stanford University, 1995.

[Lev88] Levoy, M., Display of Surfaces from Volume
Data, IEEE Computer Graphics and Applica-
tions, Vol. 5 (3), pp. 29-37, 1988.

[Lic98] Lichtenbelt, B., Crane, R., and Naqvi, S., In-
troduction to Volume Rendering, Prentice Hall,
Upper Saddle River, NJ, 1998.

[Mar94] Marschner, S., and Lobb, R., An Evaluation
of Reconstruction Filters for Volume Render-
ings, Proc., Visualization ’94, Washington, DC,
pp. 100-107, 1994.

[Mor02] Mora, B., Jessel, J.-P., and Caubet, R., A New
Object-order Ray-casting Algorithm, Proc., Vi-
sualization ’02, Boston, pp. 203-210, 2002.

[Pfi05] Pfister, H., Hardware-Accelerated Volume
Rendering, The Visualization Handbook ed. by
C. Hansen and C. Johnson, Elsevier, New York,
pp. 229-258, 2005.

[Sch03] Schulze, J.P., Kraus, M., Lang, U., and Ertl,
T., Integrating Pre-Integration into the Shear-
Warp Algorithm, Proc., Third Int’l Workshop on
Vol. Graphics, Tokyo, pp. 109-118, 2003.

[Swa97] Swan II, J.E., Mueller, K., Moller, T., Shareef,
N., Crawfis, R., and Yagel, R., An Anti-Aliasing
Technique for Splatting, Proc., Visualization ’97,
pp. 197-204, 1997.

[Wei03] Weiler, M., Kraus, M., Merz, M., and Ertl,
T., Hardware-based Ray Casting for Tetrahedral
Meshes, Proc., Visualization ’03, Seattle, pp.
333-340, 2003.

[Wei00] Weiler, M., Westermann, R., Hansen, C., Zim-
merman, K., and Ertl, T., Level-Of-Detail Vol-
ume Rendering via 3D Textures, Proc., 2000
IEEE Symp. on Vol. Visualization, Salt Lake
City, pp. 7-13, 2000.

Journal of WSCG ISSN 1213-6972 8 ISBN 978-80-86943-00-8

Normal Mapping for Surfel-Based Rendering

Mathias Holst
University of Rostock
Albert-Einstein-Str. 21

18059 Rostock, Germany
mholst@informatik.uni-rostock.de

Heidrun Schumann
University of Rostock
Albert-Einstein-Str. 21

18059 Rostock, Germany
schumann@informatik.uni-rostock.de

ABSTRACT
On the one hand normal mapping is a common technique to improve normal interpolation of low tesselated tri-
angle meshes for a realistic lighting. On the other hand today’s graphics hardware allows texturing of view plane
aligned point primitives. In this paper we illustrate how to use textured points together with normal mapping to
increase surfel splatting quality, especially when using larger splats on lower level of detail. In combination with
a silhouette refinement this results in a significant decimation of needed surfels with small visual disadvantages
only. Furthermore, we explain how to create a normal map for points within a point hierarchy.

Keywords
Normal Mapping, Surfel Splatting, Point-Based Rendering, GPU-Programming.

1 INTRODUCTION
In recent years point-based rendering has been proven
to be effective and efficient for rendering highly de-
tailed complex geometric models. Point-based ren-
dering bases on the idea, that polygonal representa-
tions get less efficient with increasing polygon number,
because in this case each polygon covers only a few
pixels in image space [LW85]. Additionally triangle
meshes, or polygonal meshes in general, are not easy
to handle and to simplify because of their connectivity.
Points on the other side do not have any connectivity
and can be stored and merged very easily using simple
subdivision schemes [PGK02].

Since points only have a position but no dimension,
they are parameterized with other attributes that de-
scribes their look. Usually these are a normal and a
radius to represent circular disks in 3D (see fig. 1),
known as surfels (from surface elements). With surfels
a dense, opaque and smooth surface approximation can
be described.

To get a high quality rendering result small and many
surfels have to be used. However, the number of ver-
tices (e.g. points) that is processed by the GPU is a
framerate limiting factor. Thus, it is useful to render
fewer but larger surfels instead. To attenuate the loss of

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Copyright UNION Agency – Science Press, Plzen, Czech
Republic.

P

n

r

Figure 1: Surfel geometry.

surface features we propose to apply normal mapping.
This is possible, because today’s graphics hardware al-
lows texturing point primitives. This texturing is given
for image space only. Therefore we show in this paper
how object-space texture coordinates can be obtained
by adding only a 2D texture coordinate and a scaling
factor as additional surfel attributes. Of course, normal
mapping does not decimate the total number of pix-
els/fragments to shade but in the case of non-parallel
vertex-fragment processing this results in a significant
framerate increase.

When working with normal mapping normal maps
have to be associated to the lower levels of detail of
the original object. In this paper an algorithm is pre-
sented to get normal maps for surfels of point hierar-
chies. In past several point hierarchies has been devel-
oped. Therefore, we take the two most popular hierar-
chies into account: point and hybrid bounding-sphere
hierarchies.

Since normal mapping only affects the shading of
pixels, but not the shape of the underlying geometry,
the silhouette looks very coarse when using low tesse-
lated polygonal or point-based models. Therefore, it
is useful to enhance the rendering process by silhou-
ette refinement using more primitives at these surface
parts. In contrast to polygonal-based approaches sil-
houette refinement can be easily done using point hier-

Journal of WSCG ISSN 1213-6972 9 ISBN 978-80-86943-00-8

(a) (b) (c)
255k Surfels 32k Surfels (b) + normal mapping

Figure 2: Rendering of the Igea model with 255k surfels (a). Same model rendered with only 32k surfels
and silhouette refinement (b). Same LOD rendered using normal mapping (c).

archies, because no connectivity has to be considered.
We use normal cones for this purpose, which results in
a high-quality rendering as it can be seen in fig. 2(c).

2 Previous Works
Relevant works that inspired this paper can be catego-
rized into three groups: surfel-based rendering, point
hierarchies and point-based silhouette refinement.

Surfel-Based Rendering In general a surfel is
an oriented (n-1)-dimensional oriented object in n-
dimensional space [Her92]. Using surfels as rendering
primitives was first proposed by [PZvBG00]. Here,
objects are rendered by a two pass approach: First
all visible surfels have to be estimated using z-buffer
and secondly, these surfels have to be rendered, called
splatting. This splatting was improved in [ZPvBG01]
by applying a gaussian elliptical kernel as alpha mask
for each surfel in screen space to meet the Nyquist
criterion. In [RPZ02] an hardware supported version
is proposed.

We use a similar technique as proposed in [BK03],
which includes a complete hardware support for fil-
tering and splatting with a minimum CPU overhead.
Moreover we decrease the number of pixel that have
to be shaded by using a more sophisticated splat size
measure in screen space.

Point Hierarchies Continuous LOD is nearly al-
ways integrated in point-based rendering approaches.
This yields from the computational simplicity to cre-
ate point hierarchies using subdivision schemes. A
comparison of point cloud simplification can be found
in [PGK02].

Since point clouds are often generated by sam-
pling triangle meshes, these meshes can be used
as alternative surface representation on the highest
LOD. Such hybrid hierarchies are proposed in [CN01]
and [DVS03] for example. In [CAZ01] a triangle-
based multi-resolution hierarchy is used for higher
LOD and a point hierarchy on top for lower LOD.

In this paper we propose algorithms to generate nor-
mal maps for both kinds of point hierarchies, but in
our implementation we only use a pure point hierarchy
created from an octree-based space subdivision.
Silhouette Refinement In most point-based frame-
works the whole surface is approximated by nearly
equally sized points/surfels to guarantee feature preser-
vation also in the interior without a special silhouette
refinement. A first framework that realizes silhouette
refinement is the POP system [CN01]. In this hybrid
system triangles are used as highest available LOD. If
the normal of a surfel is nearly perpendicular to the
viewing vector, its triangle children will be rendered.
This seems to be too conservative, especially if the ob-
ject is very small in screen space. In this case triangles
cover a few pixels only. Therefore, this may results in
aliasing artifacts.

Another system that uses silhouette refined surface
approximations was proposed in [LH01]. Here the QS-
plat system [RL00] was extended to use normal cones
for silhouette detection and refinement. Using a so-
phisticated perceptual model, surfels lying on the sil-
houette are assumed to cause high frequency and con-
trast in the final image. Thus, they are skipped and
the hierarchy is further traversed top-down until the
expected rendering result is indistinguishable from the

Journal of WSCG ISSN 1213-6972 10 ISBN 978-80-86943-00-8

original. This is an effective approach. Therefore, we
also use normal cones to detect surfels lying on the sil-
houette. We suggest a more simple (and faster) LOD
selection using two radii that limit surfel size for sil-
houette and interior surfels. However, without high ef-
fort this can be extended to use the perceptual model
of Luebke and Hallen.

3 Surfel Rendering
In this section we discuss, how surfels are splatted to
render the object surface and how we integrate normal
mapping into this procedure.

3.1 Splat Sizing
Using today’s graphics hardware points are rendered
as view-plane aligned squares (e.g. aliased OpenGL
points). Thus, for each surfel its bounding square size
has to be calculated either on the CPU or on the GPU
by a vertex shader. Assuming a perspective projection
this size depends basically on surfel eye-space z-value
zeye and orientation. However, most approaches only
consider zeye and assume a view-plane aligned surfel.
But when texturing surfels the size should be as ex-
act as possible to prevent an unrealistic texture scal-
ing. Therefore, also surfel orientation should be con-
sidered. Our method is similar to [ZRB+04] but math-
ematically easier. We approximate the surfel shape in
eye-space by a rotated ellipse function in 2D and cal-
culate its bounding-box. Then the largest dimension of
this box is projected to image space to get the bound-
ing square size in screen-space. In doing so, up to 50%
smaller splat area can be defined, as illustrated in fig.
3(a).

An ellipse curve with x-axis radius a and y-axis ra-
dius b positioned at the origin can be described by:

f (x) = b ·
√

1− x2

a2 (1)

To get the bounding box of an ellipse which is rotated
by angle γ we have to calculate the maximum y and
x values. One way to get these values is to calculate
the points on f with derivation f ′(x1) = − tan(γ)
and f ′(x2) = cot(γ) and rotate them back by γ .
These points on f are defined by (x1, f (x1))T and
(x2,− f (x2))T , with

x1 =
−a2 tan(γ)√

a2 tan(γ)2 +b2

x2 =
a2 cot(γ)√

a2 cot(γ)2 +b2
. (2)

After rotating these points by γ we get the maximum x
and y-value by:

xmax = cos(γ)x2 + sin(γ) f (x2)
ymax = sin(γ)x1 + cos(γ) f (x1) (3)

r

nx

ny

rnz
xmax

ymax

γ

size win

size eye

zeyehα

n p

(a) (b)
Figure 3: Comparison of bounding squares of sur-
fel’s bounding sphere vs. ellipse approximation
(a). Projection of eye space square length to screen

space (b).

.
For an oriented surfel in 3D that is transformed to

eye-space with eye-space orientation n and radius r
you get a = r, b = rnz and γ is given by the adjacent
leg nx and opposite leg ny (fig. 3(a)). This yields to

xmax = r
√

1−n2
x , ymax = r

√
1−n2

y (4)

Using this we finally get the point-square dimension in
eye-space by:

sizeeye =2max(xmax,ymax)=2r
√

1−min(nx,ny)2. (5)

After approximating the eye-space square size, this
size is projected into image-space. Assuming that view
frustum’s aspect ratio equals viewport’s aspect ratio
this is done by

sizewin =
sizeeye

zeye
· h

2tan(α
2)

, (6)

where h is the viewport height in pixel and α the field-
of-view angle as illustrated in fig. 3. We totally com-
pute sizewin by a vertex shader, which only needs a few
instructions more than applying sizeeye = 2r.

3.2 Splat Shaping and Filtering
After resizing the surfel, it is rendered as a view-plane
aligned square. We use the rendering scheme proposed
in [BK03] to get a high quality anti-aliased rendering
result without the typical thickening effect of square
splats. In the following this procedure is briefly de-
scribed.

Today’s graphics cards are able to compute a texture
coordinate t ∈ [−1,1]2 for each splat pixel. Together
with the eye-space surfel normal n a depth offset tz for
every pixel can be computed:

tz = −nx

nz
tx− ny

nz
ty (7)

as illustrated in fig. 4(a). If ||t|| is less than one the
pixel belongs to the eye-space ellipse area. By using a

Journal of WSCG ISSN 1213-6972 11 ISBN 978-80-86943-00-8

Gaussian kernel G for every surfel an alpha value for
this pixel can be computed by G (||t||). This forms an
ellipse with a smooth alpha value falloff at the border.

If several splats overlap in image-space they are
blended, but only if their z-value in eye-space is suf-
ficiently small. In this case they define a contiguous
surface part. Otherwise splats in front should overdraw
splats behind. Blended pixel values are summed up
weighted with their alpha values (also known as fuzzy
splatting). In the ideal case, these weights sum up to
one, forming an opaque surface. Because this is not
the general case additionally a per pixel normalization
is needed. Efficient algorithms for this purpose using
the possibilities of modern graphics hardware are de-
scribed in [BK03].

3.3 Normal Mapping for Surfels
Our goal is to increase surfel splatting quality by using
normal maps for pixel shading. Therefore, we need
texture coordinates for every pixel of the surfel square
(resp. on the surfel disk). For polygonal meshes tex-
ture coordinates are given for every vertex, and after
rasterization for every pixel its texture coordinate is
interpolated. When texturing surfel splats, for every
pixel such an interpolation is not possible, because sur-
fels are only described by one parameterized vertex.
Thus, we calculate this texture coordinate using the
given pixel parametrization t (see last section 3.2) par-
ticulary calculated by the graphics card together with
a texture coordinate ts and a scaling factor ws for the
normal map which are static for the whole surfel and
which are passed as vertex/fragment attribute. How
these values can be determined is explained in section
4.3.

Since for every surfel only its normal n is given to
describe its orientation, no exact mapping is possible
from t to the surfel plane. Instead there is a circle of
possible solutions. Thus, we need another orientation
normal o1, which is orthogonal to n and describes the
rotation angle around n. We suggest to compute o1 by
a simple scheme:

o1 =





(
nz√
1−n2

y
,0, −nx√

1−n2
y

)T

, if |ny|< 1

(0,0,1)T ,else.
(8)

In addition a third orthonormal vector o2 can be calcu-
lated by

o2 =
o1×n
||o1×n|| (9)

to define a local coordinate system on the surfel plane
with projection matrix S = [o1 o2 n], as illustrated in
fig. 5. Note, that o1 and o2 are generic and can also
be computed in a vertex shader from object-space sur-
fel normal n without additional attributes and memory
effort.

When projecting a surfel to eye-space using mod-
elview matrix M this local coordinate system is pro-
jected to eye-space, too, by S′ = SM. To get the texture
coordinate in surfel space, t has to be projected back by
t′ = S′−1t as it can be seen in fig. 4(b). Since t′ lies on
the surfel plane t′z = 0. Hence, only the first two rows
of S′−1 have to be computed, which can be done by:

1
|S′|




∣∣∣∣
o2y ny
o2z nz

∣∣∣∣
∣∣∣∣

nx o2x

nz o2z

∣∣∣∣
∣∣∣∣

o2x nx
o2y ny

∣∣∣∣
∣∣∣∣

ny o1y

nz o1z

∣∣∣∣
∣∣∣∣

o1x nx
o1z nz

∣∣∣∣
∣∣∣∣

nx o1x

ny o1y

∣∣∣∣



. (10)

If ||t|| < 1 then surfel base texture coordinate t′ is in
[−1,1]2. Thus, (t′x, t′y)T can be used easily to get the
final normal map texture coordinate tn of the shaded
pixel using a linear mapping:

tn =
ws−1

2
t′+ ts, (11)

where ws is the width (resp. height) of the area a sur-
fel disk covers in the normal map and ts is the surfel
texture coordinate in the center of this area (fig. 4(c)).

Finally, tn can be used to address the texel in the nor-
mal map, that contains the normal to use for shading
the surfel at this pixel, as illustrated in fig. 4(d).

4 Normal Map Estimation
After developing a rendering algorithm for surfel splats
using normal mapping now we explain how a normal
map for different surfel hierarchies can be generated.

Recent point-based level of detail approaches either
use a large point set [RL00] or a triangular mesh (e.g.
[CN01]) to describe the object on the highest LOD.
Based on this model a point tree is generated by a sub-
division scheme. In the next sections we give algo-
rithms for normal map creation for point and hybrid
point hierarchies.

4.1 Normal Map for Point Hierarchies
To create a normal map of a point hierarchy two steps
have to be performed for every surfel: Firstly, the surfel
has to be rasterized and secondly for every raster point
a ray has to be shot to obtain all surfels on the highest
LOD (called base surfels, Sbase) that affect the normal
of the raster point.

For rasterization of a surfel s the same orientation
vectors o1, o2 are applied as for normal mapping (see
section 3.3). If an area of ws×hs texel is preserved in
the normal texture for surfel s for every texel (x,y) ∈
[0,ws)× [0,hs) a position on the surfel disk is given by:

Px,y = Ps + rs

(
2x+1

ws
−1

)
o1 + rs

(
2y+1

hs
−1

)
o2(12)

where rs is the surfel radius, as illustrated in fig. 6.

Journal of WSCG ISSN 1213-6972 12 ISBN 978-80-86943-00-8

Figure 4: Normal mapping steps: Original texture coordinate t with calculated depth value (a). Texture
coordinate t′ projected to surfel space (b). Mapping to normal map texture coordinate tn (c). Final result of

surfel shading (d).

P

n

r

o
1

o
2

Figure 5: Extended surfel geometry.

o1

o2

P s r s-r s

r s

-r s

P1,0

Figure 6: Rasterization of a surfel disk using a uni-
form raster.

To estimate the normal for every texel we choose a
simple raycasting approach. We estimate all surfels on
the highest LOD, which intersect the line l given by
position Px,y and surfel normal ns. Note that we do not
use a ray, because base surfels "behind" s have to be
considered, too. This is illustrated in fig. 7(a) in 2D
for a raster position P0,1 of surfel s1 for which line l
intersects base surfels s4,s7 and s8.

Base surfels that are far away from Px,y should not
be considered for the normal at this point, because they
do not belong to the surface part approximated by s. A
first attempt could only consider base surfels that are
also children of s (in fig. 7(a) this is only s4). But
this is not sufficient generally, because surfels over-
lap. Thus, we choose a top down approach. Starting
at the root surfel of the point hierarchy, surfels are de-
termined top down, whose bounding sphere intersects
with the bounding sphere of s (i.e. s1 in fig. 7(a)).
If a surfel is also a base surfel and it intersects line l
it will be considered for normal computation at point
Px,y. In fig. 7(a) these are s4 and s7. This algorithm is

s
1

s
2

s
4

s
7
 s
6

s
8

l

P
0
,1

P'

P''

n
s

n
s

n
s

d
4

d
7

s
1

s
2

s
4

s
3

s
3

s
5

s
6

s
7
 s
8

s
5

...

...

...

(a)
 (b)

Figure 7: Geometry for line-surfel intersection
(here in 2D). Line l intersects base surfels s4,s7 and
s8 but only s4,s7 are used for normal estimation at
point P0,1 due to additional bounding sphere test

(a). The corresponding point hierarchy (b).

very fast, because for ray intersection the space subdi-
vision given by the point hierarchy is used (fig. 7(b)).
Thus, only a small number of surfels have to be tested
for bounding sphere intersection and line intersection,
respectively.

After a set of base surfels Sx,y ⊆Sbase is found for
a given pixel Px,y on surfel s, the normal nx,y at posi-
tion Px,y is estimated from this. Widely used for this
purpose is a weighted and normalized sum:

nx,y =
∑s′∈Sx,y ws′ns′

∑s′∈Sx,y ws′
, (13)

where ws′ weights the contribution of each base sur-
fel. Since splats are blended in image space using an
alpha mask defined by a Gaussian Gs for every surfel
s (see section 3.2), we choose this Gaussian to get the
weights ws′ . Therefore the distance ds′ of the base sur-
fel s′ center to the intersection point with line l is mea-

Journal of WSCG ISSN 1213-6972 13 ISBN 978-80-86943-00-8

Algorithm 1 Algorithm to get the normal for a line by
intersection with base surfels.
SurfelLineIntersec(Line l, Surfel s1, Surfel s2, Normal n)

d := ||Ps1 −Ps2 ||;
if (d < rs1 + rs2)

// bounding spheres of s1 and s2 intersect
if (s2 ∈Sbase)

P := IntersectionPoint(l, s2);
d := ||P−Ps2 ||;
if (d < rs2)

// l intersects s2
n := n+Gs2(d) ·ns2 ;

end if
else

for each child surfel c of s2 do
SurfelLineIntersec(l, s1, c, n);

end for
end if

end if
end

NormalForLine(Line l, Surfel s, Normal n)
n := (0,0,0)T ;
SurfelLineIntersec(l, s, rootSur f el, n);
n := n/||n||;

end

sured (see d4 and d7 in fig. 7(a)). Then the weights ws′
are given by:

ws′ = Gs(ds′). (14)

The final procedure to get the normal nx,y of a raster
point Px,y that forms together with the surfel normal n
a line is summarized in algorithm 1. Finally the normal
nx,y is coded to RGB values and stored in the normal
map.

4.2 Normal Map for Hybrid Hierarchies
If the highest available LOD in the hierarchy is a trian-
gular mesh, then an algorithm similar to that for pure
point hierarchies will be used. Since triangles do not
overlap in well-formed triangular meshes only the tri-
angle that intersects the line l through raster point Px,y
have to be found, instead of a set of base surfels. If
this triangle t = (A,B,C) was found, the normal at the
intersection point is interpolated using barycentric co-
ordinates c = (u,v,w)T at this point:

nx,y = unA + vnB +wnC (15)

The pseudo-code for this procedure is shown in algo-
rithm 2.

4.3 Normal Map Size
To create a normal map for a point hierarchies a raster
size (ws,hs) has to be selected for every surfel s in ad-
dition to the algorithms described before. Since surfel

Algorithm 2 Algorithm to get the normal for a line by
intersection with a triangle that is a surfel child node.
PrimitiveIntersec(Line l, Surfel s, Primitive p, Normal n)

B := BoundingSphere(p);
d := ||Ps−MB||;
if (d < rs + rB)

// bounding spheres of s and p intersect
if (p is triangle)

if (l intersects p)
P := IntersectionPoint(l, p);
C := BarycentricCoordinates(P, p);
n := uCnpA + vCnpB +wCnpC ;

end if
else

for each child surfel c of p do
PrimitiveIntersec(l, s, c, n);

end for
end if

end if
end

NormalForLine(Line l, Surfel s, Normal n)
PrimitiveIntersec(l, s, rootSur f el, n);

end

2x2 4x4

8x8 16x16
Figure 8: Comparisons of images of a meteoroid
model allowing surfels up to a radius of 16 pixel in
the interior and using different normal map sizes.

disks are circular it is natural to choose hs = ws. For
base surfels of a pure point hierarchy we only need one
pixel (ws = 1), to store the surfel normal itself. For
every inner surfel of the point hierarchy the same ws
can be choosen, because surfel size in image space is
limited by a quality threshold (see section 5). As it can
be seen in fig. 8 this ws should exceed at least the half
of this threshold to preserve features.

Journal of WSCG ISSN 1213-6972 14 ISBN 978-80-86943-00-8

(a) (b)
Figure 9: Bunny rendered using normal mapping
without silhouette refinement (a). Same rendering

with silhouette refinement (b).

Since today’s graphics cards allow non power-of-
two texture sizes, a proper normal map size wnm,hnm
can be determined by:

wnm =
⌈√

|S \Sbase|
⌉

ws (16)

hnm =
⌈ |Sbase|

wnm

⌉
+wnm. (17)

If hnm exceeds the maximum supported texture size,
the normal map will have to be split to multiple tex-
tures. In this case for every surfel a normal map index
is needed in addition.

After finding a proper normal map size, for every
surfel s, its texture coordinate ts can be assigned, that
is used for normal mapping as described in section 3.3.
The surfel size in normal map (ws,hs) can be assigned
as additional surfel attribute. But since it is static we
decide to pass it as constant to the fragment shader for
texturing.

5 Silhouette Refined LOD Selection
As known from multi-resolution techniques for polyg-
onal meshes even the best texturing does not prevent
a rough looking silhouette when choosing a low tesse-
lated model. The same problem appears in point-based
rendering using normal maps, as illustrated in fig. 9(a).
Thus, the silhouette has to be rendered using smaller
but more splats (fig. 9(b)).

Detecting the exact global silhouette is complex and
computational slow, therefore we apply a local silhou-
ette estimation using normal cones. This is very fast
but as expected in some case surface parts within the
object are wrongly specified to lie at the silhouette.

A normal cone is a spherical cap of the unit sphere
that can be described by a normal and an opening an-
gle. To get surfels on the silhouette every surfel s con-
tains a normal cone as additional attribute, which con-
tains its normal and the normal cones of all surfels be-
low s in the hierarchy. To get this normal cone, we use
the algorithm developed in [BE05]. In case of a per-
spective view with normalized viewing vector d and

Algorithm 3 Silhouette refined LOD selection using
radius rsil to limit size for silhouette surfels and rinner
for silhouette surfels, respectively.
TraverseHierarchy(Surfel s)

if normal cone of s contains front facing normals
if (s ∈Sbase)

DrawSplat(s);
else

r := size of s in viewport;
b f := n.c. of s contains back facing normals;
if (b f ∧ r ≤ rsil) ∨ (!b f ∧ r ≤ rinner)

DrawSplat(s);
else

for each child surfel c of s do
TraverseHierarchy(c);

end for
end if

end if
end if

end

field-of-view angle α a normal cone (n,β) contains
frontfacing normals if nd≤ sin(α +β) and backfacing
normals if nd >−sin(α +β), respectively. A surfel s
belongs to the silhouette if its normal cone contains
frontfacing and backfacing normals. We can also very
efficiently integrate backface culling by culling all sur-
fels, whose normal cone only contains backfacing nor-
mals.

Based on this, a top down LOD selection algorithm
can be constructed according to [RL00] using two
maximum sizes rsil ,rinner for surfels at and not at the
silhouette (see alg. 3). Note, that base surfels never lie
on the silhouette, because their normal cones only con-
tain one normal. However, this can be ignored apply-
ing top down traversal, because base surfels are always
drawn if they are reached.

6 Implementation and Results
We have implemented our framework on a Athlon64
system with a NVidia Geforce 6800 graphics card us-
ing OpenGL. For texturing we calculate the inverse
surfel base matrix S′−1 (see equ. 10) for every surfel
in the vertex shader and pass it as fragment attribute.
Note, that S′−1 is generic and we only need the surfel
normal for its calculation. The surfel texture coordi-
nate ts and the scaling factor ws are coded into one
additional 3D vector and passed as additional vertex
attribute to the vertex/fragment shader.

In table 10 you can see an exemplary framerate com-
parison for the Igea model that shows the number of
surfels in relation to the framerate with and without
normal mapping. If using no normal mapping also the
interior of the object has to be rendered by many sur-
fels. Thus, the same threshold radius to limit surfel size
as for the silhouette (alg. 3) has to be choosen. As you

Journal of WSCG ISSN 1213-6972 15 ISBN 978-80-86943-00-8

ws size surfels fps
2 0 250k 20
2 0.34M 250k 17
4 1.1M 119k 37
8 4.1M 70k 59
16 16.2M 49k 85

Figure 10: Framerate results for using normal
mapping vs. no normal mapping (first row) when
rendering the Igea model in 1024x1024. The surfel
size is limited to rinner = ws (e.g. rsil = 2). The final
images for the first row is shown in 2(a) and for the

last row in 2(c).

can see we benefit from less surfels, which yields to a
significant increase in framerate especially when using
larger normal maps.

This table also shows the normal mapping over-
head caused by additional vertex/fragment shader op-
erations used for S′−1 and texturing (first and second
row). On the one hand calculating S′−1 needs many
operations in the vertex shader. On the other hand the
number of vertices is very decimated, which more than
compensates these overhead. On the other side in the
fragment stage not much more fragments have to be
shaded when using fewer large splats than many small.
In addition, texturing surfels only needs a few addi-
tional operations (see 3.3) in the fragment shader. This
is important, because fragment shading is still a bottle-
neck especially of point-based rendering. We can con-
clude that normal mapping only causes an appreciable
overhead by the required texture memory for the nor-
mal map.

7 Conclusion and Future Work
In this paper we proposed an approach to decrease the
number of surfels in the interior of the object surface
without visual disadvantages by using normal mapping
and silhouette refinement. This results in a significant
increases in framerate. We also shown how to cre-
ate normal maps for several types of point hierarchies
using a ray-casting approach. This is accelerated by
using the recursive space subdivision provided by the
point hierarchy.

Although our framework supports nearly all kind of
point-based surface descriptions there are opinions for
future works. When needing more than one normal
map (e.g. in the case of many surfels in the hierarchy)
an intelligent grouping of surfels to be rendered is nec-
essary to avoid many graphic library procedure calls to
select the proper map. Another working topic is to save
texture memory. One way to achieve this is to estimate
surfels with nearly the same normal map or with a nor-
mal map that can be tiled. Such surfels can mostly be
found on a surface part with no or low curvature.

REFERENCES
[BE05] G. Barequet and G. Elber. Optimal bound-

ing cones of vectors in three dimensions. Inf.
Process. Lett., 93(2):83–89, 2005.

[BK03] M. Botsch and L. Kobbelt. High-quality point-
based rendering on modern gpus. In PG’03
conf.proc., page 335. IEEE Computer Society,
2003.

[CAZ01] J. D. Cohen, D. G. Aliaga, and W. Zhang. Hy-
brid simplification: combining multi-resolution
polygon and point rendering. In Vis’01
conf.proc., pages 37–44. IEEE Computer Soci-
ety, 2001.

[CN01] B. Chen and M. X. Nguyen. Pop: a hybrid
point and polygon rendering system for large
data. In Vis’01 conf.proc., pages 45–52. IEEE
Computer Society, 2001.

[DVS03] C. Dachsbacher, C. Vogelgsang, and M. Stam-
minger. Sequential point trees. ACM Trans.
Graph., 22(3):657–662, 2003.

[Her92] G.T. Herman. Discrete multidimensional jor-
dan surfaces. CVGIP: Graph. Models Image
Process., 54(6):507–515, 1992.

[LH01] D. Luebke and B. Hallen. Perceptually driven
interactive rendering. Technical Report #CS-
2001-01, University of Virginia, 2001.

[LW85] M. Levoy and T. Whitted. The use of points
as a display primitive. Technical Report 85-
022, Computer Science Department, University
of North Carolina at Chapel Hill, 1985.

[PGK02] M. Pauly, M. Gross, and L. P. Kobbelt. Effi-
cient simplification of point-sampled surfaces.
In VIS ’02 conf.proc., pages 163–170, Washing-
ton, DC, USA, 2002.

[PZvBG00] H. Pfister, M. Zwicker, J. van Baar, and
M. Gross. Surfels: surface elements as ren-
dering primitives. In SIGGRAPH’00 conf.proc.,
pages 335–342, New York, NY, USA, 2000.

[RL00] S. Rusinkiewicz and M. Levoy. Qsplat: a mul-
tiresolution point rendering system for large
meshes. In SIGGRAPH’00 conf.proc., pages
343–352. ACM Press/Addison-Wesley Publish-
ing Co., 2000.

[RPZ02] L. Ren, H. Pfister, and M. Zwicker. Object
space ewa surface splatting: A hardware accel-
erated approach to high quality point rendering,
2002.

[ZPvBG01] M. Zwicker, H. Pfister, J. van Baar, and
M. Gross. Surface splatting. In SIGGRAPH’01
conf.proc., pages 371–378. ACM Press, 2001.

[ZRB+04] M. Zwicker, J. Räsänen, M. Botsch, C. Dachs-
bacher, and M. Pauly. Perspective accurate
splatting. In GI’04 conf.proc., pages 247–254,
University of Waterloo, 2004.

Journal of WSCG ISSN 1213-6972 16 ISBN 978-80-86943-00-8

Hardware-Accelerated Ray-Triangle Intersection Testing for
High-Performance Collision Detection

Sung-Soo Kim, Seung-Woo Nam, Do-Hyung Kim and In-Ho Lee
Digital Content Research Division

Electronics and Telecommunications Research Institute (ETRI), South Korea

{sungsoo, swnam, kdh99, leeinho}@etri.re.kr

ABSTRACT

We present a novel approach for hardware-accelerated collision detection. This paper describes the design of the hardware
architecture for primitive inference testing components implemented on a multi-FPGA Xilinx Virtex-II prototyping system.
This paper focuses on the acceleration of ray-triangle intersection operation which is the one of the most important operations
in various applications such as collision detection and ray tracing. Also, the proposed hardware architecture is general for
intersection operations of other object pairs such as sphere vs. sphere, oriented bounding box (OBB) vs. OBB, cylinder vs.
cylinder and so on.
The result is a hardware-accelerated ray-triangle intersection engine that is capable of out-performing a 2.8GHz Xeon processor,
running a well-known high performance software ray-triangle intersection algorithm, by up to a factor of seventy. In addition,
we demonstrate that the proposed approach could prove to be faster than current GPU-based algorithms as well as CPU based
algorithms for ray-triangle intersection.

Keywords: Collision Detection, Graphics Hardware, Intersection Testing, Ray Tracing.

1 INTRODUCTION

Collision detection is a fundamental task in many
diverse applications, including surgical simulation,
computer animation, computer games, robotics,
physically-based simulation, automatic path finding,
and virtual assembly simulation. The collision query
checks whether two objects intersect and returns all
pairs of overlapping features. We address the problem
of collision query among collision primitives for
interactive graphics applications. The set of colli-
sion primitives includes ray, axis-aligned bounding
box (AABB), oriented bounding box (OBB), plane,
cylinder, sphere and triangle.

The problem of fast and reliable collision detection
has been extensively studied [Bergen04, Ericson04].
Despite the vast literature, real-time collision queries
remain one of the major bottlenecks for interactive
physically-based simulation and ray tracing. One of the
challenges in the area is to develop the custom hard-
ware for collision detection and ray tracing [ALB05,
RBAZ05]. However, one major difficulty for imple-
menting hardware is the multitude of collision detection
and ray tracing algorithms. Dozens of algorithms and

data structures exist for hierarchical scene traversal and
intersection computation. Though the performance of
these algorithms seems to be similar to software imple-
mentations, their applicability to hardware implemen-
tation has not yet been thoroughly investigated.

Since collision detection is such a fundamental task,
it is highly desirable to have hardware acceleration
available just like 3D graphics accelerators. Using spe-
cialized hardware, the system’s CPU can be freed from
computing collisions.

1.1 Main Results
We present a novel FPGA-accelerated architecture for
fast collision detection among rigid bodies. Our pro-
posed custom hardware for collision detection supports
13 intersection types among rigid bodies. In order to
evaluate the proposed hardware architecture, we have
performed our FPGA-accelerated implementation for
accelerating intersection computations among collision
primitives.

We demonstrate the effectiveness of our hardware ar-
chitecture for collision queries in three scenarios: (a)
ray-triangle intersection computation with 260 thou-
sands of static triangles, (b) the same computation with
dynamic triangles and (c) dynamic sphere-sphere inter-
section tesing. The performance of our FPGA-based
hardware varies between 30 and 60 msec, depending
on the complexity of the scene and the types of colli-
sion primitives. For our comparative study we also an-
alyze three popular ray-triangle intersection algorithms
to estimate on the size of hardware resource. More de-
tails are given in Section 4.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Copyright UNION Agency – Science Press, Plzen, Czech
Republic.

Journal of WSCG ISSN 1213-6972 17 ISBN 978-80-86943-00-8

As compared to prior methods, our hardware-
accelerated system offers the following advantages:

• Direct applicability to collision objects with dynam-
ically changing topologies since geometric transfor-
mation can be done in our proposed hardware;

• Sufficient memory in our board to buffer the ray-
intersection input and output data and significant re-
duction in the number of data transmission;

• Up to an order of magnitude faster runtime perfor-
mance over prior techniques for ray-triangle inter-
section testing;

• Interactive collision query computation on mas-
sively large triangulated models.

The rest of the paper is organized as follows. We
briefly survey previous work on collision detection in
Section 2. Section 3 describes the proposed hardware
architecture for accelerating collision detection. We
present our hardware implementation of ray-triangle in-
tersection in Section 4. Finally, we analyze our im-
plementation and compare its performance with prior
methods in Section 5.

2 RELATED WORK
The problems of collision detection and distance
computation are well studied in the literature. We refer
the readers to recent surveys [Bergen04, Ericson04]. In
this section, we give a brief overview of related work
on collision detection, programmable GPU-based ap-
proaches, and custom hardware for collision detection.

Collision Detection: Collision detection is one of
the most studied problems in computer graphics.
Bounding volume hierarchies (BVHs) are commonly
used for collision detection and separation distance
computation. Most collision detection schemes involve
updates to bounding volumes, pairwise bounding
volume tests, and pairwise feature tests between
possibly-intersecting objects. Complex models or
scenes are often organized into BVHs such as sphere
trees [Hubbard95], OBB-trees [GLM96], AABB-trees
[Bergen04], and k-DOP-trees [KHMSZ98]. Projection
of bounding boxes extents on the coordinate axes is
the basis of the sweep-and-prune technique [Cohen95].
However, these methods incur overhead for each time
interval tested, spent updating bounding volumes and
collision pruning data structures, regardless of the
occurrence or frequency of collisions during the time
interval.

Programmable GPU: With the new programmable
GPU, tasks which are different from the traditional
polygon rendering can explore their parallel pro-
grammability. The GPU can now be used as a general

purpose SIMD processor, and, following this idea, a lot
of existing algorithms have been recently migrated to
the GPU to solve problems as global illumination, lin-
ear algebra, image processing, and multigrid solvers in
a fast way [GLM05]. Recently, GPU-based ray tracing
approaches have been introduced [Foley05, PWH02].
Ray tracing was also mapped to rasterization hardware
using programmable pipelines [PWH02]. However, ac-
cording to [RBAZ05] it seems that an implementation
on the GPU cannot gain a significant speed-up over
a pure CPU-based implementation. This is probably
because the GPU is a streaming architecture. Another
disadvantage which they share with GPUs is the limited
memory. Out-of-core solutions are in general not an
alternative due to the high bandwidth needed.

Custom Hardware: The need for custom graphics
hardware arise with the demand for interactive physi-
cally simulations and real-time rendering systems. The
AR350 processor is a commercial product developed
by Advanced Rendering Technologies for accelerating
ray tracing [CRR04]. Schmittler et al. proposed hard-
ware architecture (SaarCOR) for realtime ray tracing
and implemented the custom hardware using an FPGA
[SWWPS04, SWS05]. They also introduced the pro-
grammable ray processing unit (RPU) based on the
SaarCOR [Woop05]. The first publications of work
on dedicated hardware for collision detection was pre-
sented in [ZK03]. They focused on a space-efficient im-
plementation of the algorithms, while we aim at maxi-
mum performance for various types of collision queries
in this paper. In addition, they presented only a func-
tional simulation, while we present a full VHDL imple-
mentation on an FPGA chip.

3 HARDWARE ARCHITECTURE
In this section, we give an overview of hardware ar-
chitecture for accelerating the collision detection. Our
hardware architecture is based on a modular pipeline of
collision detection. The proposed architecture includes
three key parts such as input registers, the collision de-
tection engine, and the update engine in the Figure 1.

3.1 Input Registers and Transformer
Our proposed hardware has three inputs which are
counter register, primary data register file, and sec-
ondary data register file. The transformer provides the
geometric transformation functions for secondary ob-
jects to improve the performance. The counter register
contains the number of primary objects and the number
of secondary objects. The geometries of the primary
objects are stored in the primary data register file. The
secondary data register file also holds geometries of the
secondary objects for collision queries.

In our research, we suppose that the primary objects
P change for each time. On the other hand, the sec-

Journal of WSCG ISSN 1213-6972 18 ISBN 978-80-86943-00-8

Memory controller

Buffers
Collision

position
F-Index Stencil-T

Update Engine

Acceleration structures

Primitive intersection testing

Output registers

Input registers

Collision

position

Collision

flag

Distance

(T) value

Collision

position

Collision

flag

Distance

(T) value

Counter Primary SecondaryCounter Primary Secondary

Collision detection engine

Transformer

function selector

ready

Figure 1: The proposed hardware architecture.

ondary objects S does not change their geometries in
local coordinate system. Therefore, the S just can be
applied the geometric transformations such as transla-
tion and rotation. For instance, the triangulated models
are S and rays are P to perform the intersection compu-
tations in ray tracing applications. More specifically, S
denotes as S = {(T1, ..., Tn)| n ≥ 1}, where T is a tri-
angle defined by three vertices Vj ∈ R3, j ∈ {0, 1, 2}.
The P is the set of rays which contain their origins O
and directions D.

When testing the intersection between the primary
objects and secondary objects, we perform the follow-
ing processing steps. First, we upload the secondary ob-
jects to on-board memory at once through direct mem-
ory access (DMA) controller. Second, we transfer the
primary objects to on-chip memory in the collision de-
tection engine (CDE). To do this step, we use the regis-
ter files which are packet data of the primary object to
reduce the feeding time for the CDE. Finally, we invoke
the ray-triangle intersection module in the CDE to com-
pute the intersection between primary objects and sec-
ondary objects. The details of our hardware-accelerated
ray triangle intersection algorithm for massive triangu-
lated models is shown in Algorithm 1.

One of the primary benefits of the transformer in our
architecture is to reduce the number of re-transmission
for the secondary objects from main memory to on-
board memory. If certain objects from the geome-
try buffer have to be reused, they can be transformed
at the transformer without re-transmission from main
memory. Therefore, we can reduce the bus bottleneck
since we reduce the number of re-transmission. The
bus width from secondary register file to CDE is 288
(= 9 × 32) bits. We can transfer 288 bits to the colli-

1: procedure HW-AcceleratedRayTrianlgeIntersection
2: input : P , S
3: output : R (CP, F-value, index, T-value)
4: collisionType CT = RAY_TRIANGLE;
5: intializeDevice();
6: secondaryUpload(S);
7: for ∀Ok, Dk ∈ P do
8: primaryRegFileUpload(Ok, Dk);
9: invokeCDE(CT);
10: R← downloadSRAM();
11: return R
Algorithm 1: Hardware-Accelerated Ray Triangle Inter-
section Testing.

sion detection engine in every clock. The ultimate goal
of our work is applying our results to physically-based
simulation. So, we use single precision for representing
a floating point to provide more accurate results.

3.2 Collision Detection Engine
The collision detection engine (CDE) is a modular
hardware component for performing the collision
computations between P and S . The CDE consists of
the acceleration structures and primitive intersection
testing components.

As already discussed earlier in Section 2, a wide va-
riety of acceleration schemes have been proposed for
collision detection over the last two decades. For exam-
ple, there are octrees, general BSP-trees, axis-aligned
BSP-trees (kd-trees), uniform, non-uniform and hierar-
chical grids, BVHs, and several hybrids of several of
these methods. In our hardware architecture, we can
adapt hierarchical acceleration structures for collision
culling as shown in Figure 1. However, we could not
implement the acceleration structure due to the FPGA
resource limit. But if we use the hierarchical accelera-
tion structure, we can search the index or the smallest
T-value much faster.

The primitive intersection testing component per-
forms several operations for intersection computations
among collision primitives. In order to provide various
operations for intersection computations, we classified
13 types of intersection queries according to the pri-
mary and secondary collision primitives: ray-triangle,
OBB-OBB, triangle-AABB, triangle-OBB, sphere-
sphere, triangle-sphere, ray-cylinder, triangle-cylinder,
cylinder-cylinder, OBB-cylinder, OBB-plane, ray-
sphere, and sphere-OBB intersection testing. We have
implemented hardware-based collision pipelines to
verify these intersection types. The proposed hardware
contains the 13 collision pipes, and more pipes can be
available if hardware resources are sufficient. The CDE
selects one collision pipe which is ready to working
among 13 collision pipes by the function selector
signal. Each pipe can be triggered in parallel by the

Journal of WSCG ISSN 1213-6972 19 ISBN 978-80-86943-00-8

ready signal of each pipe. However, it is difficult to
execute each pipeline in parallel due to limitation of
the input bus width and routing problems. Thus, our
proposed hardware reads input packet from on-board
memory and stores in the register file which contains
two or more elements.

We use a pipelined technique in which multiple in-
structions are overlapped in execution. This technique
is used for real hardware implementation in order to im-
prove performance by increasing instruction through-
put, as opposed to decreasing the execution time of an
individual instruction.

There are four outputs which are collision flag (F-
value), collision position (CP), index, and separation
distance or penetration depth (T-value). In order to get
these outputs, the CDE performs the intersection testing
between P and S. If a collision occurs, CDE will store
output values for CP, index, T-value and F-value. The
CP denotes a collision position of the object pair and
index is the triangle (T) index of the triangulated mesh.
The T-value denotes the penetration depth between two
objects and F-value is set true. Otherwise, CP and index
have invalid value, T-value is the separation distance
between two objects and F-value is set false.

3.3 Update Engine

We can simplify routing data lines and make memory
controller efficient by coupling buffers such as F-index
buffer and two stencil-T buffers as shown in Figure 1.
We compare old T-value from stencil-T buffer0 (or 1)
with new T-value from CDE and update smaller T-value
from stencil-T buffer1 (or 0) of the two values within
one clock. We do not transfer T-values from the stencil-
T buffer to CPU in order to find the smallest or the
largest T, which makes it possible to reduce transmis-
sion time. Stencil value in the stencil-T buffer is used
for masking some regions of the F-index buffer to save
searching time for the index of the collision object.

Collision Detection Engine

PCI Controller

DDR Memory

DDR Memory

Figure 2: The acceleration board with 64bits/66MHz
PCI interface. On the board, there are Xilinx V2P20
for PCI controller, Xilinx V2P70 for memory and the
collision detection logic. This board also includes two
1 GB DDR memories with 288 bit input bus, seven 2
MB SRAMs with 224 bit output bus.

We use single precision floating point of IEEE stan-
dard 754 for representing each element of the vertex or
vector and T-value in order to compare with the speed
of the CPU arithmetic. One of the main reasons that we
use single precision floating point is to provide more
accurate results in physically-based simulation systems.
So, we create many floating point arithmetic logics with
CoreGen library supported by Xilinx tool ISE.

We use two types of memories on the board. One
is uploading-purpose memory which is consists of two
DDR SDRAMs. The other is storing-purpose memory
which is consist of six SRAMs to store output results
(see Figure 2). Block RAMs on the FPGA is used for
buffering the P . Primary register file matches the block
RAM on the FPGA.

In our ray-triangle intersection computation, the pri-
mary object data P contains an origin point O and a
direction vector D of a ray. Total 256 rays can be trans-
ferred from main memory to block RAMs on the FPGA
at a time. Each secondary object data in S is a triangle
T which contains three vertices. When the number of
the rays is more than 256, the rays are divided by a
packet which contains 256 rays and packets are trans-
ferred one by one at each step. We define this step as
processing collision detection between a packet of pri-
mary object and all secondary objects. The bigger size
of the block RAMs is, the better performance of the
CDE is. While FPGAs usually have several small mem-
ories, the advantage of using such a memory is that the
several memory blocks can be accessed in parallel.

Each triangle of the secondary object is represented
using 288 (9×32)-bit data. Nearly 55 million trian-
gles can be transferred from main memory to two DDR
SDRAMs on the board through the DMA controller.
So, we designed the large bus width of the secondary
object data to eliminate input bottleneck of the CDE.
Therefore, we are able to read one triangle data from the
queue of the DDR SDRAM in each hardware clock.

4 ANALYSIS OF INTERSECTION AL-
GORITHMS

In this section we present the analysis results for ray-
triangle intersection algorithms in terms of hardware
resources. Fast ray-triangle intersection algorithm has
long been an active field of research in computer graph-
ics and has lead to a large variety of algorithms [Plü65,
Badouel90, MT97, SF98, SF01].

We use three major ray-triangle intersection
algorithms, the first one is Badouel’s algorithm
[Badouel90], the second one is Möller and Trumbore’s
algorithm [MT97], and the last one is the algorithm
using Plücker coordinates [Plü65]. These algorithms
are known to be stable and highly efficient. Because
we are mostly interested in performance related aspects
of intersection testing, we will skip correctness valida-

Journal of WSCG ISSN 1213-6972 20 ISBN 978-80-86943-00-8

tions and refer to the original publications instead.

Badouel’s Algorithm: The algorithm introduced by D.
Badouel is similar to Snyder and Barr’s earlier approach
[Badouel90]. This algorithm is based on the study of
barycentric coordinates, following the line of Snyder
and Barr’s algorithm. It is split into two phases:

1. The ray is tested for intersection with the triangle’s
embedding plane, defined by the three vertices Vi,
i ∈ {0, 1, 2} of the triangle. Combining the para-
metric representation of the ray r and the implicit
plane equation leads to

t = −d + N ·O
N ·D (1)

where O denotes ray origin, D denotes ray direction,
N denotes normal of the embedding plane, and d =
−Vo ·N and r(t) = O + Dt.

Based on the evaluation of the parameter t, the in-
tersection is rejected if either the ray and the trian-
gle are parallel (N · D = 0), the intersection point
lies behind the origin of the ray (t ≤ 0) or a closer
intersection has already been found (t > tnearest).

2. If the ray intersects with the embedding plane, the
coordinates of the intersection point P are deter-
mined. As shown Figure 3 point P can be expressed
as −−→

V0P = α
−−→
V0V1 + β

−−→
V0V2 (2)

Finally, the intersection point P is inside the triangle
if α ≥ 0, β ≥ 0 and α + β ≤ 1.

Figure 3: Parametric representation of the ray-triangle
intersection point P .

For a more detailed derivation of the algorithm we refer
to Badouel’s original article [Badouel90].

Möller-Trumbore’s Algorithm: The algorithm pro-
posed by Möller and Trumbore does not test for inter-
section with the triangle’s embedding plane and there-
fore does not require the plane equation parameters
[MT97]. This is a big advantage mainly in terms of
memory consumption – especially on the GPU and cus-
tom hardware – and execution performance. The algo-
rithm goes as follows:

1. In a series of transformations the triangle is first
translated into the origin and then transformed to a
right-angled unit triangle in the y−z plane, with the
ray direction aligned with x. This can be expressed
by a linear equation




t
u
v


 =

1
P · E1




Q · E2

P · T
Q ·D


 (3)

where E1 = V1 − V0, E2 = V2 − V0, T = O − V0,
P = D × E2 and Q = T × E1.

2. This linear equation can now be solved to find the
barycentric coordinates of the intersection point
(u, v) and its distance t from the ray origin.

Again we refer to the original article for a more de-
tailed explanation. Optimized variations of the original
implementation can be found in Möller’s follow-up
article.

Algorithm using Plücker Coordinates: Plücker coor-
dinates are a way of specifying directed lines in three-
dimensional space [Plü65]. Plücker coordinates πr rep-
resent a ray R(t) = O + D ∗ t by an oriented line:

πr = {d : d× o} = {pr : qr} (4)

Then the inner product of Plücker space

πr ¯ πs = pr · qs + qr · ps (5)

defines the relative orientation of the two lines r and s.
A positive result means that r passes s clockwise, while
in the negative case r passes s counter-clockwise. If this
product is zero both lines intersect each other. Note that
this inner product is proportional to the signed volume
of a tetrahedron spanned by the origin and direction val-
ues r and s.

Furthermore, the Plücker test directly provides the
scaled barycentric coordinates of the intersection of a
ray with the three edges ei of a triangle, which is a ma-
jor advantage to plane intersection-based approaches.
Thus to compute barycentric coordinates each Plücker
value only needs to be divided by the sum of all three
values obtained from the three edges of a triangle:

wi = πr ¯ πei, ui = wi/

3∑

i=0

wi (6)

We compared these algorithms in terms of the la-
tency, the number of I/O and hardware resources as
shown in Table 1 and 2. We could not use Plücker test
which contains too many multipliers and inputs relative
to Möller’s algorithm and Badouel’s algorithm. Prepro-
cessing of Plücker reduces the number of inputs and the
latency of the hardware pipeline. However, it still needs
more storage than others.

Journal of WSCG ISSN 1213-6972 21 ISBN 978-80-86943-00-8

Algorithms # of inputs # of outputs Latency
Badouel’s 9 6 16
Möller’s 9 6 10
Plücker’s 15 6 17

Table 1: Comparison of ray-triangle intersection algo-
rithms in terms of the number of inputs, the number of
outputs and latency for hardware implementation.

Möller’s algorithm is similar to Badouel’s one in
terms of the latency of the hardware pipeline, the num-
ber of I/O, and hardware resources as shown in Table 1
and 2. Möller’s algorithm has been more efficient than
Badouel’s algorithm in view of the processing speed
and usage of storage [MT97]. Therefore, we select the

Algorithms Badouel’s Möller’s Plücker’s
Multiplier 27 27 54

Divider 2 1 1
Adder 13 12 31

Subtractor 23 15 17
Comparator 6 8 3

AND 3 2 2

Table 2: Analysis of the hardware resource for ray-
triangle intersection algorithms.

Möller’s algorithm for VHDL implementation for real
circuit on the FPGA.

5 IMPLEMENTATION AND ANALYSIS
In this section we describe the implementation of our
collision detection hardware and highlight its applica-
tion to perform ray-triangle intersection testing for huge
triangulated meshes.

5.1 Implementation
We have evaluated our hardware on a PC running Win-
dows XP operating system with an Intel Xeon 2.8GHz
CPU, 2GB memory and an NVIDIA GeoForce 7800GT
GPU. We used C++, OpenGL as graphics API and
Cg language for implementing the fragment programs
[Fern03]. We have implemented ray-triangle collision
detection engine with VHDL and simulated it with
ModelSim by Mentor Graphics. The ray-triangle in-
tersection algorithm which we used is Möller’s algo-
rithm. In order to evaluate our hardware architecture,
we created this algorithm as circuits on an FPGA. In
our experiments, the inputs for intersection testing are
dynamic rays for P and triangulated terrain which con-
tains 259,572 triangles for S in Figure 4. The origin
of the ray moves on the flight path shown as a red
curve and direction of the ray changes randomly in ev-
ery frame in Figure 8 (a).

Figure 4: Our test terrain model (259,572 triangles)

5.2 Comparison

We have classified three configurations of collision
detections according to the properties of collision
primitives. A static object is the object which the
topology is not changed in the scene. On the other
hand, a dynamic object is an object which the topology
is changed in the scene for each frame.

Static Objects vs. Static Objects: In this scenario, the
performance depends on the number of primary objects
due to limitation of the block RAMs on an FPGA.
Thus, we choose the objects which small number of
objects in our architecture. If the number of the objects
is larger than the size of the block RAM, then data
transmission from main memory to block RAM occurs
in two or more times.

Static Objects vs. Dynamic Objects: We choose
dynamic objects as the secondary object. Since the
transformation is performed in our hardware, we
do not need to retransfer data of dynamic objects
except that objects are disappeared or generated newly.
Position and orientation of the dynamic objects can be
transformed by transformer in Figure 3. We expect the
performance is comparable to above case.

Dynamic Objects vs. Dynamic Objects: Our hard-
ware architecture only supports transformation function
for secondary objects. In this scenario, transmission
time is defined by the number of the primary objects
which are transformed in the CPU. Thus, the perfor-
mance depends on the number of the primary objects
and the CPU processing speed.

We will evaluate performance of our proposed archi-
tecture in each case comparing with that of CPU and
GPU. The proposed hardware checks nearly 259,572
ray-triangle collision tests per frame, which takes 31
milliseconds including the ray data transmission time,
while it takes 2,100 milliseconds for CPU based soft-
ware implementation as shown in Figure 5. Our hard-
ware was about 70 times faster than CPU-based ray-

Journal of WSCG ISSN 1213-6972 22 ISBN 978-80-86943-00-8

0

500

1000

1500

2000

2500

20 40 60 80 100

Frame Number

T
im

e
(m

se
c)

CPU-based approach

GPU-based approach

Our approach

Figure 5: The comparison result of the ray-triangle in-
tersection testing (static objects vs. static objects).

triangle implementation as shown in Figure 5. And the
proposed hardware is four times faster than the GPU-
based ray-triangle intersection approach. For dynami-
cally moving vertices of the triangles on the terrain, the
proposed hardware was 30 times faster than the CPU-
based approach as shown in Figure 6.

0

500

1000

1500

2000

2500

3000

20 40 60 80 100

Frame Number

T
im

e
(m

se
c)

CPU-based approach

GPU-based approach

Our approach

Figure 6: The comparison result of the ray-triangle in-
tersection testing (static objects vs. dynamic objects).

0

50

100

150

200

250

300

350

400

100 200 500 1000

Number of objects

F
ra

m
e

p
er

 s
ec

o
n

d
 (

F
P

S
)

CPU-based approach

Our approach

Figure 7: The comparison result according to the num-
ber of objects.

We also performed another experiment for dynamic
sphere-sphere intersection computation. In this sce-
nario, one thousand of spheres move dynamically in
every frame. The input data contains a center point
and a radius of the sphere which is represented four
32-bit floating points. In case of collision detection be-
tween dynamically moving spheres, our hardware was
1.4 times faster than CPU based implementation in Fig-
ure 7. Figure 8 (b) shows a snapshot of dynamic sphere-
sphere intersection result.

(a) ray-triangle intersection (b) sphere-sphere intersection
Figure 8: Snapshots of intersection results: a ray (blue
line) is shot on the triangulated terrain in arbitrary di-
rection for each frame.

5.3 Analysis and Limitations
Our hardware provides good performance of collision
detection for large triangulated meshes. The overall
benefit of our approach is due to two reasons:

• Data reusability: We exploit the transformer in the
proposed hardware to avoid the transmission bottle-
neck due to the transformation in the CPU. As a re-
sult, we have observed 30 - 70 times improvement
in ray-triangle intersection computation over prior
methods based on CPU and GPU.

• Runtime performance: We use the high-speed
processing power of the proposed hardware. We
also utilize instruction pipelining to improve the
throughput of the collision detection engine. More-
over, our current hardware implementation involves
no hierarchy computation or update.

Based on these two reasons, we obtain considerable
speedups over prior methods. Moreover, we are able to
perform various collision queries at almost interactive
frame rates.

Limitations: Our approach has a few limitations. Our
hardware architecture includes the component of accel-
eration structures, such as kd-tree, grids and BVHs in
Figure 3. However, we could not implement this com-
ponent due to the hardware resource limit. So, our cur-
rent implementation does not support hierarchical col-
lision detection. However, if traversal of acceleration
structures is performed in CPU, we can solve this prob-
lem easily.

Journal of WSCG ISSN 1213-6972 23 ISBN 978-80-86943-00-8

6 CONCLUSION
We present the dedicated hardware architecture to per-
form collision queries. We evaluate the hardware ar-
chitecture for ray-triangle and sphere-sphere collision
detection under the three configurations.

We have used our hardware to perform different col-
lision queries (ray-triangle intersection, sphere-sphere
intersection) in complex and dynamically moving mod-
els. The result is a hardware-accelerated ray-triangle
intersection engine that is capable of out-performing
a 2.8GHz Xeon processor, running a well-known
high performance software ray-triangle intersection
algorithm, by up to a factor of seventy. In addition, we
demonstrate that the proposed approach could prove to
be faster than current GPU-based algorithms as well as
CPU based algorithms for ray-triangle intersection.

REFERENCES
[ALB05] N. Atay, J.W. Lockwood, and B. Bayazit,

A Collision Detection Chip on Reconfigurable
Hardware, In Proceedings of Pacific Conference
on Computer Graphics and Applications (Pacific
Graphics), Oct. 2005.

[Badouel90] D. Badouel, An Efficient Ray-Polygon In-
tersection, Graphics Gems I, pp. 390-394, 1990.

[Bergen04] G. V. D. Bergen, Collision Detection in
Interactive 3D Environments, Elsevier-Morgan
Kaufmann, 2004.

[Cohen95] J.D. Cohen, M.C. Lin, D. Manocha and
M.K. Ponamgi, I-COLLIDE: An Interactive and
Exact Collision Detection System for Large-
Scale Environments, In Symposium on Interac-
tive 3D Graphics, pp.189-196, 1995.

[CRR04] C. Cassagnabere, F. Rousselle, and C Re-
naud, Path Tracing Using AR350 Processor, In
Proceedings of the 2nd International Conference
on Computer Graphics and Interactive Tech-
niques in Australasia and South East Asia, pp.
23-29, 2004.

[Ericson04] C. Ericson, Real-Time Collision Detec-
tion, Morgan Kaufmann, 2004.

[Fern03] Randima Fernando, Mark J. Kilgard, The Cg
Tutorial, Addison-Wesley, 2003.

[Foley05] T. Foley and J. Sugerman, KD-Tree Ac-
celeration Structures for a GPU Ray Tracer, In
Proceedings of the ACM Siggraph/Eurogrphics
Conference on Graphics Hardware, pp. 15-22,
2005.

[GLM96] S.Gottschalk, M.C.Lin, D.Manocha, OBB
tree: A Hierarchical Structure for Rapid Inter-
ference Detection, In Proceedings of ACM SIG-
GRAPH, pp. 171-180, 1996.

[GLM05] N.K. Govindaraju, M.C. Lin and D.
Manocha, Quick-CULLIDE: Fast Inter- and

Intra-Object Collision Culling Using Graphics
Hardware, In Proceedings of IEEE Conference
on Virtual Reality, pp. 59-66, 2005.

[Hubbard95] P. M. Hubbard, Collision Detection for
Interactive Graphics Applications, IEEE Trans-
actions on Visualization and Computer Graph-
ics, pp. 218-230, 1995

[KHMSZ98] J.T. Klosowski, M. Held, J.S.B. Mitchell,
H. Sowizral and K. Zikan, Efficient Collision
Detection Using Bounding Volume Hierarchies
of k-DOPs, IEEE Transactions on Visualization
and Computer Graphics, 4(1), pp. 21-36, 1998.

[MT97] T. Müller and B. Trumbore, Fast, Minimum
Storage Ray-Triangle Intersection, Journal of
Graphics Tools, pp. 37-46, pp.22-28, 1997.

[Plü65] J. Plücker, On A New Geometry Of Space,
Phil. Trans. Royal Soc. London, 155:725-791,
1865.

[PWH02] T.J. Purcell, I. Buck, W.R. Mark, P. Han-
rahan, Ray Tracing on Programmable Graph-
ics Hardware, ACM Transactions on Graphics,
21(3), pp. 703-712, 2002.

[RBAZ05] A. Raabe, B. Bartyzel, J.K. Anlauf, and
G. Zachmann, Hardware Accelerated Collision
Detection-An Architecture and Simulation Re-
sult, In Proceedings of IEEE Design Automation
and Test in Europe Conference, vol. 3, pp. 130-
135, 2005.

[SF98] Segura, R.J., Feito, F.R. An algorithm for De-
termining Intersection Segment-Polygon in 3D,
Computer & Graphics, Vol. 22, No. 5, pp. 587-
592, 1998.

[SF01] Segura, R.J., Feito, F.R. Algorithms to Test
Ray-Triangle Intersection. Comparative Study.
In Proceedings of WSCG’2001.

[SWS05] Jörg Schmittler, Ingo Wald, and Philipp
Slusallek, SaarCOR-A Hardware Architecture
for Ray Tracing, In Proceedings of SIG-
GRAPH/Eurographics Workshop on Graphics
Hardware, pp. 27-36, 2002.

[SWWPS04] J. Schmittler, S. Woop, D. Wagner, W.J.
Paul and P. Slusallek, Real Time Ray Tracing
of Dynamic Scenes on an FPGA Chip, In Pro-
ceedings of Eurographics Workshop on Graphics
Hardware, pp. 95-106, 2004.

[Woop05] S. Woop, J. Schmittler, P. Slusallek, RPU: A
Programmable Ray Processing Unit for Realtime
Ray Tracing, ACM Tranactions Graphics, 24(3),
pp. 434-444, 2005.

[ZK03] G. Zachmann and G. Knittel, An architecture
for hierarchical collision detection, In Journal of
WSCG’2003, pp. 149-156, 2003.

Journal of WSCG ISSN 1213-6972 24 ISBN 978-80-86943-00-8

Optimized Continuous Collision Detection for Deformable
Triangle Meshes

Marco Hutter
Fraunhofer IGD, Darmstadt, Germany

Marco.Hutter@igd.fraunhofer.de

Arnulph Fuhrmann
Fraunhofer IGD, Darmstadt, Germany
Arnulph.Fuhrmann@igd.fraunhofer.de

ABSTRACT

We present different approaches for accelerating the process of continuous collision detection for deformable triangle meshes.
The main focus is upon the collision detection for simulated virtual clothing, especially for situations involving a high number
of contact points between the triangle meshes, such as multi-layered garments. We show how the culling efficiency of bounding
volume hierarchies may be increased by introducing additional bounding volumes for edges and vertices of the triangle mesh.
We present optimized formulas for computing the time of collision for these primitives analytically, and describe an efficient
iterative scheme that ensures that all collisions are treated in the correct chronological order.

Keywords: collision detection, cloth simulation, continuous collision detection

1 INTRODUCTION

In physically based simulation, collision detection is es-
sential for a realistic behavior of the simulated objects.
Efficient solutions for collision detection of rigid bod-
ies have been developed, but in the simulation of de-
formable objects, collision detection is still the bottle-
neck. Especially for two-manifold surfaces like cloth,
there arise some major difficulties: These objects are
infinitely thin, and even small interpenetrations, for ex-
ample, between two layers of simulated cloth, may
cause visually distracting artifacts. Modeling a realistic
cloth thickness makes it necessary to check the objects
for close proximity rather than for contact, but still this
technique limits the size of the simulation time step, or
analogously, the maximum velocity of the objects. One
solution for this problem is continuous collision detec-
tion. It allows all collisions and proximities to be de-
tected even for large simulation time steps. Of course,
this robustness may only be achieved with higher com-
putational cost.

One major objective of this paper is to show how ro-
bust continuous collision detection can be made more
efficient, in order to employ it for the simulation of
cloth and multilayered virtual garments. We show how
the number of collision tests between triangle meshes
in close proximity can be significantly reduced by in-
troducing additional bounding volumes for the primi-
tives. We also present optimized formulas for continu-
ous collision tests. Another contribution is a method for
increasing the speed of the iterative collision detection,

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Copyright UNION Agency
Science Press, Plzen, Czech Republic.

which marks the parts of the triangle mesh in which
further collision tests have to be performed, and thus
allows us to skip large areas where all collisions have
already been resolved.

2 RELATED WORK
The problem of collision detection has recently been
addressed by many authors, since its importance for
physically based simulation has become obvious [12].
Common strategies for accelerating the process of col-
lision detection have been studied in detail, especially
the use of bounding volume hierarchies [11, 10, 28],
and the application of different types of bounding
volumes, such as bounding spheres [13], oriented
bounding boxes (OBB) [4], axis-aligned bounding
boxes (AABB) [20], polytopes with k discrete face
orientations (k-DOP) [9] and combinations of these
[15]. Alternative approaches, like spatial hashing [19],
voronoi diagrams [17] or GPU-accelerated hierarchical
techniques [6] have also been examined. In order to
accelerate the process of collision detection, stochastic
methods have also been applied [8, 27].

For the challenging field of collision detection of
deformable objects like cloth, different approaches
have been suggested. These approaches deal with
the optimization of bounding volume hierarchies for
deformable objects, and the exploitation of special
geometric properties of such objects, in order to in-
crease the efficiency of self-collision detection. These
properties include curvature criteria [23, 14, 26] or
special adjacency information for triangle meshes [5].
Some authors described methods for correcting invalid
simulation states that occur due to non-robust collision
detection [22, 1, 25], whereas others focused on the
robust continuous collision detection, which preserves
an intersection-free state throughout the whole simula-
tion [2, 7]. A recent comprehensive survey on collision

Journal of WSCG ISSN 1213-6972 25 ISBN 978-80-86943-00-8

detection for deformable objects can be found in the
paper Collision Detection for Deformable Objects [18].

3 OVERVIEW
In Section 4, we give a short outline of the simulation
process and show how the collision detection is applied
during the simulation cycle. Additionally, we intro-
duce some basic concepts for collision detection, and
describe which problems occur when these concepts
are employed for the collision detection of multilayered
garments.

In Section 5, we show how these concepts may be
improved in order to increase the efficiency for situ-
ations involving multiple layers of triangle meshes in
close proximity.

Optimizations for continuous collision detection are
presented in Section 6. These include optimized for-
mulas for a single continuous collision test, as well as
optimizations for the iterative scheme that is applied for
continuous collision detection.

Section 7 summarizes the results of the presented ap-
proaches for several test cases, and Section 8 contains
the conclusions and a short outlook on future develop-
ments.

4 SIMULATION AND COLLISION DE-
TECTION

4.1 Simulation
We use a simulation scheme similar to that proposed
by Bridson et al. [2], who emphasized that the colli-
sion detection and response should be applied to a can-
didate state that is obtained from the simulator, in or-
der to cleanly separate the simulation process from the
collision detection. Given a state consisting of particle
positions and velocities of the simulated particle sys-
tem (xn,vn) at time tn, the candidate velocities vn+ 1

2

for the next time step are computed by the simulator.
Then collision detection is applied, and the collision re-
sponses solely affect the candidate state: The candidate
velocities are modified in order to prevent collisions or
interpenetration. Finally, a velocity vn+1 is obtained,
which describes a collision-free movement, and the par-
ticle positions for the next time step may be computed
as xn+1 = vn+1 ·∆t.

4.2 Collision Detection
The task of checking two static objects for collisions
may by accomplished by checking each pair of primi-
tives if they have a distance that is smaller than a cer-
tain threshold. This process has an inherent worst-case
complexity of O(n2), but since this worst case hardly
ever occurs in a realistic scenario, the process of col-
lision detection is usually divided into two phases: In
the broad phase, conservative tests are performed in
order to cull away many pairs of primitives that may

not collide. In the narrow phase, exact tests between
relatively few pairs of primitives are performed. It is
sufficient to perform the collision tests for pairs con-
sisting of a vertex and a triangle, or two edges. Ro-
bust and efficient techniques for computing the closest
points between primitives are, for example, described in
the book Geometric Tools for Computer Graphics [16].
If the distance between these primitives is too small, a
collision response is applied in order to maintain the
distance that is given by the thickness of the simulated
material. This collision response may consist of a stiff
spring or a collision impulse that is applied between the
closest points of the primitives.

Bounding Volume Hierarchies (BVH)

The most common and efficient approach for the broad
phase of the collision detection are bounding volume
hierarchies (BVH). The basic idea is to hierarchically
divide a set of primitives into subsets, where the leaves
of a BVH usually contain single triangles. The subsets
of primitives are approximated with bounding volumes.
The bounding volumes may be ’blown up’ by the thick-
ness of the simulated material, in order to detect not
only intersections, but also close proximities between
pairs of primitives. Traversing the hierarchy and per-
forming overlap tests between the bounding volumes
allows us to cull away many pairs of primitives that
may not collide, exploiting the fact that collisions be-
tween the primitives of two sets may only occur if their
bounding volumes overlap. Usually there is a trade-
off between the quality of the approximation of the un-
derlying geometry, and the cost for the creation of the
bounding volume and single intersection test. For de-
formable objects, the BVH has to be refitted according
to the deformation the geometry is undergoing in each
time step, and in these cases the cost for updating the
bounding volumes also has to be taken into account.
Despite the high cost for intersection tests and updat-
ing, our tests have shown that k-DOPs are the most ef-
ficient choice for tasks like cloth simulation, because
the tighter approximation of the (typically heavily non-
convex) geometry reduces the number of false positives
in the broad phase, and thus, fewer exact collision tests
have to be performed.

Two major problems occur when BVHs are em-
ployed for the collision detection of deformable
triangle meshes:

• A high number of false positives during self-
collision detection.

Self-collision detection is usually performed by clip-
ping a BVH against itself. Due to the fact that
the bounding volumes of two adjacent triangles al-
ways overlap, the traversal often reaches pairs of
leaf nodes only because the triangles contained in

Journal of WSCG ISSN 1213-6972 26 ISBN 978-80-86943-00-8

these nodes are adjacent. The methods suggested by
Volino and Magnenat-Thalmann [23], Provot [14],
Wong and Baciu [26] and Govindaraju et al. [5] al-
leviated these problems and increased the efficiency
of self-collision detection, so that the second prob-
lem drew more attention:

• A high number of false positives between multi-
ple layers

Collision detection between different objects that
are given as deformable triangle meshes is per-
formed by clipping the BVH of the respective
objects against each other. When the meshes are
similarly triangulated, and form multiple layers
in close proximity, the bounding volume of each
leaf node of one mesh on average intersects six
bounding volumes of triangles of each adjacent
layer.

4.3 Continuous Collision Detection

For the simulation with deformable 2-manifold trian-
gle meshes, the collision tests are usually performed in
each time step. But checking for proximity does not
prevent two objects passing through each other in a sin-
gle time step. In order to detect all collisions, contin-
uous collision tests have to be performed. These will
allow us to prevent interpenetration of the objects re-
gardless of the size of the time step, the velocity of the
objects, and the thickness of the material. For each pair
of primitives, one has to detect if they will collide in the
current time step, and at which time this collision will
occur.

Two problems arise when continuous collision detec-
tion is used:

• Collisions that occur later in time may be detected
earlier in the collision detection process. For an ac-
curate collision response and for a plausible behav-
ior of the simulated objects, the collisions should be
treated in the correct chronological order.

• Collision responses may cause new, secondary col-
lisions. These collisions may cause interpenetration,
if they are not detected and resolved.

In order to alleviate the problem of secondary colli-
sions caused by the responses to preceding collisions,
some authors (e.g. [21, 2]) suggested to use an iterative
process. A method for treating the collisions in the cor-
rect chronological order was suggested by Eberle [7].
For each triangle, only the earliest collision that oc-
cured should be taken into account. Combining these
techniques allows a robust and plausible treatment of
all collisions that occur in one time step.

5 BOUNDING VOLUMES FOR PRIMI-
TIVES

When the BVH is traversed and the bounding volumes
of two triangles overlap, for each vertex of one triangle
the closest point on the other triangle has to be com-
puted, yielding 6 point-triangle collision tests. Addi-
tionally, the closest points between each edge of one
triangle and each edge of the other triangle have to
be computed, yielding 9 edge-edge collision tests. As
mentioned above, the bounding volume of each trian-
gle of one mesh on average intersects six bounding vol-
umes of triangles of a layer in close proximity. Without
further precautions, this would cause 6 · (6 particle-
triangle-tests + 9 edge-edge-tests), yielding 90 exact
collision tests between pairs of primitives.

Since on average each edge is contained in two tri-
angles, and each particle is contained in six triangles,
some of these collision tests are redundant. In order
to avoid these redundant tests, we store the informa-
tion about the collision tests that have already been per-
formed in the primitives they involve, similar to the
method described by Wong and Baciu [26]. But still,
for each triangle of one layer that lies flat on another
layer, approximately 60 collision tests are performed.

In order to further reduce the number of collision
tests that are caused by the false positives of the BVH,
we propose introducing additional bounding volumes
for the edges and vertices of the triangle meshes. These
primitive bounding volumes may directly be stored in
the edges and vertices, whereas the bounding volumes
of the triangles are equal to the bounding volumes of
the leaf nodes of the BVH, as depicted in Figure 1.

Figure 1: Additional bounding volumes for primitives:
For two triangles of a triangle mesh, the bounding vol-
umes are shown. The additional bounding volumes for
the vertices and edges are shown with bold lines. The
primitives that are shared among the two triangles are
shaded.

For our implementation, we used 18-DOPs as bound-
ing volumes for the primitives and the BVH. In each
simulation step, the bounding volumes of the vertices
are updated according to their current positions. The
bounding volumes for the edges and triangles are up-
dated by merging the bounding volumes of their ver-
tices. Finally, the bounding volumes of the inner nodes

Journal of WSCG ISSN 1213-6972 27 ISBN 978-80-86943-00-8

of the BVH are updated bottom-up, by merging the
bounding volumes of their child nodes.

Although the bounding volumes for the vertices in
this case only contain a single point, this yields a small
advantage in the further update process: Combining a
k-DOP with the pre-computed k-DOP of the vertex is
in every case (with k > 6) computationally cheaper than
combining the k-DOP with a single point describing the
vertex position. Additionally, for the continuous colli-
sion detection discussed later, the vertex bounding vol-
umes have to be extended so that they contain the posi-
tions of the vertices at the beginning and at the end of
the time step. In this case the advantage of the vertex
bounding volumes becomes even more obvious.

Best Average Worst

Figure 2: Different cases of triangles in close proximity

Case Total NR PBV NR+PBV Coll.
Best 15 15 3 3 3
Avg. 90 61 23 11 10
Worst 195 123 102 54 54

Table 1: Number of exact collision tests for the cases
depicted in Figure 2

• Total : Implied by the overlapping triangle bound-
ing volumes
• NR : When no redundant tests are performed
• PBV : When primitive bounding volumes are used
• Coll : Number of collisions that actually occurred

Table 1 shows the number of collision tests per-
formed for a single triangle, lying flat on a piece of
another triangle mesh, for the different cases depicted
in Figure 2. Of course, in the worst case one trian-
gle may span an arbitrarily high number of triangles in
another layer, but for similar triangulations, it should
hardly span more than 13 triangles, as shown in the fig-
ure.

Approximately one third of the collision tests implied
by the overlapping bounding volumes of triangles are
redundant, and may easily be avoided. The use of prim-
itive bounding volumes additionally decreases the num-
ber of false positives. Note that the exact number of col-
lision tests that may be saved depends on the type of the
bounding volumes. For 18-DOPs, the number of tests
also depends on the orientation of the edges relative to
the 18 directions of the DOP.

Since the number of edges is large for usual cloth
triangle meshes (#edges = #vertices + #triangles - 1),

some time for the update of the bounding volumes may
be saved when the bounding volumes for the edges are
only updated on demand. That means that the bounding
volumes for edges are only updated when the bounding
volumes of two triangles containing these edges over-
lap, and the bounding volumes of these edges have not
yet been updated in the current time step.

6 EFFICIENT CONTINUOUS COLLI-
SION DETECTION

Preventing all intersections between triangle meshes is
very time-consuming. The primitive bounding volumes
described in the previous section may also be applied
for continuous collision detection, and dramatically re-
duce the number of collision tests that have to be per-
formed. But still, the collision tests themselves and the
iterative procedure allow further optimizations, which
we will describe in the following sections.

6.1 Continuous Collision Tests
Exact collision tests are usually performed between ver-
tices and triangles, and between pairs of edges. Both
cases have in common that they involve four vertices. In
each case, a necessary condition for a collision is, that
the involved vertices are coplanar. Provot [14] showed
that for four points with positions x1...x4 and constant
velocities v1...v4, with xi j = xi − x j and vi j = vi − v j,
the times ti when the points are coplanar are the solu-
tions of the equation

(x21 + t ·v21)× (x31 + t ·v31) · (x41 + t ·v41) = 0 (1)

For the algebraic solution, the monomial form of the
polynomial is required. Computing the coefficients
for this polynomial by simply expanding the differ-
ences, dot- and cross-products, and grouping the result-
ing terms by powers of t yields expressions that involve
188 additions, 192 multiplications, and are far from op-
timal (see [7]).

The coefficients may be computed with only 50
additions and 48 multiplications, by grouping equal
terms and rewriting the coefficients as dot- and
cross-products.

a3 = v21 ·v31×v41

a2 = x21 ·v31×v41−v41 ·x31×v21−v21 ·x41×v31

a1 = v41 ·x21×x31−x21 ·x41×v31−x41 ·x31×v21

a0 = x41 ·x21×x31 (2)

Note that each cross product occurs twice, but obvi-
ously has to be computed only once. The times ti when
the four points are coplanar may now be computed as
the the real roots of the polynomial

P(t) = a3 · t3 +a2 · t2 +a1 · t +a0 (3)

Journal of WSCG ISSN 1213-6972 28 ISBN 978-80-86943-00-8

Since the coplanarity is a necessary but not sufficient
condition for a collision, the distance between the prim-
itives is computed for each time ti, in ascending order.
If the distance is below a certain threshold, a collision
will be registered.

6.2 The Iterative Procedure
An iterative collision detection scheme suggested by
Bridson et al. [2] works as follows: After the veloc-
ities of the particles for the next time step have been
computed, the BVH is updated and traversed. When
the bounding volumes of two leaf nodes overlap, the
corresponding primitives are checked for close proxim-
ity. If their distance is below the material thickness, a
collision response is applied.

Then the iterative procedure for the continuous col-
lision detection starts. In each iteration, the BVH is
updated so that the bounding volumes contain the start-
and end position of the contained particles. Then the
BVH is traversed, and for the primitives whose bound-
ing volumes overlap, continuous collision tests are per-
formed. All imminent collisions are detected, and col-
lision responses are applied, which alter the candidate
velocities of the particles. Then the next iteration starts.
This step is repeated until no new collisions are de-
tected, and the particles are free to move with the cur-
rent velocities and without causing interpenetrations.

This process of iteratively traversing the whole BVH,
registering the earliest collisions for all triangles, and
updating the whole BVH may be very time-consuming.
So we present a method which allows us to perform this
task more efficiently.

A Single Iteration

After the iteration started, the BVH is traversed, and the
continuous collision tests for the primitives of triangles
with overlapping bounding volumes are performed, as
described above. The distance between the primitives
is computed for each time ti, in ascending order. If the
primitives actually collide at a time ti, subsequent times
t j > ti are ignored. The collision for time ti is registered,
and associated with the particles it involves.

For each new collision test, the involved particles are
examined. The earliest time t0 of the collisions that al-
ready involve one of the particles is retrieved. Then,
the times ti for the new collision test are computed. But
only for times ti < t0, the distance between the prim-
itives has to be actually computed. When a collision
at a time ti < t0 is registered, all collisions that are as-
sociated with particles of the collision that occurred at
time t0 are discarded. Thus, while in the method by
Eberle [7] only the earliest collision for each triangle is
treated in each iteration, we store the earliest collision
for each particle, which still ensures that the collisions
are treated in the correct chronological order.

Modification Marking

Usually, the number of collisions that are registered de-
creases rapidly within a few iterations. Thus, it is not
necessary to update and traverse the whole BVH in each
iteration, as possibly only very few particles received a
collision response.

To prevent unnecessary updates and traversals, we
suggest a scheme of “modification marking” for the
BVH. First, we mark the particles that have been in-
volved in a collision. Each particle stores the iteration
in which it has been modified. This information is prop-
agated bottom-up into the BVH, so that each node of
the BVH contains the last iteration in which any of the
particles it contains has been modified. In the next it-
eration, we update only the parts of the BVH that have
been modified in the previous iteration. Additionally,
the traversal may be restricted to those parts of the BVH
in which new collisions may have occurred. So, during
the traversal, we only check the bounding volumes of
BVH nodes for overlap if at least one of the nodes con-
tains a particle that has been modified in the previous
iteration. Otherwise, the traversal may stop. This also
allows us to skip the time-consuming collision tests that
already failed in the previous iterations.

7 IMPLEMENTATION AND RESULTS
We have implemented the algorithms described in this
paper in Java and employed them in a cloth simulation
system. The patterns of the clothes are divided recur-
sively, creating a BVH with degree 16. The bounding
volumes for the BVH and for the primitives are 18-
DOPs in each case. The tests were run on a standard
Pentium 4 with 3.6 GHz and 3.25 GB RAM, using the
Java Runtime Environment 1.5.0.

7.1 Test cases
The algorithms presented in this paper focus on acceler-
ating the collision detection process for multiple layers
of deformable triangle meshes in close proximity. Thus,
we compared the speed of the different implementa-
tions with scenes involving multiple layers of cloth.

Cloth pile

Figure 3 shows images of 10 sheets of cloth falling on
the floor, creating a pile of cloth with 10 layers. Each
sheet consists of 100 particles and 164 triangles. The
cloth is modeled with a realistic thickness of 1 mm.
When all sheets lie on the floor, there are many primi-
tives in close proximity. Note that the sheets are slightly
shifted against each other at the beginning. Otherwise,
the worst case depicted in Figure 2 would occur for ev-
ery triangle, and the number of collision tests (and thus,
the effect of the additional primitive bounding volumes)
would be unrealistically high.

Journal of WSCG ISSN 1213-6972 29 ISBN 978-80-86943-00-8

Figure 3: ’Cloth Pile’: A pile of 10 sheets of cloth

Tumbling Torus

Figure 4 shows images of 50 sheets of cloth that fall
upon a tumbling torus. The scene contains 5k particles
and 8.2k triangles, and shows the interaction of high-
velocity cloth with other layers: Many sheets are falling
on the torus and hitting other layers, which are already
moved and crumpled by the torus.

Figure 4: ’Tumbling Torus’: A tumbling torus in a
shower of 50 sheets of cloth

Garment

A scene from the garment simulation system described
in the paper by Fuhrmann et al. [3] is shown in Figure 5.
A woman is wearing a bodysuit, a blouse and trousers.
The scene contains 8k particles and 13k triangles. In the
area of the chest there are two layers of clothing, and
three layers on the hips, where the trousers are pressing
the other clothes against the body.

7.2 Results
We compared the speed of the overall collision detec-
tion process for the scenes described above. We also
compared the number of collision tests to the number
of collisions that actually occurred, and thus, the rate
of ’false positives’ that were reported by the BVH with

Figure 5: ’Garment’: A woman wearing a bodysuit, a
blouse and trousers

and without the additional bounding volumes for prim-
itives.

For a usual cloth triangle mesh, our method on aver-
age requires two additional bounding volumes for each
triangle, since #vertices + #edges ≈ 2 · #triangles. But
even for large triangle meshes, this memory overhead is
small and justified by the speedup that can be achieved.

By default, we stored the information about the colli-
sion tests that had already been performed in the prim-
itives, in order to avoid redundant collision tests. Com-
pared to the total number of tests implied by overlap-
ping triangle bounding volumes, this reduced the num-
ber of tests for all scenes by approximately one third,
and thus complies with the results of the average case
example from Figure 2.

Figure 6 shows the total time required for the colli-
sion detection in each frame in the ’Cloth Pile’ scene.
One can clearly see the times when each of the sheets
falls on the pile of sheets that already lie on the floor,
and that the time required for the collision detection in-
creases with each layer.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

Default Primitive Bounding Volumes

[s]

Figure 6: Total collision detection time per frame for
scene ’Cloth Pile’

Journal of WSCG ISSN 1213-6972 30 ISBN 978-80-86943-00-8

At the end of the simulation, when the sheets lie flat
on each other, and no redundant collision tests are per-
formed, approximately 5k collisions occur in each time
step. Introducing additional bounding volumes for the
primitives reduces the number of collision tests that are
required to detect these collisions from more than 160k
to only 22k. The ratio between the collision tests and
the collisions that actually occur is shown in Figure 7.

0

20

40

60

80

100

Default Primitive Bounding Volumes

Figure 7: Ratio between number of collision tests and
collisions for scene ’Cloth Pile’

Similar results can be achieved for the more complex
scene, ’Tumbling Torus’, as depicted in Figure 8. There
are some situations where multiple layers of cloth hit
other layers with high velocity, and a higher number
of iterations is required to resolve all collisions, which
causes the ’peaks’ in the time required for the collision
detection. Marking the parts of the BVH that contain
particles which have been involved in a collision helps
to avoid these peaks.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Default Primitive Bounding Volumes Modification Marking

[s]

Figure 8: Total collision detection time per frame for
scene ’Tumbling Torus’

The ’Garment’ scene is the most complex and real-
istic test case. The three layers around the hips are
pressed against the body, and many iterations are re-
quired to resolve all collisions. Restricting the update
of the BVH and the collision tests to those parts that
are actually modified by collision responses, by mark-
ing the modified parts of the BVH, brings a significant
speedup in this scene, which can be seen in figure 9.

Performance

Table 2 summarizes the results for the three test cases.
The additional bounding volumes cause a higher cost
for updating the BVH. Additionally, more intersection
tests between bounding volumes have to be performed.
But the higher cost for updating the BVH is more than

0

1

2

3

4

5

6

Default Primitive Bounding Volumes Modification Marking

[s]

Figure 9: Total collision detection time per frame for
scene ’Garment’

compensated by the benefit from the reduced number
of exact collision tests, since an overlap test between
bounding volumes is much cheaper than an exact colli-
sion test. Due to the reduced number of exact collision
tests, the total time that is required for the collision de-
tection in each frame can be reduced by a factor of 2.5
to 3.0.

The time that is required for the collision detection
increases with the number of iterations that is necessary
to resolve all collisions. By marking the modified parts
of the BVH, the collision detection time less depends
on the number of iterations, but more of the number
of collisions that actually have to be resolved in each
iteration. Thus, the complex garment scene runs more
than 4 times faster, because only small parts of the cloth
are involved in complex collision situations.

Scene Default PBV Mod. Mark.
Cloth Pile 188 63 62
Tumbling Torus 379 150 110
Garment 4633 1713 407

Table 2: Average total time required for the collision de-
tection in each frame, in milliseconds. PBV: With prim-
itive bounding volumes. Mod. Mark.: With primitive
bounding volumes and modification marking

8 CONCLUSION AND FUTURE
WORK

We have shown how the process of continuous col-
lision detection for deformable triangle meshes could
be accelerated by the effective technique of introduc-
ing additional bounding volumes for the primitives of
the triangle meshes. Making the broad phase a little
bit more narrow saves a significant amount of compu-
tation time, especially for multiple layers of triangle
meshes in close proximity. An efficient scheme for it-
eratively resolving collisions in complex collision sit-
uations yields plausible simulation results, and allows
us to employ the robust, continuous collision detection
even for complex scenes, with a frame rate suitable for
interactive applications.

Future work will include the implementation of a
more sophisticated collision response scheme. For ex-

Journal of WSCG ISSN 1213-6972 31 ISBN 978-80-86943-00-8

ample, Volino and Magnenat-Thalmann [24] suggested
a scheme which will probably help to decrease the num-
ber of iterations required for the collision detection. Ex-
amining the benefits of performing the updates and in-
tersection tests of the primitive bounding volumes on
the GPU could also be worthwhile, according to the re-
search done by Greß et al. [6] on hierarchical collision
detection. Another focus is on the creation of simula-
tion states that are intersection-free, even when the ini-
tial state is not. This is crucial for applying the robust
collision detection, as it would otherwise preserve and
not remove the intersections. Further research also has
to be done for a suitable user interaction, which does not
violate the robustness, but still allows interactive drap-
ing of the simulated garments.

9 ACKNOWLEDGEMENTS
This work was part of the research grant
KF0157401SS5 in the PRO INNO II program,
partially funded by the German Federal Ministry of
Economics and Technology (BMWi) via the Arbeits-
gemeinschaft industrieller Forschungsvereinigungen
“Otto von Guericke” e.V. (AiF). We thank our project
partner Assyst GmbH for providing garment input data.

REFERENCES
[1] David Baraff, Andrew P. Witkin, and Michael Kass. Untangling

cloth. ACM Trans. Graph., 22(3):862–870, 2003.

[2] Robert Bridson, Ronald Fedkiw, and John Anderson. Robust
treatment of collisions, contact and friction for cloth animation.
In SIGGRAPH 02, pages 594–603, 2002.

[3] Arnulph Fuhrmann, Clemens Gross, and Volker Luckas. In-
teractive animation of cloth including self collision detection.
Journal of WSCG, 11(1):141–148, February 2003.

[4] Stefan Gottschalk, Ming C. Lin, and Dinesh Manocha. Obb-
tree: A hierarchical structure for rapid interference detection.
In SIGGRAPH, pages 171–180, 1996.

[5] Naga K. Govindaraju, David Knott, Nitin Jain, Ilknur Kabul,
Rasmus Tamstorf, Russell Gayle, Ming C. Lin, and Dinesh
Manocha. Interactive collision detection between deformable
models using chromatic decomposition. ACM Trans. Graph.,
24(3):991–999, 2005.

[6] A. Greß, M. Guthe, and R. Klein. Gpu-based collision detection
for deformable parameterized surfaces. Computer Graphics Fo-
rum, 25(3):497–506, September 2006.

[7] Sunil Hadap, Dave Eberle, Pascal Volino, Ming C. Lin,
Stephane Redon, and Christer Ericson. Collision detection and
proximity queries. In GRAPH ’04: Proceedings of the confer-
ence on SIGGRAPH 2004 course notes, New York, NY, USA,
2004. ACM Press.

[8] S. Kimmerle, Matthieu Nesme, and François Faure. Hierarchy
accelerated stochastic collision detection. In Vision, Modeling,
and Visualization, Stanford, California, 2004.

[9] James T. Klosowski, Martin Held, Joseph S. B. Mitchell, Henry
Sowizral, and Karel Zikan. Efficient collision detection using
bounding volume hierarchies of k-dops. IEEE Trans. Vis. Com-
put. Graph., 4(1):21–36, 1998.

[10] Thomas Larsson and Tomas Akenine-Möller. A dynamic
bounding volume hierarchy for generalized collision detection.
Computers and Graphics, 30(3):451–460, June 2006.

[11] Johannes Mezger, Stefan Kimmerle, and Olaf Etzmuß. Hierar-
chical Techniques in Collision Detection for Cloth Animation.
Journal of WSCG, 11(2):322–329, 2003.

[12] Brian Mirtich and John F. Canny. Impulse-based dynamic simu-
lation. Technical Report UCB/CSD-94-815, EECS Department,
University of California, Berkeley, 1994.

[13] Ian J. Palmer and Richard L. Grimsdale. Collision detec-
tion for animation using sphere-trees. Comput. Graph. Forum,
14(2):105–116, 1995.

[14] Xavier Provot. Collision and self-collision handling in cloth
model dedicated to design garments. In Graphics Interface
’97, pages 177–189. Canadian Information Processing So-
ciety, Canadian Human-Computer Communications Society,
May 1997.

[15] A. Sanna and M. Milani. Cdfast: an algorithm combining differ-
ent bounding volume strategies for real time collision detection.
In SCI 2004 Proceedings, volume 2, pages 144–149, 2004.

[16] Philip J. Schneider and David H. Eberly. Geometric Tools for
Computer Graphics. Morgan Kaufmann, 2003.

[17] Avneesh Sud, Naga Govindaraju, Russell Gayle, Ilknur Kabul,
and Dinesh Manocha. Fast proximity computation among de-
formable models using discrete Voronoi diagrams. ACM Trans-
actions on Graphics, 25(3):1144–1153, July 2006.

[18] M. Teschner, S. Kimmerle, B. Heidelberger, G. Zach-
mann, L. Raghupathi, A. Fuhrmann, M.-P. Cani, F. Faure,
N. Magnenat-Thalmann, W. Strasser, and P. Volino. Collision
detection for deformable objects. Computer Graphics forum,
24(1):61–81, March 2005.

[19] Matthias Teschner, Bruno Heidelberger, Matthias Müller, Danat
Pomerantes, and Markus H. Gross. Optimized spatial hash-
ing for collision detection of deformable objects. In 8th In-
ternational Fall Workshop Vision, Modeling, and Visualization
(VMV), pages 47–54, 2003.

[20] Gino van den Bergen. Efficient collision detection of complex
deformable models using aabb trees. journal of graphics tools,
2(4):1–14, 1997.

[21] P. Volino and N. Magnenat-Thalmann. Developing simulation
techniques for an interactive clothing system. In Proceedings of
International Conference on Virtual Systems and Multimedia,
pages 109–118. IEEE Computer Society, 1997.

[22] Pascal Volino, Martin Courchesne, and Nadia Magnenat-
Thalmann. Versatile and efficient techniques for simulating
cloth and other deformable objects. In SIGGRAPH 95, pages
137–144, 1995.

[23] Pascal Volino and Nadia Magnenat-Thalmann. Efficient self-
collision detection on smoothly discretized surface animations
using geometrical shape regularity. Computer Graphics Forum,
13(3):155–166, 1994.

[24] Pascal Volino and Nadia Magnenat-Thalmann. Accurate col-
lision response on polygonal meshes. In CA, pages 154–163,
2000.

[25] Pascal Volino and Nadia Magnenat-Thalmann. Resolving sur-
face collisions through intersection contour minimization. ACM
Transactions on Graphics, 25(3):1154–1159, July 2006.

[26] Wingo Sai-Keung Wong and George Baciu. Dynamic inter-
action between deformable surfaces and nonsmooth objects.
IEEE Transactions on Visualization and Computer Graphics,
11(3):329–340, 2005.

[27] Gabriel Zachmann and Jan Klein. Adb-trees: Controlling the er-
ror of time-critical collision detection. In 8th International Fall
Workshop Vision, Modeling, and Visualization (VMV), pages
19–21, University München, Germany, November 2003.

[28] Gabriel Zachmann and René Weller. Kinetic bounding volume
hierarchies for deformable objects. In ACM Int’l Conf. on Vir-
tual Reality Continuum and Its Applications (VRCIA), Hong
Kong, China, June 14-17 2006.

Journal of WSCG ISSN 1213-6972 32 ISBN 978-80-86943-00-8

Non-iterative Computation of Contact Forces
for Deformable Objects

J. Spillmann M. Becker M. Teschner
Computer Graphics

University of Freiburg, Germany

ABSTRACT

We present a novel approach to handle collisions of deformable objects represented by tetrahedral meshes. The scheme com-
bines the physical correctness of constraint methods with the efficiency of penalty approaches.
For a set of collided points, a collision-free state is computed that is governed by the elasticities and impulses of the collided
objects. In contrast to existing constraint methods we show how to decouple the resulting system of equations in order to avoid
iterative solvers.
By considering the time step of the numerical integration scheme, the contact force can be analytically computed for each
collided point in order to achieve the collision-free state. Since predicted information on positions, impulses, and penetration
depths of the subsequent time step is considered, a collision-free state is maintained at each simulation step which is in contrast
to existing penalty methods. Further, our approach does not require a user-defined stiffness constant.
Our scheme can handle various underlying deformable models and numerical integration schemes. To illustrate its versatility,
we have performed experiments with linear and non-linear finite element methods.

Keywords: Physically-based animation, Collision response, Contact forces, Deformable modeling

1 INTRODUCTION

Contact handling for deformable objects provides
unique challenges since the surfaces in the contact
region deform due to emerging contact forces. This
induces quickly alternating stress onto the contact
regions, which must be considered for each contact
point separately.

There exist two classes of schemes to handle colli-
sions of deformable objects. Penalty methods relate
the magnitude of the response force to an interpene-
tration measure. Apart from the fact that this lacks
physical plausibleness, these approaches require the de-
finition of a stiffness constant k for each collision. k
must be large enough to resolve the collision entirely
without overshooting, even for large stresses onto the
collided points. Considering that the stress varies spa-
tially and temporally, the choice of k is intrinsically
difficult. Constraint methods impose non-penetration
constraints for all contact points in order to compute
response forces or impulses. Schemes have been pro-
posed that formulate e. g. a linear complementary prob-
lem (LCP) or employ Lagrange multipliers. To solve
the resulting system of equations, iterative methods are
employed. Thus, the resulting methods tend to be ex-

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
Copyright UNION Agency – Science Press, Plzen, Czech Re-
public.

pensive or sensitive to numerical problems and require
moreover effortful implementations.

Our contribution. We present a novel scheme for
handling collisions of deformable objects. Our ap-
proach combines the accuracy and physical correctness
of constraint methods with the simplicity and efficiency
of penalty methods.

To identify the collision-free positions of the col-
lided points, we establish a linearized relation between
the internal force and the displacement of each point.
We then show how to decouple the resulting system of
equations such that it can be solved analytically, i. e.
without employing iterative methods. Though the re-
sulting contact forces are approximative, energy con-
servation is guaranteed. The contact forces correct the
unconstrained motion of the mass points, maintaining a
collision-free state at each simulation step.

In summary, our approach comprises the following
advantages over previous approaches:

• In contrast to previous constraint methods, the sys-
tem of equations is decoupled and can be solved ana-
lytically, requiring only a small and constant number
of operations per contact point. It is thus less vulner-
able to numerical problems and enables a simple and
elegant implementation. Further, our approach can
handle various underlying deformable models.

• In contrast to previous penalty methods, we do not
require the definition of response constants. The
magnitude of the response forces depends on the po-
sitions, impulses and internal forces of the collided
points. As a consequence, spatially and temporally
varying elasticity can be handled correctly. Further,
a collision-free state is maintained in each simula-

Journal of WSCG ISSN 1213-6972 33 ISBN 978-80-86943-00-8

tion step since colliding points are accelerated onto
the contact surface within one integration step.

Several experiments have been performed that under-
line the conceptual advantages of our approach (see
Fig. 1). To show that the proposed approach can han-
dle various deformable models, both linear and non-
linear finite element (FE) methods, and a mass-spring
deformable model are employed.

2 RELATED WORK
In this work, we focus on the contact dynamics of
deformable objects. Pioneering work on deformable
objects in computer graphics has been done by
Terzopoulos [TPBF87], and a recent survey on the
simulation of deformable objects is [NMK∗05].
In [TKH∗05], the state-of-the-art of the collision
detection of deformable objects is summarized. Two
different classes of collision response methods can be
identified, notably penalty and constraint methods.

Penalty methods compute a response force per col-
lided point whose magnitude is related to an interpen-
etration measure. As a consequence, the numerical ef-
fort grows with the violence of penetration, as first men-
tioned by Moore [MW88]. Further, penalty methods re-
quire a robust and concise computation of the penetra-
tion depth of collided points. This problem is amongst
others identified by Hirota et al. [HFS03] in the context
of objects deformed with FE methods. They state that
discontinuities lead to oscillations, and thus they pro-
pose to compute smooth contact normals by employing
a distance field. However, the accuracy of this scheme
is limited since the distance field is not updated upon
deformation. Later, Heidelberger et al. [HTK∗04] pro-
posed to compute smooth contact normals from a set
of closest surface features. We employ this scheme to
compute the contact normals since it provides good ac-
curacy and robustness at minor computational effort.

In contrast to traditional penalty methods, we con-
sider the impulses and elasticities of colliding objects
when computing the contact forces. We compute the
position of a collided point on the contact surface, and
then apply a force to the point that accelerates it imme-
diately to this position. Keiser et al. [KMH∗04] pro-
posed a similar scheme for meshless objects. They
compute a virtual contact surface based on the ratio
of elasticities of the objects. However, they do not
describe how to cope with collisions at different im-
pulses. Further, they still require the definition of a re-
sponse force constant. Recently, it has been shown that
penalty-based collision response can also be applied to
level-of-detail representations [DMG05].

Constraint methods usually define a system of
non-penetration constraints. This system is formulated
as a linear complementary problem (LCP). The contact
forces are then computed by solving the system.
Constraint methods are particularly interesting in
rigid-body dynamics, since rigid bodies provide less
degrees-of-freedom. An excellent work on collision
handling of rigid bodies has recently been presented by

Kaufman et al. [KEP05] that is based on the pioneering
work of Moreau [Mor88]. They especially introduce
a friction model that leads to a separable quadratic
program.

Constraint-based collision response of deformable
objects is first discussed in 1992. Baraff and
Witkin [BW92], based on the work of Baraff [Bar89],
use a variational principle to compute impulses that
prevent interpenetration. However, their underlying
deformable model is not physically motivated. Their
approach is extended by Gascuel [Gas93] by comput-
ing an exact contact surface described by deformation
fields. Her approach clearly parallels ours in respect
of the formulation of non-penetrance. However, the
application of implicit functions to define the surfaces
obviously imposes limitations.

With growing computational power, approaches that
simulate deformable objects as systems of mass points
received increasing attention. An approach that handles
collisions between objects deformed by FE methods is
presented by Debunne et al. [DDCB01]. The approach
implements non-penetration constraints by directly dis-
placing collided vertices. While this technique works
well for handling collisions between rigid haptic tools
and deformable objects, it lacks physical plausibleness.

A large step towards physically based collision han-
dling is done by Duriez et al. [DDKA06]. They solve an
LCP based on Signorini’s contact theory [DAK04]. The
link between contact forces and point displacements
is established by a compliance matrix which assumes
a linear or linearized deformation around the contact
point. Pauly et al. [PPG04] model contact resolution
for quasi-rigid objects. Their work parallels our ap-
proach since they also compute a contact surface based
on constraints, and then derive forces that accelerate the
points onto this surface. However, similar to Duriez et
al., their approach depends on the deformation model.
Moreover, they explicitly enforce volume preservation.
Further, Pauly et al. maintain a pressure equilibrium
which applies only to static configurations, while we
enforce a contact force equilibrium that applies to dy-
namic configurations. In addition, our approach treats
the deformable model as a black box. We can thus not
only handle objects deformed with linear or non-linear
FE methods, but also objects simulated as mass-spring
meshes.

A comparison between penalty and constraint meth-
ods is presented by Hauser et al. [HSO03]. They state
that penalty methods are faster while constraint meth-
ods provide more robustness and allow for larger time
steps. However, they also state that solving the system
of constraints is not always possible in real-time. We
present a way to solve a system of constraints analyti-
cally, i. e. without employing iterative methods.

Recently, a promising approach was presented by
Galoppo et al. [GOM∗06]. They model objects with
a rigid core overlaid by a deformation texture (see
also [JP02]). The collision response is induced by ap-
plying impulses. The approach produces plausible de-
formations at good performance. However, the pro-

Journal of WSCG ISSN 1213-6972 34 ISBN 978-80-86943-00-8

Figure 1: Simulation of 200 chained torii falling onto an elastic membrane. The membrane deforms and
buckles under the weight of the chain. Nevertheless, a stable resting state is reached using the proposed

collision response scheme.

posed Sherman-Morrison-Woodbury update to resolve
the system of constraints is not always stable [Hig96].
In contrast, we propose a direct method that is less
vulnerable to numerical problems. The idea to handle
collision response for deformable objects by applying
impulses is also mentioned in a recent publication of
Cirak [CW05]. Here, the velocities of the points are
changed by impulses, while the colliding points are di-
rectly displaced in order to achieve a collision-free set-
ting. However, as shown in [ST05], the direct displace-
ment of primitives can influence the stability of the sim-
ulation since it violates the laws of dynamics with re-
spect to inertia. In contrast, we compute a constrained
force that accelerates a mass point onto a collision-free
position.

3 METHOD

We assume that the deformable objects are discretized
into tetrahedral meshes, and that the surfaces of the ob-
jects are triangulated. We further assume that all n sim-
ulated mass points have a mass larger than zero.

For the following discussion, we assume that the ob-
jects have been numerically evolved in time, resulting
in unconstrained positions x̃t+ t

i . For each colliding
point in the set C of colliding points, a penetration vec-
tor dt+ t

i has been computed [HTK∗04]. Further, we
treat only the case where two colliding objects share
a single contact region. However, the generalization
to multiple simultaneously colliding objects is straight
forward.

We now show how to compute contact forces that
correct the previous unconstrained motion. The contact
forces, applied at time t, result in constrained positions
xt+ t

i .

3.1 Terms

A collision is a pair (i,Ti), where i ∈ C is a point that
has collided with a volume under unconstrained mo-
tion. Ti = { j,k, l} is the triangle on the surface of the
collided object that has been penetrated by i. We denote
i consistently as contact point.

In the following discussion, we assume that all ver-
tices j ∈ Ti of a collision (i,Ti) are colliding themselves.

The boundary cases where not all vertices of Ti are in C
are omitted due to lack of space.

The mapping matrix H = (hi j) ∈ R
n×n provides the

barycentric coordinates i, j of the point i projected onto
Ti with respect to j ∈ Ti (see Fig. 2):

hi j =
{

i, j j ∈ Ti

0 else

with n
j=1 hi j = 1 for all i. H can easily be obtained

from the penetration directions dt+ t
i . Notice that H is

required for the derivation of the contact forces, but it is
not explicitly represented in the actual implementation.

j

k

lTi

ωi,j

i

di

Figure 2: The element hi j provides the barycentric
coordinate i, j of the contact point i projected onto
the penetrated surface triangle Ti with respect to j ∈

Ti.

Each collision (i,Ti) induces a local force fi on the
point i and local forces fTi on the vertices of Ti. In
general, each vertex j, k and l will itself be involved
in collisions, and each of these collisions induces local
forces. As a consequence, multiple local forces act on
the same contact point. This intrinsic coupling of col-
lisions results in conflicting constraints that make the
computation of contact forces difficult, as e. g. men-
tioned by Volino et al. [VMT00].

The contact force Fi is the sum of all local forces fi
and fTj with i ∈ Tj, acting on the point i.

3.2 Contact mechanics
Newton’s third law states that for two entities in con-
tact, the force that the first entity exerts on the second
entity must be opposite equal to the force exerted by the
second entity on the first entity. As a consequence, the
sum of contact forces must always be 0. We denote this
situation as force equilibrium.

Journal of WSCG ISSN 1213-6972 35 ISBN 978-80-86943-00-8

This does not imply that the stresses of the deformed
volumes sum to 0. In fact, this condition only holds
for static configurations, so-called resting contacts (see
e. g. [PPG04]). Following Newton, there is an equilib-
rium of the local forces induced by a collision (i,Ti)

fi + fTi = 0 (1)

The global force equilibrium states that the sum of all
contact forces must be 0.

i∈C

Fi = 0 (2)

The global force equilibrium guarantees energy conser-
vation during the collision.

3.3 Contact forces
In order to decouple the contact force computations per
collision, we assume that the contact space per collision
(i,Ti) is spanned by dt+ t

i . Thus, we assume that the
penetration depths of points j, k and l ∈ Ti conform to
the penetration depth of point i:

dt+ t
j = dt+ t

k = dt+ t
l = −dt+ t

i (3)

However, this assumption introduces an error. In
Sec. 3.5 we show how to minimize the impact of this
error. As a consequence of (3), each collision defines
its own contact space, and thus a contact point has mul-
tiple penetration depths, notably one for each collision
that it is involved into.

The collision-free position xt+ t
i lives in the contact

space of the collision (i,Ti). Since the contact space
of (i,Ti) has dimension one, the computation of the
collision-free position xt+ t

i reduces to finding a scalar
∈ [0,1] with xt+ t

i = x̃t+ t
i + dt+ t

i .

Claim:

By applying a contact force

Fi =
mi

t2 dt+ t
i i (4)

with

i =
n
j=1 c jhi jm j

cimi + n
j=1 c jhi jm j

(5)

and constants

ci =
1

1+ n
j=1 h ji

(6)

to a contact point at current position xt
i , the uncon-

strained motion is corrected and the point is acceler-
ated onto the collision-free position xt+ t

i . Further, the
computed contact forces meet both (1) and (2). The
collision-free positions xt+ t

i are given by

xt+ t
i = x̃t+ t

i + idt+ t
i (7)

Notice that n
j=1 hi j sums over all vertices of the com-

pliant triangle Ti of the contact point i. In contrast,

n
j=1 h ji sums over all occurrences of point i ∈ Tj,

which conforms to the sum of the barycentric coordi-
nates of all points j that have penetrated a triangle ad-
jacent to point i.

An amortized analysis shows that the weights ci can
be computed per contact point at constant costs. Thus
the costs to compute Fi per point are constant.

Rationale:

To motivate the proposed contact forces, three aspects
have to be explained, notably that the proposed con-
strained positions are collision-free, that the collision-
free state is immediately obtained, and that the contact
forces obey the Newtonian laws of force equilibrium.

3.3.1 Collision-free state

We claimed that the positions x̃t+ t
i + idt+ t

i define a
collision-free state. We assumed that the collision-free
position of the contact point lives in the contact space
spanned by dt+ t

i , and that the penetration depths of the
vertices j ∈ Ti conform to the penetration depth of i.
Thus, we have to show that i + j ≈ 1 for all j ∈ Ti.

Consider the sum n
j=1 c jhi jm j in the numerator of

the expression (5) for i. We interpret this sum as a
mass averaging operation over vertices j on the oppo-
site surface. We thus define the average mass mj of
vertices j as

n

j=1
c jhi jm j = mj

n

j=1
hi jc j (8)

The row sums n
j=1 hi j of the mapping matrix H equal

1 per definition. Thus, the average of the column sums
n
j=1 h ji of H is also 1, and we therefore approximate

c j ≈ 1
2 . This approximation allows to rewrite i of the

contact point as

i =
mj/2

mi/2+mj/2
(9)

Now consider a point j ∈ Ti. The j of this point is

j =
mk/2

mj/2+mk/2
(10)

with mk the average mass of points in the compliant
surface triangle opposite to j and thus in the neigh-
borhood of i. By assuming that the differences in the
masses of neighboring vertices are small, we approxi-
mate mk ≈ mi and mj ≈ mj. Thus the sum of i and j
is

i + j ≈ mj/2
mi/2+mj/2

+
mi/2

mj/2+mi/2
= 1 (11)

Notice that this does not restrict the masses of the col-
liding objects to be equal. In fact, the expression for i
ensures that collisions of objects at differing weights are
handled correctly, which is in contrast to penalty meth-
ods. Further, the objects may have spatially differing
masses.

Journal of WSCG ISSN 1213-6972 36 ISBN 978-80-86943-00-8

We conclude that the proposed constrained positions
xt+ t

i yield a collision-free state. In Sec. 3.5 we discuss
under which circumstances the errors induced by the
approximation are minimized.

3.3.2 Obtaining the goal position

To show that by applying the proposed contact forces Fi

to points at x̃t+ t
i , the collision-free positions xt+ t

i are
immediately reached, we linearize the relation between
internal force and displacement at the current time step.
This allows to relate the contact force to the penetration
depth of the collided point. We then integrate the sum
pi +Fi of the known internal force pi and the unknown
contact force Fi of the point numerically. Thereby, we
employ the Verlet scheme:

xt+ t
i = 2xt

i −xt− t
i +

t2

mi
(pi +Fi)

= 2xt
i −xt− t

i +
t2

mi
pi +

t2

mi
Fi

= x̃t+ t
i +

t2

mi
Fi (12)

In (12), we relate the constrained position xt+ t
i to the

contact force Fi. The internal force pi on the point
is implicitly considered in the unconstrained position
x̃t+ t

i . The constrained position is given by (7):

xt+ t
i = x̃t+ t

i +dt+ t
i i = x̃t+ t

i +
t2

mi
Fi (13)

and thus
Fi =

mi

t2 dt+ t
i i (14)

which shows that by applying Fi to the contact point,
the proposed collision-free position xt+ t

i is immedi-
ately reached. Penalty methods, in contrast, require in
general several simulation steps to resolve a collision.

If Verlet is used as numerical integration scheme,
then the obtained position is exact, otherwise it is
still a very good approximation. Recently, Becker et
al. [BGT06] have shown that similar exact formulations
can also be derived for other numerical integration
schemes.

3.3.3 Force equilibrium

To illustrate that the proposed contact forces Fi sum to
0 and thus ensure a global force equilibrium, we intro-
duce local forces fi and fTi for a collision (i,Ti). By
showing that the local forces forces sum to 0 and that
the local forces acting on a single point sum to Fi, we
conclude that the contact forces sum to 0.

Claim: Having a collision (i,Ti), the local force

fi = ci
mi

t2 dt+ t
i i (15)

on the point i and the local force

fTi =
n

j=1
c jhi j

m j

t2 (−dt+ t
i)(1− i). (16)

on the triangle Ti ensure a local force equilibrium. Fur-
ther, the sum of the local forces per point yields the
proposed contact force Fi on that point.

Proof: For the local force equilibrium, we have

fi + fTi =

=
1

t2 (cimidt+ t
i i +

n

j=1
c jhi jm j(−dt+ t

i)(1− i))

=
1

t2 dt+ t
i (cimi i −

n

j=1
c jhi jm j(1− i)) (17)

Using the definition of i (5), we get

fi + fTi = 0 (18)

Notice that since the local force equilibrium is a manda-
tory requirement, the expression for i as proposed in
(5) is obtained by solving (17) for i.

Since we have shown that for a collision (i,Ti), the
local forces sum to zero, it follows that the sum of local
forces over all collisions is also zero. We show now that
by summing up all local forces per point, we yield the
contact force Fi. It follows that the contact forces sum
to zero, as required by (2).

To calculate the contact force Fi per point, we need to
consider the coupling of contacts. Thus, we sum over
all contacts:

i∈C

(fi + fTi) =
1

t2
i∈C

(
cimi idt+ t

i + (19)

+
n

j=1
c jhi jm j(−dt+ t

i)(1− i)
)

Using the assumption (3) for the penetration depths
dt+ t

i and i, we get

=
1

t2
i∈C

(
cimi idt+ t

i +
n

j=1
c jhi jm jdt+ t

j j

)
(20)

Reordering for the index i yields

=
1

t2
i∈C

(
cimi idt+ t

i +
n

j=1
cih jimi idt+ t

i

)

=
1

t2
i∈C

cimi idt+ t
i (1+

n

j=1
h ji) (21)

And by using the definition of ci

i∈C

(fi + fTi) =
i∈C

mi

t2 idt+ t
i︸ ︷︷ ︸

=Fi

=
i∈C

Fi = 0 (22)

We have shown that by reordering the terms in the sum
of local forces over all collisions (left hand side of (22)),
we arrive at the sum of contact forces over all collisions
(right hand side of (22)), which conforms to the sum of

Journal of WSCG ISSN 1213-6972 37 ISBN 978-80-86943-00-8

contact forces over all contact points. Thus the sum of
local forces acting on a single contact point is

Fi =
mi

t2 idt+ t
i (23)

as claimed in (4). As a consequence, the proposed con-
tact forces i∈C Fi sum to zero and thus ensure a global
force equilibrium.

�
In (21), we have neglected the fact that points j ∈ Ti

do not necessarily collide themselves and thus cannot
be reordered for an i ∈C. However, a contact force for
these boundary points is easily derived such that both
local and global force equilibrium are met. The details
are omitted due to lack of space.

3.4 Frictional contacts
To implement frictional contacts, a force compo-
nent orthogonal to Fi is computed using Coulomb’s
law [MC94]. This force component is then added to the
contact force Fi. Similar to [PPG04], we assume that
frictional forces do not induce significant deformations.
This allows us to decouple friction from the contact
force computation.

3.5 Discussion
We showed how to derive a contact force per point
such that for all contact points, a collision-free state is
yielded.

We proposed a way to compute the contact forces
analytically, i. e. without employing iterative solvers.
This is made possible since we assumed a one-
dimensional contact space per collision (i,Ti), i. e. we
assumed that the penetration depths of the vertices
j ∈ Ti conform to the penetration depth of the point
i. This is obviously not the case for general configu-
rations. However, the differences i j = dt+ t

i + dt+ t
j

approach zero if the angles between triangles adjacent
to i and Ti approach zero. Thus, the differences i j
can be made arbitrary small by employing sufficiently
densely sampled meshes.

Due to the approximation errors, the sum of contact
forces is not exactly zero, contradicting the law of en-
ergy conservation. In the implementation, these ghost
forces are eliminated by computing the i j and correct-
ing the contact force per contact point. These correc-
tions are computed in constant time.

The small overlaps that result from the approxima-
tions made in the derivation of a collision-free state in
Sec. 3.3.1 are hardly noticeable in interactive simula-
tions. Moreover, they do not induce a violation of the
laws of energy conservation.

4 IMPLEMENTATION
We have integrated our approach into a simulation
framework for deformable objects, sketched in Al-
gorithm 1. To compute the deformations, linear and
non-linear finite element methods, and a mass-spring
deformable model have been employed. In fact, our

repeat
p ← ComputeDeformation(xt);
p ← p+ComputeGravity;
x̃t+ t ← UnconstrainedMotion(xt ,vt ,p);
C ← DetectCollisions(x̃t+ t);
dt+ t ← ComputePenetrationDepths(C, x̃t+ t);
F←ComputeContactForces(C,xt , x̃t+ t ,dt+ t ,p);
xt+ t ← ConstrainedMotion(C,xt ,vt ,pt +F);
t ← t + t;

until stop;

Algorithm 1: Overview of the simulation frame-
work. Here, xt , vt and pt are the positions, velocities
and internal forces on the points in the current time
step. The positions x̃t+ t result from unconstrained
motion, and C is the set of colliding points.

approach treats the computation of deformations as a
black box process.

After the forces on the points have been computed,
the objects are evolved in time, assuming a Newtonian
second order world. Both explicit and implicit integra-
tion schemes have been tested, and we found that the
explicit Verlet scheme [Ver67] provides a good ratio of
accuracy and efficiency. The free motion of the objects
results in an eventually colliding state.

To detect collisions of the unconstrained positions,
we employ an algorithm based on spatial hash-
ing [THM∗03]. Further, the penetration depth dt+ t

i of
each collided point is computed [HTK∗04], yielding
the contact space.

We then compute contact forces in the contact space
that accelerate the points immediately to their collision-
free positions. Thus the previous free motion is cor-
rected.

5 RESULTS
We tested our implementation on various problems,
ranging from complex off-line computations to interac-
tive animations. In this discussion, we focus on three
main aspects: Collisions of objects with locally dif-
fering elasticities and stress, challenging resting states,
and performance measurements in massive scenarios.
All experiments have been performed on an Intel Xeon
PC, 3.8 GHz using an nVidia Quadro FX 4500 graphics
card.

Locally differing elasticities. The proposed ap-
proach computes response forces per contact point
by maintaining a local force equilibrium. Thus,
the collision-free position of the contact point is
directly governed by the elasticities of the neighboring
elements. In addition, the method comes with no user-
defined parameters, therefore collision configurations
with temporally and spatially varying stress can be
consistently handled. In Fig. 3 on the left, elastic bars
are squeezed between two fixed anchors and thus they
are deformed. Due to the low elasticities of the bars

Journal of WSCG ISSN 1213-6972 38 ISBN 978-80-86943-00-8

(Young modulus 100kN/m2), the stress on the contact
regions is enormous high. Nevertheless, a collision-free
state is maintained. In Fig. 3 right, the two bars (Young
modulus 5000kN/m2) deform a softer cube (Young
modulus 30kN/m2). The deformations are computed
by employing non-linear finite element methods based
on the Green-Lagrange stress tensor, showing that
our response approach can also handle non-linear
deformations. Further, in contrast to [GOM∗06], the
performance of the collision response is not affected
by the elasticities of the contact regions.

Figure 3: Left: Elastic bars are squeezed between
anchors. A collision-free state is maintained even
if the stresses on the contact regions are enormous
high. Right: A soft cube is deformed by stiff bars.
To compute the deformation, non-linear finite ele-

ment methods have been employed.

Frictional contacts. The ‘archway’ (Fig. 4) is a clas-
sical problem in architecture. In fact, this construction
can be built without employing any gluing substance.
Its stability relies on a combination of pressure and sta-
tic friction that prevents the elements from sliding off
each other. We are able to simulate a stable resting
state of the ‘archway’ even if its equilibrium is dis-
turbed by objects falling onto it. Each wedge-shaped
element consists of 375 tetrahedra, has a Young modu-
lus of 20kN/m2, a Poisson ratio = 0.35, and a static
friction coefficient of 0.95. The simulation runs at 40
frames per second in average, including deformation,
collision detection and response, and visualization.

Figure 4: Simulation of a classical problem in archi-
tecture. The sensitive equilibrium of static friction
and pressure makes this configuration a challenge
for the collision response. Each element consists of
375 tetrahedra. The simulation runs at 40 frames
per second, and there are 400 contact points in aver-

age.

Performance. The complexity of our response
scheme is linear in the number of contact points.
We performed an experiment with 500 objects being
dropped into a container (see Fig. 5). Each object has a

Figure 5: To test the performance of the scheme, 500
deformable chess figures are filled into a container.
Thus the number of collisions grows linearly in time.

Young modulus of 10kN/m2. The total number of mass
points is 50.4K, and the total number of tetrahedrons
is 88.2K. Fig. 6 indicates that the time to perform the
collision response linearly depends on the number of
collisions.

0

20

40

60

80

100

120

140

1000 2000 3000 4000 5000 6000 7000 8000 9000
Number of collisions

R
es

po
ns

e
tim

e
[m

s]

Figure 6: The measurements indicate that the per-
formance of the proposed approach is linear in the

number of collisions.

Fig. 1 illustrates the simulation of 200 chained torii
falling onto an elastic membrane. The membrane de-
forms and buckles under the weight of the chain, but
nevertheless a stable resting state is reached. The over-
all number of tetrahedrons is 80K, and there are 2500
contacts in average. The computation of one simulation
pass takes 470ms in total, and the collision response
alone takes 41ms.

6 CONCLUSION
We have presented a novel approach to handle colli-
sions of deformable objects. The approach combines
the benefits of penalty and constraint methods: We
compute the positions of the colliding points on the con-
tact surface by considering the stress on each point. A
contact force is then computed that accelerates the point
to this constrained position in the subsequent simula-
tion step, thus a collision-free state is maintained. In
contrast to penalty methods, the approach comes with
no user-defined force constant. Therefore, the intrin-
sic problem to choose a constant that does not over-
shoot but resolves the collision is avoided. In contrast
to constraint methods, the resulting system of equations
can be decoupled and thus solved analytically, without
employing iterative numerical methods. As a conse-
quence, the approach is easy to implement and less vul-
nerable to numerical problems. Further, it requires only
a small and constant number of operations per contact
point.

The robustness of the approach depends on the com-
puted penetration depths [HTK∗04]. For deep intersec-

Journal of WSCG ISSN 1213-6972 39 ISBN 978-80-86943-00-8

tions, this scheme is subject to fail, and the objects can-
not be separated.

Currently, we are working on an extension of the pro-
posed scheme to respond to self-collisions. This allows
for handling collisions of non-volumetric deformable
models such as cloth or hair.

REFERENCES
[Bar89] Baraff D.: Analytical methods for dynamic

simulation of nonpenetrating rigid bodies. in Com-
puter Graphics (Proc. Siggraph) (1989), vol. 23,
pp. 223–232.

[BGT06] Becker M., Gissler M., Teschner M.: Local
constraint methods for deformable objects. in Third
Workshop in Virtual Reality, Interactions and Phys-
ical Simulations (2006). to appear.

[BW92] Baraff D., Witkin A.: Dynamic simulation of
non-penetrating flexible bodies. Computer Graphics
(Proc. Siggraph) 26, 2 (1992), 303–308.

[CW05] Cirak F., West M.: Decomposition contact re-
sponse (DCR) for explicit finite element dynamics.
International Journal for Numerical Methods in En-
gineering 64, 8 (2005).

[DAK04] Duriez C., Andriot C., Kheddar A.: Sig-
norini’s contact model for deformable objects in
haptic simulations. in IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (2004),
pp. 3232–3237.

[DDCB01] Debunne G., Desbrun M., Cani M.-P., Barr
A. H.: Dynamic real-time deformations using space
and time adaptive sampling. in Proc. Siggraph
(2001), pp. 31–36.

[DDKA06] Duriez C., Dubois F., Kheddar A., An-
driot C.: Realistic haptic rendering of interacting
deformable objects in virtual environments. IEEE
Transactions on Visualization and Computer Graph-
ics 12, 1 (2006), 36–47.

[DMG05] Dequidt J., Marchal D., Grisoni L.: Time-
critical animation of deformable solids. Computer
Animation and Virtual Worlds 16, 3–4 (2005), 177–
187.

[Gas93] Gascuel M. P.: An implicit formulation for
precise contact modeling between flexible solids.
in Computer Graphics (Proc. Siggraph) (1993),
pp. 313–320.

[GOM∗06] Galoppo N., Otaduy M. A., Mecklenburg
P., Gross M., Lin M. C.: Fast simulation of de-
formable models in contact using dynamic defor-
mation textures. in Proc. Eurographics/ACM Sig-
graph Symposium on Computer Animation (2006),
pp. 73–82.

[HFS03] Hirota G., Fisher S., State A.: An improved
finite-element contact model for anatomical simula-
tions. in The Visual Computer, vol. 19. Springer,
2003, pp. 291–309.

[Hig96] Higham N. J.: Accuracy and Stability of Nu-
merical Algorithms. Society for Industrial and Ap-
plied Mathematics, Philadelphia, PA, USA, 1996.

[HSO03] Hauser K. K., Shen C., O’Brien J. F.: Inter-
active deformation using modal analysis with con-
straints. in Graphics Interface (2003), pp. 247–256.

[HTK∗04] Heidelberger B., Teschner M., Keiser R.,
Mueller M., Gross M.: Consistent penetration
depth estimation for deformable collision response.
in Proc. Vision, Modeling, Visualization (2004),
pp. 339–346.

[JP02] James D., Pai D.: DyRT: Dynamic response
textures for real time deformation simulation with
graphics hardware. ACM Transactions on Graphics
21, 3 (2002), 582–585.

[KEP05] Kaufman D. M., Edmunds T., Pai D. K.: Fast
frictional dynamics for rigid bodies. ACM Transac-
tions on Graphics 24, 3 (2005), 946–956.

[KMH∗04] Keiser R., Müller M., Heidelberger B.,
Teschner M., Gross M.: Contact handling for de-
formable point-based objects. in Proc. Vision, Mod-
eling, Visualization (2004), pp. 339–347.

[MC94] Mirtich B., Canny J. F.: Impulse-Based Dy-
namic Simulation. Tech. Rep. UCB/CSD-94-815,
EECS Department, University of California, 1994.

[Mor88] Moreau J. J.: Unilateral contact and dry fric-
tion in finite freedom dynamics. No. 302. 1988,
pp. 1–82.

[MW88] Moore M., Wilhelms J.: Collision detection
and response for computer animation. Computer
Graphics (Proc. Siggraph) 22, 4 (1988), 289–298.

[NMK∗05] Nealan A., Müller M., Keiser R., Boxer-
mann E., Carlson M.: Physically Based Deformable
Models in Computer Graphics. in Eurographics-
STAR (2005), pp. 71–94.

[PPG04] Pauly M., Pai D. K., Guibas L. J.: Quasi-rigid
objects in contact. in Proc. Eurographics/ACM Sig-
graph Symposium on Computer Animation (2004),
pp. 109–119.

[ST05] Spillmann J., Teschner M.: Contact surface
computation for coarsely sampled deformable ob-
jects. in Proc. Vision, Modeling, Visualization
(2005), pp. 289–296.

[THM∗03] Teschner M., Heidelberger B., Müller M.,
Pomerantes D., Gross M. H.: Optimized spa-
tial hashing for collision detection of deformable
objects. in Proc. Vision, Modeling, Visualization
(2003), pp. 47–54.

[TKH∗05] Teschner M., Kimmerle S., Heidelberger
B., Zachmann G., Raghupathi L., Fuhrmann A.,
Cani M.-P., Faure F., Magnenat-Thalmann N.,
Strasser W., Volino P.: Collision Detection for De-
formable Objects. Computer Graphics Forum 24, 1
(2005), 61–81.

[TPBF87] Terzopoulos D., Platt J., Barr A., Fleischer
K.: Elastically deformable models. Computer
Graphics (Proc. Siggraph) 21, 4 (1987), 205–214.

[Ver67] Verlet L.: Computer experiments on classical
fluids. Ii. equilibrium correlation functions. Physical
Review 165 (1967), 201–204.

[VMT00] Volino P., Magnenat-Thalmann N.: Accu-
rate collision response on polygonal meshes. in
Proc. Computer Animation (2000), IEEE Computer
Society, pp. 154–163.

Journal of WSCG ISSN 1213-6972 40 ISBN 978-80-86943-00-8

Light octree: global illumination fast reconstruction and
realtime navigation

Vincent Vivanloc, Jean-Christophe Hoelt, Coong Binh Hong and Mathias Paulin
Institut de Recherche en Informatique de Toulouse - Université Paul Sabatier Toulouse III - France

{vivanloc,hoelt,paulin}@irit.fr

Abstract

We present a method to rapidly build an irradiance cache based on a local illumination environment approach. This cache
is obtained by a stream simplification of a photon map. The photons are K-Means clustered per voxel into sets of virtual
directional light. These lights are stored into an irradiance texture to provide a real-time rendering of a global illuminated
scene. This method can be integrated into an existing GPU shader to obtain complex material rendering and can be accelerated
by texture atlases.

Keywords global illumination, local illumination environment, irradiance cache, octree, real-time

1 INTRODUCTION
The overall quality of computer rendered scene can
be greatly enhanced by taking into account the indi-
rect illumination [TL04]. In one hand, the classical
OpenGL direct lighting pipeline can be improved by
multipass techniques for real time effects as shadows,
specular reflections, refractions [SKALP05] and splat
based caustics. On the other hand, the rendering of a
lower frequency lighting is provided by precalculated
light maps based on radiance transfers. These maps
are often computationally expensive to generate and
limited to diffuse radiosity.

We develop a method to generate these maps rapidly
from photon maps by a simple and parallelizable al-
gorithm. Our simplification relies on local illumina-
tion environment (LIE [FBG02]) approach. The scene
space is divided into voxels filled with a compact rep-
resentation (Virtual Directional Light) of the irradi-
ance. Since the process is done locally, the simplifi-
cation error is minimized compared to a global scene
scheme.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

Copyright UNION Agency – Science Press,
Plzen, Czech Republic.

Our representation of illumination could be used as
an irradiance cache for ray tracing. However, such ex-
pensive rendering must be reprocessed at every view-
point change. Since we would like a real-time ren-
dering of global illumination solution, we develop a
viewpoint independent rendering method, based on a
GPU rendered octree. The sets of VDLs are directly
stored in the GPU memory and can be integrated with
advanced material shaders. Eventually, we propose
a render-to-atlas procedure to improve the framerate
and enable rendering on legacy OpenGL hardware.

Our contribution is :

• a fast and stream simplification of a photon map;

• a real-time rendering of indirect illumination on a
GPU without scene remeshing

– integrable in existing shader pipelines for ad-
vanced material rendering

– running on legacy OpenGL hardware (requires
a scene parametrization)

2 PREVIOUS WORKS
2.1 Creating an illumination cache
A global illumination solution can be provided in
screen space, using path tracing [Kaj86, LW93] or bet-
ter, in scene space, by radiosity [GTGB84] or pho-
ton mapping [Jen96, Jen01]. Contrary to the former

Journal of WSCG ISSN 1213-6972 41 ISBN 978-80-86943-00-8

screen space method, a scene space solution can be
reused when the scene viewpoint change. We choose
the photon map approach since it takes into account
not only caustics but also directional diffuse and spec-
ular indirect irradiances.

2.1.1 Cache sample representation
A radiance cache is a scalar field of a reflectance func-
tion values. Such function links the incoming irradi-
ances to the radiance. For both flexibility and effi-
ciency, the irradiance is preferred to the radiance. The
convolution between irradiance and the 5 dimension
reflectance function can produce a high memory con-
suming vector field. Such field must then be com-
pactly stored in a continuous or a discrete way.

A continuous representation consists in fitting a dis-
crete set of photons into a set of coefficients bound
to a function basis, such as spherical harmonics (SH)
or wavelets. SHs were the first used for precomputed
radiance transfer (PRT) [SKS02], for diffuse [RH01]
and glossy [LSSS04, KGPB05] materials. Contrary
to wavelets, SHs are not directly applicable to high
frequency materials. Recently, wavelet coded BRDFs
have been rendered on GPU [WTL06]. However, both
of these continuous representations require heavy pre-
computations, for instance a clustered PCA analysis
[SHHS03] for SHs.

In a discrete representation, the photon map can be
considered as a set of discrete lights: point light (Vir-
tual Point Light [Kel97]) or directional light (Light
Vector) [ZSP98]. Such discrete representations of
lights are grouped by clusters which similarity dis-
tances are based on density [CLSS97], visibility, power,
position [SWZ96, PPD98] or perception values [FBG02,
WFA+05]. Even if discrete representations are more
prone to aliasing than their continuous counterparts,
their simplicity is well suited with a stream process-
ing of the photon map.

2.1.2 Global and local cache
The transformation of a set of photons into an irradi-
ance representation can be done on the whole scene,
resulting in aglobal cache. The simplification bias
can be reduced by working locally in limited regions
of space, leading to alocal cache. These space par-
titions can be constructed on a per scene object basis
and more generally, with a regular grid, or a less mem-
ory consuming octree. Such structure has been used
for renders with massive number of lights , assuming
that such lights have only a local influence on the envi-
ronment [FBG02]. The octree can be built on geomet-
ric criterion or subdivided using an irradiance thresh-
old, to create an irradiance volume [GSHG98, PH04].

2.2 Rendering an illumination cache
A fast reconstruction of a global illumination solution
is an open problem. Rendering directly the photon
map needs a huge number of photons to be casted.
Hybrid methods can reduce the number of casted pho-
tons: high frequency effects like shadows or specular

reflections/refractions are processed by GPU rasteri-
sation whereas photon mapping is reserved for lower
frequency irradiances [LC04].

2.2.1 Global cache rendering
The reconstruction of a photon map can be done in
screen, texture or object space.

The screen space reconstruction always offers the
highest lighting quality since it is a per pixel com-
putation. Thefinal gathering passis the most time
consuming part of rendering [Jen96]. It has been par-
allelized on CPU [WKB+02] and GPU [Hac05], but
must be reprocessed on each camera move.

On the contrary, an object space reconstruction is
viewpoint independent: the cache samples are bound
to the mesh vertices. PRT renderings are often applied
on high tessellated, static and single object scenes
[SHHS03]. On the other hand, the scene could be dy-
namically re-meshed to match the illumination distri-
bution with its geometry [WHSG97]. Such per ver-
tex lighting could increase dramatically the geometric
complexity of the scene.

A texture space reconstruction is also independent
from the camera position [Arv86, Shi90]. For in-
stance, a static or dynamic [Nie00, NC02] precom-
puted radiosity can be bound into a simple 2D tex-
ture. Otherwise, hybrid object/texture space recon-
struction of the photon map has been done on a hybrid
CPU/GPU hemicube final gathering but still require a
well tessellated scene [LC04].

The photon splatting method can be affected to this
texture space reconstruction category. This method
is an application of point based rendering. The fi-
nal gathering is replaced by its dual operation: in-
stead of fetching the contribution of the neighbour-
ing photons to estimate a photon density, this den-
sity is summarized by a radial function. Practically,
a gaussian centered on photon is directly splatted on
screen. It has been applied to diffuse [LP03] and
glossy materials [GKBP05]. Since photon splatting
adds geometry and fillrate overheads to the scene, real
time framerates are only reached for low frequency
indirect lighting [DS05] or space constrained caustics
[SKALP05, KBW06, WD06].

2.2.2 Local cache rendering
The previous methods can also be applied to local irra-
diance caches, bound to localized regions. Like their
global counterparts, such caches can be generally used
by screen space rendering [CB04] to accelerate the
final gathering stage. Otherwise, GPU rasterisation
techniques are combined to render such caches in real-
time. Precalculated radiosity can be linked to a sphere
map [WTP00] or a cube map [NPG03]. These meth-
ods are limited by cube map constraints (convex ob-
jects and concave environment).

Eventually, the rendering can also be done per voxel.
The first approach used a multi-pipe SGI GPU with
well known clustered OpenGL lights [UH99]. The oc-
tree texture is a more affordable solution, running on

Journal of WSCG ISSN 1213-6972 42 ISBN 978-80-86943-00-8

Geometric preprocess
(LSCM atlas parametrisation)
Octree creation

Photon map preprocess
KNN Prefiltering
VDL Clustering

Octree rendering
Trilinear filtering
(Atlas render-to-texture)

CPU

GPU

Figure 1: Rendering pipeline Atlas LSCM
parametrisation and render-to-texture stages are
only required for atlas rendering on OpenGL legacy
hardware

commodity hardware. Such octree textures were pro-
posed for a multiresolution and intuitive object volu-
metric painting. They do not require any texture sur-
face parametrization [gDGPR02, BD02] and can be
run on GPU [LHN05, KLS+05]. Such methods can
also be derivated for animated lights. The light source
clouds are clustered and compressed into SH to be fi-
nally bound to voxels [KAMJ05]. However, such pro-
cess requires hours of precomputations.

3 GENERAL ARCHITECTURE
The architecture of our rendering pipeline is based
on a hybrid renderer, assuming that the illumination
can be separated into direct and indirect components.
Stochastic indirect illumination methods can hardly
represent high frequency signals even with a large
amount of photons. Practically, shadows, specular re-
flections or refractions are less detailed. Thus, these
high frequency effects must be rendered by a different
pipeline.

In this paper we focus on indirect illumination ren-
dering pipeline. This pipeline is composed of 3 main
stages (figure1). The geometric preprocessing stage
contains the octree creation. The photon map cluster-
ing stage, processed on the CPU, is a highly stream-
able process, described on the section3.1. Finally, the
GPU rendering provides a real-time rendering of in-
direct illumination, detailed in the rendering section
3.2.

3.1 Photon map clustering
3.1.1 Prefiltering
A photon map with less than one millon photons is of-
ten too much biased to be directly used. To reduce this
bias, the photon map is clustered per voxel. However,
such a histogram approach assumes estimation areas
are equivalent [Jen01]. This is roughly true for a high
resolution octree and a very tesselated geometry. In

practice, this is false for coarse octree or for a geom-
etry made of large planes. In such configuration, the
photon density can be underestimated since the proba-
bility to hit the voxel/polygon section can be very low.
Visually, it is translated into bands of different colors
artefacts (see figure16-a). Therefore, a KNN filtering
is compulsory to smooth the photon density across the
voxels.

KNN parametrisation
Such filtering requires two parameters,k, the number
of nearest neighboors andr, the radius of region of
gathering. In our case, these parameters are set arbi-
trary 5. The optimal(k, r) values are found experi-
mentally to reach an acceptable visual aspect in a re-
duced preprocessing time. Concerning the gathering
region, we have chosen an ellipsoid aligned on voxel
normal. This could induce some artefacts explained in
5.3.1.

3.1.2 Clustering
In order to provide a GPU friendly representation of
the photon map, the illumination cache sample must
be compacted in order to fit in a tiny GPU memory.
We conceived a simple method to cluster the photons
into virtual directional lights.

Choice of clustering method
The principal component analysis (PCA) and its deriva-
tive (Clustered PCA [SHHS03]) can be very time con-
suming. Hierarchical clustering (HClust) produces a
clustering at all levels and returns an unique solution,
but is in O(n2), where n is the number of samples.
KMeans [Mac67] cannot produce a unique solution
but requires a lower memory footprint. Its theorical
worst-case complexity is polynomial [HPS05, AV06];
however, in practice the number of Kmeans iterations
required to obtain a solution, is low. In our case, for
a given population of 50 to 500 photons per voxel,
with the simplifications described below, the total time
spent to create up to 8 clusters is below 1 second to 1
minutes depending on number of voxels.

KMeans parametrisation
As automatic a classification algorithm could be, we
need to define at least two parameters: the sample to
cluster-centroid distance function and the resulting en-
tity after the fusion of cluster samples.

An accurate definition of a similarity between two
photons would consider the 5 dimensions of the irra-
diance. This would be too computationally expensive,
so we assume the voxel volume is little enough to dis-
card the photons position. Consequently, the distance
is defined as the cord length formed by the two photon
incoming directions.

The first fusion entity considered was an accumu-
lation of the irradiance. However, this simplification
has a great visual impact on the rendering (see fig-
ure 2). That is why we introduce the virtual direc-
tional light (VDL), a (irradiance; incident direction)
pair. The VDL can be compared with the light vector

Journal of WSCG ISSN 1213-6972 43 ISBN 978-80-86943-00-8

 + =

photon map

clusteringaccumulation

OpenGL

color octree light octree

Figure 2: Color and light octree photon map sim-
plifications. In the left picture, the color seems to be
foggy, due to the trilinear filtering and to the loss of irra-
diance directional information. In the right picture, the
ball is clearly illuminated by two distinct lights, thanks
to the VDLs. OpenGL rendering is provided for com-
parison.

[ZSP98]. The light vector represents a directional ra-
diance whereas the VDL contains only an irradiance
and lets the GPU processes the radiance. Contrary to
HClust, KMeans works on a given number of clusters.
Since we are limited by the GPU memory and shader
sizes, we fixed the maximum number of VDLs to 8.

3.2 Photon map rendering
Our clusterized photon cache could be used in a clas-
sical screen space rendering, but we applied it to GPU
for real time rendering. The octree rendering with di-
rectional light rendering, contrary to photon splatting,
is less sensitive to local geometric variation, since the
irradiance is implicitly bound to the surfaces intersect-
ing the voxel (figure2).

The set of directional lights is bound to each voxel
and can be integrated by shaders as classical OpenGL
directional lights to process illumination locally. It
takes into account the variation of the surface and
thus, enables the rendering of surface dependant ma-
terial. Therefore, our irradiance texture can be eas-
ily integrated to an existing shader to render surface-
dependant complex material (figures2,11).

The voxel volume is assumed to be little enough to
ignore occlusions. Pratically, VDLs do not cast any
shadows. However, parallax occlusion mapping algo-
rithms [PO06, Tat06] could be integrated to our ren-

Octree

Irradiance texture

 VDLs

clustering

KNN gathering

for each octree leaf

Figure 3: Octree clustering

octree.build(scene.geometry);
KDTree.build(scene.photonMap);

foreach octree.leaves {
 photons=gather(nbPhotons,radius,KDtree);
 VDLs=cluster(nbVDL, photons);
}

Figure 4: Photon map preprocessing on CPU

dering pipeline to improve the quality of surface de-
pendant shaders (figure12).

4 IMPLEMENTATION
Our pipeline is running on a dual bi-core 2Ghz AMD64
Opteron 270’s with NVidia GeForce 4500 GPU. It is
compiled under Linux with gcc 4.0.2 and shaders are
implemented in Cg under a fp40 profile.

4.1 Photon casting and clustering
The photon map is loaded from a modified version
of Yafray [WEdG+06], a modular global illumination
renderer. It has been chosen for its fast photon cast-
ing1 and its tight integration with Blender, the well
known powerful 3D modeler and renderer.

The octree is built on the whole scene, using a ge-
ometric subdivision criterion. An octree built on light
irradiance density must be rebuilt at each new photon
arrival and prevents any octree GPU filtering.

We attempt obtaining an efficient KNN filtering. We
replaced the photon gathering by a scattering, imple-
mented by screen and space octree splattings. For
screen space splatting, we got a blurred rendering with
low performances, induced by some fillrate overheads.
For space splatting, we suffered from memory short-
age due to a compulsory storage of the splatted pho-
tons. We also tried a GPGPU implementation but such
scatteringalgorithm does not suit to existing GPU ar-
chitectures. We fetched photons directly using the oc-
tree. Unfortunately, compared to a KD-tree, it almost
doubled the photon gathering time. Finally, we came
back to a classical KD-tree KNN gathering.

1 few minutes for a 1 million photon map

Journal of WSCG ISSN 1213-6972 44 ISBN 978-80-86943-00-8

Indirection
octree

Irradiance
texture

Fragment (color)

x8 trilinear
interpolation

Vertex (position,normal,material)

Direct
component

Indirect
component

Tone mapper

 8 VDLs

Figure 5: Octree rendering

// reach the leaf stored in the octree texture
@root=float3(0,0,0);
node=Tex3D(octreeTex,@root);
for (int depth=0;depth<MAX_DEPTH;depth++) {
 @child=getChildAddress(node.rgb,octreePos);
 node=Tex3D(octreeTex,@child);
}

if (node.a!=OCTREE_LEAF_TYPE)
 discard;
leaf=node;

// get VDL array location within the irradiance texture
@VDLarray=getIrradianceTexAddress(leaf.rgb);

// set leaf color using VDL array
leafColor=float4(0,0,0,0);
for (int iVDL=0;iVDL<MAX_VDL;iVDL++) {
 VDL=TexRect(irradianceTex,@VDLarray+iVDL);
 leafColor+=baseColor*brdf(VDL.direction,

VDL.intensity,
surfaceNormal);

}

Figure 6: Photon map rendering on GPU

Our photon map clustering is fully streamable. Pho-
ton octree compressors are run on 4 threads, reducing
by preprocessing time by a factor 3 to 4 (figure3).

4.2 Photon rendering
4.2.1 Enhanced GPU octree
The light octree is an extension of the GPU octree
texture provided by [LHN05]. The octree is entirely
coded in a texture stack implemented by a 3D texture.
A flag in the texel alpha channel indicates if the RGB
field is an address to the next octree sub-node or a leaf.
For an octree of depthd , a maximum ofd texel ac-

Figure 7: Irradiance address representation

Figure 8: VDL representation

cesses is done. The octree texel are in 8 bit integer for-
mat because float 3D textures are not available on our
hardware configuration. Since we do need a float stor-
age, we introduce a secondary texture containing irra-
diance data (figure5). The octree leaves contains the
addresses to the data texels. Since actual textures are
limited to a 4096x4096 resolution, a 24bit coding for
these addresses is sufficient (see figure7). A texture
memory manager reduces the original memory foot-
print from 64MiB to 512KiB(octree)+4MiB(VDLs),
for 100k leaves of ad = 6 octree withk = 4 VDLs.

Since the color is constant per voxel, the result has a
blocky aspect. This can be alleviate with an interpola-
tion. This per pixel smoothing is done by a brute force
trilinear interpolation between 8 neighboor voxels2.

4.2.2 VDL rendering
We consider a virtual directional lightVDL(c,d) where
c is the irradiance converted in RGB color andd, its
direction. Storing the color and direction of the virtual
lights in two texels wastes the two alpha channels and
lowers the performances due to the additional texel ac-
cess. The virtual light is packed into one unique texel
by compressing the direction into a single float in the
alpha channel. The direction is converted from a carte-
sian(x,y,z) to a spherical(q ,f) frame3 and the angles
are discretized into 8+8 bits values (figure8).

Once retrieved from the irradiance texture, the VDLs
can be integrated easily within any illumination shader.

cVDLs =
nVDLs

∑
i=1

brfd(di ,v,n).ci

whereci ,di are resp. the irradiance and the direction
of the ith VLD, nVDLs is the number of VDLs,v the
view direction andn is the surface normal.

2 A bicubic filter would require 24 samples which is too expensive.
3 Within a normalized frame,r = 1

Journal of WSCG ISSN 1213-6972 45 ISBN 978-80-86943-00-8

// CPU : atlas parametrization
foreach meshes {
 mesh.buildCharts(charts);
 foreach charts
 chart.buildAtlas();
 charts.pack();
}

// GPU : atlas rendering
//render to atlas texture (if lighting is updated)
foreach meshes {
 octreeTexture.shader.bind();
 //draw atlas using (u,v) as atlas vertices
 foreach charts
 chart.drawAtlas();
 //capture framebuffer into atlas texture
 charts.captureFramebuffer();
}

//apply atlas texture as a simple texture
foreach meshes {
 charts.bind();
 //draw mesh using (u,v) as mesh texcoord
 mesh.draw();
}

Render to atlas Apply as tex2D

Figure 9: Render to atlas process

4.2.3 Render to atlas
For a light octree, a single fragment requiresnVDL +
d + 1 texture accesses. The trilinear filtering can
worsen the performances by multipling accesses by
8. The number of texture fetch can be drastically re-
duced to a single access using an atlas light map. Such
process has been done for radiosity [RUCL03], we ex-
tended it to our light octree.

The scene objects must be parametrised into at-
lases before any rendering. This can be done manu-
ally with Blender or automatically using our geomet-
ric preprocessor. The charts are built using a Voronoï
construction method [SWG+03]. Each chart is then
parametrised into atlas using the Least Square Confor-
mance Map [LPRM02] algorithm and is finally tightly
packed into a 2D texture (figure9).

Once the scene is parametrized, the render to atlas is
done on the fly by rendering the 3D octree in the atlas,
capturing it and applying the resulting texture on the
model (figure10).

5 RESULTS
5.1 Visual aspect
The light octree can be integrated to surface bound
shaders to simulate complex material. For instance,
some specular materials have been simulated using

Figure 10: Scenes before & after render to atlas
texture

Figure 11: Caustics rendering

Figure 12: Integration with cube map and parallax
bump map shaders

simple cube map and parallax bump shaders. Noth-
ing but the shader complexity, would prevent to inte-
grate the irradiance texture into more realistic shaders
(figure12).

The visual differences between texture atlas render-
ing and its light octree counterpart mainly come from
the more of less visible atlas seams. An integer tex-
ture format could also clamp down the color dynamic
(figure10).

Contrary to PRT techniques based vertex sampling,
the surface irradiance distribution is split per voxel.
The octree is therefore more robust to the high varia-
tions of the irradiance, which can be seen on caustics
close up of the figure11).

5.2 Timing results
The CPU preprocessing time is linear in term of vox-
els (table13). The geometry complexity has a lesser
importance. The compression time spent for cluster-
ing is low (few seconds) regarding the KNN gathering
(figure 17). The less photons are gathered, the faster
the computation is processed (table14). This stage
is the most expensive part of the compression scheme
but cannot be skipped, as explained in the subsection
3.1.1.

A progressive updating process allows the user to
rapidly preview a globally illuminated scene. The oc-
tree is updated progressively from coarse to fine depth
octree. A rough visualisation (d = 4) is available in
less than 10 seconds and an acceptable result (d = 5)
is achieved in less than 1 minute (on figure13).

Journal of WSCG ISSN 1213-6972 46 ISBN 978-80-86943-00-8

octree depth Boxes Bunny Dragon f355 Megane

4 5s 8s 6s 1s 15s

5 37s 40s 37s 10s 1m16s

6 2m45s 2m41s 3m47s 1m20s 5m37s

Figure 13: Compression preprocessing time:
600,000 photon map on boxes (50 polys), Bunny (70k),
Dragon (200k), f355 (50k), Renault Megane (700k)
scenes. Timing differences are caused by different pho-
ton map density distributions.

KNN/photons 150k 300k 600k 1,2M

50 4 5 6 6

100 6 7 10 14

250 16 21 20 29

500 33 44 44 47

Figure 14: KNN gathering & compression times (in
seconds on the Dragon scene with ad = 5 octree).
Lowest and highest quality renders.

The GPU rendering framerate is more tied to the
amount of fragments than to the vertices. Once pre-
processed, the light octree is rendered by GPU at an
average framerate from 40 fps for a 800x600 to 10fps
for 1280x1024 resolution. In addition to the shader
complexity, the framerate is limited by the great num-
ber of texture fetches needed per pixel. An atlas ren-
dering could reach from 700 to 200 fps depending on
the viewport size.

5.3 Discussion on accuracy
On one hand, we cannot compete qualitatively with
Yafray offline global illumination renders. The screen
space approach gives visually better results because
the underlying coarse irradiance cache is compensated
by a per pixelfinal gathering. On the other hand, our
solution provides a real time navigation in a roughly
equivalent scene (figure15).

In our method, a compression error is directly trans-
lated into visual artifacts. The purpose of this subsec-
tion is to provide some solutions for such rendering
errors.

5.3.1 Octree aliasing
Our method may suffer from three sampling artefacts
that should be resolved by additional per voxel com-
putations.

First, the density underestimation, visible on large
planes (figure16-a), can be alleviated using KNN fil-
tering (subsection3.1.1).

However, this filtering is also the cause a second
artefact, the energy bleeding on object edges and cor-
ners (figure16-b). In a screen based final gathering,

Figure 15: Offline global illumination reference
renders and their light octree counterparts

color overbleeding (b)

interpolation holes (c)

density understimation (a)

The number of photon impacts contained in
a voxel can be very small, inducing a density
understimation. Such problem can be
alleviated by a KNN gathering.

The KNN gathering is done within an
ellipsoid oriented by a per voxel normal.
However, for sharp corners, it is difficult to
define such normal.

For a given interpolation window (here 2x2),
samples may not exist.

Figure 16: Octree aliasing consequences

Journal of WSCG ISSN 1213-6972 47 ISBN 978-80-86943-00-8

k CPU preprocess spread error (deg) GPU (fps)

1 58s 30 25

2 1m25s 25 20

3 1m37s 22.5 17

4 1m48s 20 14

6 2m12s 15 12

8 2m30s 10 10

Figure 17: Number of light clusters & quality
(KNN=300, d = 6, 600k photon map)

the gathering space is constrained by a cone built us-
ing the photon impact normal. In our gathering, we
define an ellipsoid oriented along a voxel normal. Per
definition, a voxel has no normal. In the current ver-
sion, it is approximated as an average amongst the in-
tersecting geometry.

Third, visual banding artifacts (figure16-c) can be
produced by the void voxels fetched by the trilinear
interpolation. This may be prevented by virtually ex-
tending the voxel bounds. Unfortunately, a too large
overlapping zone can produce visible defects.

Artificially expanding the voxel boundaries can also
impede the photon density estimation: the photon
gathering is more time consuming and less accurate.
In summary, a careful balance must be set between a
blurred picture and a better but slower result.

5.3.2 Number of VDLs
The second source of error is bound to the clustering
itself. The more the clusters are, the better the re-
sults would be, even if the framerate would slightly
decrease. The intra cluster error is measured in term
of standard deviation between the direction of clus-
ter centroid and the directions of the clustered pho-
tons, expressed in cord length unit. This angular error
is easily explained by the low number of clusters: a
hemisphere (180◦) is partitioned between onlyk clus-
ters.

For k = 4, the standard deviation around its cluster
centroid (±20 degrees) seems to be high but the over-
all quality of picture is preserved. For lowers k, the
higher error rate induces visible artefacts (figure17).

5.3.3 Voxel size
The voxel size often matters. If it is too large, the pho-
ton clustering is a low-pass filter and the irradiance is
blurred. Otherwise, if it is too little, too few photons
are intersected, leading to a lighting underestimation.
Experimentally, the quality improves ford = [4,6]. A
depthd = 6 brings the octree resolution to 64x64x64.
For a given scene contained in 1m3, a voxel has a vol-
ume of 1/64' 1,5cm3,which could be low in term

Figure 18: Ferrari 355:OpenGL & light octree

Figure 19: Renault Megane:OpenGL & light octree

of accuracy but rather sufficient to improve the vi-
sual aspect against a classic OpenGL rendering. For
d = [7,8], the effort spent to smooth the density does
not provide significant improvements.

6 CONCLUSION AND FUTURE WORKS
The photon map clustering is an efficient technique
to rapidly produce an irradiance cache. Compared to
radiosity maps, the light octree provides more visu-
ally appealing scenes thanks to a photon map. Our
sets of directional lights localized per voxel reduces
the global compression error and is highly integrable
to existing GPU shaders.

Techniques to incrementally update our octree should
be examined. Many Kmeans algorithm incremental

Journal of WSCG ISSN 1213-6972 48 ISBN 978-80-86943-00-8

versions have been proposed. Eventually, a continu-
ous representation, with SH or wavelets should be also
compared with our discrete VDL representation.

ACKNOWLEDGMENTS

This research is performed in the frame of the RNTL
Project Lumière, funded by the French Board of Re-
search involving IRIT/SIRV, EADS/CCR laboratories,
Renault, EADS companies and OKTAL IT service
company. Models courtesy resp. by the Stanford
3D Scanning Repository, Fabrice HEILLOUIS (DMI
cars) and Renault Centre Technique de Simulation.

More information onhttp://www.irit.fr/Lumiere

REFERENCES
[Arv86] J. Arvo. Backward ray tracing. InCourse Notes of the

1986 Conference on Computer Graphics and Interac-
tive Techniques, volume 12, pages 18–22, 8 1986.2

[AV06] David Arthur and Sergei Vassilvitskii. How slow is
the k-means method ? InSCG ’06: Proceedings
of the twenty-second annual symposium on Compu-
tational geometry, pages 144–153, New York, NY,
USA, 2006. ACM Press.3

[BD02] David Benson and Joel Davis. Octree textures. In
SIGGRAPH ’02: Proceedings of the 29th annual
conference on Computer graphics and interactive
techniques, pages 785–790, New York, NY, USA,
2002. ACM Press.3

[CB04] Per H. Christensen and Dana Batali. An irradiance
atlas for global illumination in complex production
scenes. InRendering Techniques, pages 133–142,
2004. 2

[CLSS97] Per H. Christensen, Dani Lischinski, Eric J. Stollnitz,
and David H. Salesin. Clustering for glossy global
illumination. ACM Trans. Graph., 16(1):3–33, 1997.
2

[DS05] Carsten Dachsbacher and Marc Stamminger. Reflec-
tive shadow maps. InSI3D ’05: Proceedings of
the 2005 symposium on Interactive 3D graphics and
games, pages 203–231, New York, NY, USA, 2005.
ACM Press. 2

[FBG02] Sebastian Fernandez, Kavita Bala, and Donald P.
Greenberg. Local illumination environments for di-
rect lighting acceleration. InEGRW ’02: Proceed-
ings of the 13th Eurographics workshop on Render-
ing, pages 7–14, Aire-la-Ville, Switzerland, Switzer-
land, 2002. Eurographics Association.1, 2

[gDGPR02] David (grue) DeBry, Jonathan Gibbs, Devo-
rah DeLeon Petty, and Nate Robins. Painting and ren-
dering textures on unparameterized models. InSIG-
GRAPH ’02: Proceedings of the 29th annual con-
ference on Computer graphics and interactive tech-
niques, pages 763–768, New York, NY, USA, 2002.
ACM Press. 3

[GKBP05] Pascal Gautron, Jaroslav Kŕivánek, Kadi Bouatouch,
and Sumanta Pattanaik. Radiance cache splatting: A
GPU-friendly global illumination algorithm. InRen-
dering Techniques, pages 55–64, 2005.2

[GSHG98] Gene Greger, Peter Shirley, Philip M. Hubbard, and
Donald P. Greenberg. The irradiance volume.IEEE
Computer Graphics and Applications, 18(2):32–43,
1998. 2

[GTGB84] Cindy M. Goral, Kenneth E. Torrance, Donald P.
Greenberg, and Bennett Battaile. Modeling the in-
teraction of light between diffuse surfaces. InSIG-
GRAPH ’84: Proceedings of the 11th annual con-
ference on Computer graphics and interactive tech-
niques, pages 213–222, New York, NY, USA, 1984.
ACM Press. 1

[Hac05] Toshiya Hachisuka.High-quality global illumination
rendering using rasterization, GPU Gems 2 - Pro-
gramming Techniques for High-Performance Graph-
ics and General-Purpose Computation. Addison-
Wesley, 2005.2

[HPS05] Sariel Har-Peled and Bardia Sadri. How fast is the k-
means method ?Algorithmica, 41(3):185–202, 2005.
3

[Jen96] Henrik Wann Jensen. Global Illumination Using Pho-
ton Maps. InRendering Techniques ’96 (Proceedings
of the Seventh Eurographics Workshop on Render-
ing), pages 21–30, New York, NY, 1996. Springer-
Verlag/Wien. 1, 2

[Jen01] Henrik Wann Jensen.Realistic image synthesis using
photon mapping. A. K. Peters, Ltd., 2001.1, 3

[Kaj86] James T. Kajiya. The rendering equation. InSIG-
GRAPH ’86: Proceedings of the 13th annual con-
ference on Computer graphics and interactive tech-
niques, pages 143–150, New York, NY, USA, 1986.
ACM Press. 1

[KAMJ05] Anders Wang Kristensen, Tomas Akenine-Möller,
and Henrik Wann Jensen. Precomputed local ra-
diance transfer for real-time lighting design.ACM
Trans. Graph., 24(3):1208–1215, 2005.3

[KBW06] Jens Krüger, Kai Bürger, and Rüdiger Westermann.
Interactive screen-space accurate photon tracing on
GPUs. InRendering Techniques (Eurographics Sym-
posium on Rendering - EGSR), pages 319–329, June
2006. 2

[Kel97] Alexander Keller. Instant radiosity. InSIGGRAPH
’97: Proceedings of the 24th annual conference
on Computer graphics and interactive techniques,
pages 49–56, New York, NY, USA, 1997. ACM
Press/Addison-Wesley Publishing Co.2

[KGPB05] Jaroslav Ǩrivánek, Pascal Gautron, Sumanta Pat-
tanaik, and Kadi Bouatouch. Radiance caching for
efficient global illumination computation. InIEEE
Transactions on Visualization and Computer Graph-
ics, 2005. 2

[KLS+05] Joe M. Kniss, Aaron Lefohn, Robert Strzodka, Shub-
habrata Sengupta, and John D. Owens. Octree tex-
tures on graphics hardware. InACM SIGGRAPH
2005 Conference Abstracts and Applications, August
2005. 3

[LC04] Bent Dalgaard Larsen and Niels Jørgen Christensen.
Simulating photon mapping for real-time applica-
tions. In Rendering Techniques, pages 123–132,
2004. 2

[LHN05] Sylvain Lefebvre, Samuel Hornus, and Fabrice
Neyret. Octree Textures on the GPU in GPU Gems
2 - Programming Techniques for High-Performance
Graphics and General-Purpose Computation. Addi-
son Wesley, 2005.3, 5

[LP03] Fabien Lavignotte and Mathias Paulin. Scalable pho-
ton splatting for global illumination. InGRAPHITE
’03: Proceedings of the 1st international conference
on Computer graphics and interactive techniques in
Australasia and South East Asia, pages 203–ff, New
York, NY, USA, 2003. ACM Press.2

[LPRM02] Bruno Lévy, Sylvain Petitjean, Nicolas Ray, and
Jérome Maillot. Least squares conformal maps for
automatic texture atlas generation. In ACM, editor,
SIGGRAPH 02, San-Antonio, Texas, USA, Jul 2002.
6

[LSSS04] Xinguo Liu, Peter-Pike Sloan, Heung-Yeung Shum,
and John Snyder. All-frequency precomputed radi-
ance transfer for glossy objects. InProceedings of the
Eurographics Symposium on Rendering, pages 337–
344, 2004. 2

[LW93] Eric P. Lafortune and Yves D. Willems. Bi-

Journal of WSCG ISSN 1213-6972 49 ISBN 978-80-86943-00-8

http://www.irit.fr/Lumiere

directional Path Tracing. In H. P. Santo, editor,Pro-
ceedings of Third International Conference on Com-
putational Graphics and Visualization Techniques
(Compugraphics ’93), pages 145–153, Alvor, Portu-
gal, 1993. 1

[Mac67] J.B. MacQueen. Some methods for classification and
analysis of multivariate observations.5th Berkeley
Symposium, -:281–297, 1967.3

[NC02] Kasper Høy Nielsen and Niels Jørgen Christensen.
Real-time recursive specular reflections on planar and
curved surfaces using graphics hardware. InWSCG
(Short Papers), pages 91–98, 2002.2

[Nie00] Kasper Høy Nielsen. Real-time hardware-based pho-
torealistic rendering. Master’s thesis, Informatics
and Mathematical Modelling, Technical University
of Denmark, Lyngby, Denmark, 2000.2

[NPG03] Mangesh Nijasure, Sumanta N. Pattanaik, and Vineet
Goel. Interactive global illumination in dynamic en-
vironments using commodity graphics hardware. In
Pacific Conference on Computer Graphics and Appli-
cations, pages 450–454, 2003.2

[PH04] Matt Pharr and Greg Humphreys.Physically Based
Rendering: From Theory to Implementation. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA,
2004. 2

[PO06] Fabio Policarpo and Manuel M. Oliveira. Relief map-
ping of non-height-field surface details. InSI3D ’06:
Proceedings of the 2006 symposium on Interactive
3D graphics and games, pages 55–62, New York,
NY, USA, 2006. ACM Press.4

[PPD98] Eric Paquette, Pierre Poulin, and George Drettakis. A
light hierarchy for fast rendering of scenes with many
lights. In N. Göbel and F. Nunes Ferreira (guest edi-
tor), editors,Computer Graphics Forum (Eurograph-
ics ’98 Conference Proceedings), pages 63–74. Euro-
graphics, Sep 1998. held in Li.2

[RH01] Ravi Ramamoorthi and Pat Hanrahan. An efficient
representation for irradiance environment maps. In
SIGGRAPH ’01: Proceedings of the 28th annual
conference on Computer graphics and interactive
techniques, pages 497–500, New York, NY, USA,
2001. ACM Press.2

[RUCL03] Nicolas Ray, Jean-Christophe Ulysse, Xavier Cavin,
and Bruno Lévy. Generation of radiosity texture at-
las for realistic real-time rendering. InEurographics
2003, Granada, Espagne, Sep 2003.6

[SHHS03] Peter-Pike Sloan, Jesse Hall, John Hart, and John
Snyder. Clustered principal components for pre-
computed radiance transfer.ACM Trans. Graph.,
22(3):382–391, 2003.2, 3

[Shi90] Peter Shirley. Physically Based Lighting Calcula-
tions for Computer Graphics. PhD thesis, University
of Illinois at Urbana-Champaign, 1990.2

[SKALP05] Lázló Szirmay-Kalos, Barnabás Aszódi, István
Lazányi, and Mátyás Premecz. Approximate ray-
tracing on the GPU with distance impostors.Render-
ing Techniques (Eurographics Symposium on Ren-
dering - EGSR), 3(24):695–704, 2005.1, 2

[SKS02] Peter-Pike Sloan, Jan Kautz, and John Snyder. Pre-
computed radiance transfer for real-time rendering in
dynamic, low-frequency lighting environments. In
SIGGRAPH ’02: Proceedings of the 29th annual
conference on Computer graphics and interactive
techniques, pages 527–536, New York, NY, USA,
2002. ACM Press.2

[SWG+03] P. V. Sander, Z. J. Wood, S. J. Gortler, J. Sny-
der, and H. Hoppe. Multi-chart geometry images.
In SGP ’03: Proceedings of the 2003 Eurograph-
ics/ACM SIGGRAPH symposium on Geometry pro-
cessing, pages 146–155, Aire-la-Ville, Switzerland,

Switzerland, 2003. Eurographics Association.6

[SWZ96] Peter Shirley, Changyaw Wang, and Kurt Zimmer-
man. Monte Carlo techniques for direct lighting cal-
culations.ACM Transactions on Graphics, 15(1):1–
36, 1996. 2

[Tat06] Natalya Tatarchuk. Dynamic parallax occlusion map-
ping with approximate soft shadows. InSI3D ’06:
Proceedings of the 2006 symposium on Interactive
3D graphics and games, pages 63–69, New York,
NY, USA, 2006. ACM Press.4

[TL04] Eric Tabellion and Arnauld Lamorlette. An approx-
imate global illumination system for computer gen-
erated films. ACM Trans. Graph., 23(3):469–476,
2004. 1

[UH99] Tushar Udeshi and Charles D. Hansen. Towards in-
teractive photorealistic rendering of indoor scenes: A
hybrid approach. InRendering Techniques, pages
63–76, 1999.2

[WD06] Chris Wyman and Scott Davis. Interactive image-
space techniques for approximating caustics. InSI3D
’06: Proceedings of the 2006 symposium on Interac-
tive 3D graphics and games, pages 153–160, New
York, NY, USA, 2006. ACM Press.2

[WEdG+06] Mathias Wein, Alejandro Conty Estévez, Alfredo
de Greef, Phillip Martin, and Juan David González
Cobas. YafRay, Yet Another free raytracer, Free Rays
for the masses, www.yafray.org, 2006.4

[WFA+05] Bruce Walter, Sebastian Fernandez, Adam Arbree,
Kavita Bala, Michael Donikian, and Donald P.
Greenberg. Lightcuts: a scalable approach to illumi-
nation.ACM Trans. Graph., 24(3):1098–1107, 2005.
2

[WHSG97] Bruce Walter, Philip M. Hubbard, Peter Shirley, and
Donald P. Greenberg. Global illumination using lo-
cal linear density estimation.ACM Trans. Graph.,
16(3):217–259, 1997.2

[WKB+02] Ingo Wald, Thomas Kollig, Carsten Benthin, Alexan-
der Keller, and Philipp Slusallek. Interactive global
illumination using fast ray tracing. InEGRW ’02:
Proceedings of the 13th Eurographics workshop on
Rendering, pages 15–24, Aire-la-Ville, Switzerland,
Switzerland, 2002. Eurographics Association.2

[WTL06] Rui Wang, John Tran, and David Luebke. All-
frequency relighting of glossy objects.ACM Trans-
actions on Graphics, 25(2):293–318, 2006.2

[WTP00] Alexander Wilkie, Robert F. Tobler, and Werner Pur-
gathofer. Orientation lightmaps for photon radiosity
in complex environments. InProceedings of Com-
puter Graphics International 2000 (CGI 2000), 2000.
2

[ZSP98] Jacques Zaninetti, Xavier Serpaggi, and Bernard
Péroche. A vector approach for global illumination in
ray tracing. Computer Graphics Forum, 17(3):149–
158, 1998. 2, 4

Journal of WSCG ISSN 1213-6972 50 ISBN 978-80-86943-00-8

Splat-based Ray Tracing of Point Clouds

Lars Linsen∗ Karsten M̈uller† Paul Rosenthal∗

∗ School of Enginieering and Science † Department of Mathematics and Computer Science
International University Bremen‡ Ernst-Moritz-Arndt-Universiẗat Greifswald

Bremen, Germany Greifswald, Germany

ABSTRACT
Point-based surface representations have gained increasing interest in the computer graphics community within the
last decade. Surface splatting established as one of the main rendering techniques for point clouds. We present a
ray-tracing approach for objects whose surfaces are represented by point clouds. Our approach is based on casting
rays and intersecting them with splats. Since ray-tracing methods require smoothly changing surface normals for
producing the desired photorealistic results, splat generation must include the derivation of such normals. We
determine a neighborhood around each point of the point cloud, estimate the surface normal at each of the points,
compute splats with varying radii that cover the surface, and use the normals of all points that are covered by each
splat to generate a smoothly varying normal field for each splat. This part of the computation is view-independent
and, thus, can be precomputed. During the rendering step, ray-splat intersections are performed, where the normal
at the intersection point is interpolated using local coordinates of the splat’s normal field. Care has to be taken
where splats overlap. We speed up the computations of the ray-splat intersections using an octree data structure.

Keywords: Point-based rendering, ray tracing, splatting, photo-realistic rendering.

1 Introduction
Ray tracing is a well-known and widely used tech-
nique in computer graphics for photo-realistic render-
ing of three-dimensional scenes with multiple objects
and light sources. It allows for precise shadow compu-
tations and modeling of light reflection and refraction.
The objects are typically described by their boundary
surfaces, which can be given in implicit or explicit
form. Often implicit representations of the boundary
surfaces are unknown. Therefore, explicit representa-
tions in form of triangular (or polygonal) meshes are
most commonly used to describe the surfaces. Ray
tracing of scenes using triangular mesh representations
has a long tradition in photo-realistic rendering. The
main approach [App68, Whi80] is described in any
computer graphics textbook, e. g. [Wat00].
With the upcoming of precise high-resolution 3D laser
scanning techniques about a decade ago, point-based
explicit surface representations have gained major in-
terest in the computer graphics society. Surfaces of real
objects are sampled leading to a large number of typi-
cally unstructured points lying on the surface. This set
of points is often referred to as a point cloud. A pioneer
project describing such efforts was the Michelangelo
project [LPC+00].

∗{l.linsen, p.rosenthal}@iu-bremen.de
†km021722@uni-greifswald.de
‡Jacobs University Bremen as of Spring 2007.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation onthe first
page. To copy otherwise, or republish, to post on servers or to re-
distribute to lists, requires prior specific permission and/or a fee.
Copyright UNION Agency - Science Press, Plzen, Czech Republic.

Instead of converting point clouds to polygonal repre-
sentations, several efforts have been made to directly
render surfaces using point clouds for surface repre-
sentation [Lin01, PZvBG00, RL00]. For an overview
over current directions in the field of point-based com-
puter graphics, we refer to the tutorial by Gross et
al. [AGP+04].
Two main streams of point-based rendering meth-
ods have emerged, namely the surface splatting ap-
proach [ZPvBG01] and the point set surface ap-
proach [ABCO+01]. The surface splatting approach
is based on computing a surface normal at each sam-
ple’s surface point and a radial or elliptical expansion
tangential to the surface. The generated discs are the
so-called splats. They are supposed to overlap in order
to cover the entire surface of the scanned object. The
point set surface approach, on the other hand, is based
on the moving least-squares surface definition [Lev03].
The surface is locally reconstructed by fitting a poly-
nomial to the sample points within a small neighbor-
hood surrounding a given point. The given point is pro-
jected onto an implicitely defined polynomial surface.
The point set surface is defined as the set of points that
project onto themselves.
The splatting approach is much simpler in its math-
ematical formulation, but the point-set-surface ap-
proach generates continuous surface representations,
which makes it amenable to photo-realisitic render-
ing [AA03]. However, when looking into computation
complexity, the algorithms of splat-based approaches
are, in general, much less computationally intense. We
exploited the simplicity of splat-based surface repre-
sentations to develop an efficient ray-tracing approach
for point clouds.
Splats in their general form define a piece-wise con-

Journal of WSCG ISSN 1213-6972 51 ISBN 978-80-86943-00-8

stant surface. In particular, each splat has exactly
one surface normal assigned to it. Assuming that the
point cloud was obtained by scanning a smooth sur-
face, the application of our rendering technique should
result in the display of a smoothly varying surface.
Since ray tracing is based on casting rays, whose di-
rections depend on the surface normals, we need to de-
fine smoothly varying normals over the entire surface,
i. e. also within each splat. To do so, we consider the
estimated normals at each point of the point cloud and
compute splat radii depending on local curvature prop-
erties. The generated splats should cover several points
of the point cloud. The normals at the covered points
of each splat are used to determine a smoothly varying
normal field defined over a local parameter space of the
splat. It can be beneficial to consider further surround-
ing points and their normals for the normal field com-
putations. Details on the splat and normal field genera-
tion are described in Section 3.
The actual ray-tracing procedure is executed by send-
ing out rays that intersect the splats, potentially being
reflected or refracted. Surface normals are interpolated
from the normal fields. Care has to be taklen where
splats overlap. The ray-splat intersection and the over-
all image generation is described in Section 4. Pri-
mary and secondary rays are treated equally. We use
an octree-based approach to improve the performance
of our approach in terms of computation time.
Since our splat-based surface generation is view-
independent, the computation of the splats and the nor-
mal field can be executed in a preprocessing step. Thus,
during an animation, only the ray-splat intersections
have to be computed for each frame, which signifi-
cantly reduces the computation times. We achieved to
efficiently produce photo-realistic images including re-
flective and transmittive surfaces similar to the images
generated by mesh-based ray-tracing methods. Our
results are shown and discussed in Sections 5 and 6.
Moreover, our approach is general enough to allow for
the combination with any further improvements known
from mesh-based ray tracing.

2 Related Work
Schaufler and Jensen [SJ00] were the first to propose
a ray-tracing technique for point clouds. Their idea is
based on sending out rays with a certain width which
can geometrically be described as cylinders. The in-
tersection detection is performed by determining the
points of the point cloud that lie within such a cylin-
der followed by calculating the ray-surface intersection
point as distance-weighted average of the locations of
these points. The normal information at the intersec-
tion point is determined using the same weighted av-
eraging. This approach does not handle varying point
density within the point cloud. Moreover, the surface
generation is view-dependent, which may lead to arti-
facts during animations.
Wand and Straßer [WS03] introduce a similar concept
by replacing the cylinders with cones. By using Gaus-
sian weighting of the points within the cone they ob-
tain anti-aliased images. To speed up their method they
used a multi-resolution approach. Starting with a set of

triangles and based on their multi-resolution hierarchy
and a Gaussian filter, they precompute a uniformly dis-
tributed representative point cloud from the triangles
with average surface properties. Thus, the generated
point cloud has certain known properties and the sur-
face properties are fixed. Hence, when changing mate-
rial properties etc., the rather expensive preprocessing
steps have to be recomputed.
Adamson and Alexa [AA03] proposed a method for
ray tracing point set surfaces. For the intersection of
the rays with the locally reconstructed surfaces, points
on the ray are iteratively projected onto the surface un-
til the procedure converges. Obviously, this is a com-
putationally intense approach. The authors state that
the computation times for all their presented examples
were in the range of several hours.
An interactive ray tracing algorithm of point-based
models was introduced by Wald and Seidel [WS05].
They experimented with implicite surface and splat-
based approaches. The former turned out to be too
computationally expensive for interacive ray tracing.
However, the method proposed by Wald and Seidel
only used ray tracing for shadow computation, the ac-
tual shading is performed using local shading models.
Thus, transparency and mirroring reflections are not
modeled. Our method instead allows for the generation
of such ray tracing-specific properties up to any given
ray trace depth. Nevertheless, the ray tracing-step in-
troduced by Wald and Seidel can be adopted to generate
such images, as well. We incorporated their approach
into our frame work to compare them in terms of qual-
ity and speed. It turned out that our ray tracing-step is
favorable in both categories, see Section 6.

3 Splat Generation
Let P be a point cloud consisting ofn points
p1, . . . ,pn ∈ ℜ3. We generatem splatsS1, . . . ,Sm that
cover the entire surface represented by point cloudP.
For each of these splats we are computing its radiusr i ∈
ℜ, i = 1, . . . ,m, and a normal fieldni(u,v), i = 1, . . . ,m,
where(u,v) ∈ [−1,1]× [−1,1] with u2 + v2 ≤ 1 de-
scribes a local parameterization of the splat.

3.1 Splat Radius
The radii of them splatsS1, . . . ,Sm should vary with
respect to the curvature of the surface covered by the
splat. In regions of high curvature, a piece-wise con-
stant surface representation via splats requires us to use
many splats with small radii to stay within a predefined
error bound. In regions of low curvature, some few
large splats may suffice to represent the surface well.
For the definition of the error bound we choose the
maximum distance of points ofP covered by the splat
to their closest point on the splat, cf. [WK03].
Let pi ∈ P be any of the points of point cloudP and let
ni be the respective surface normal of the surface de-
scribed byP at positionpi . If the normalni is unknown,
we determine the normal by computing thek nearest
neighborsq1, . . . ,qk ∈ P of pi , fit a plane throughpi
and its neighbors in the least-squares sense, and setni
to the normal of the fitting plane.

Journal of WSCG ISSN 1213-6972 52 ISBN 978-80-86943-00-8

Let the neighbors ofpi be sorted in the order of in-
creasing distance topi . We initially define splatSj =
(c j ,n j , r j) with centerc j = pi , normaln j = ni , and ra-
dius r j = 0. Next, we iteratively grow the splat, until
the error bound condition is violated.
At each iteration step we increase the radius such that
the splat covers one additional neighbor ofpi . The
normal remains unchanged, but the centerc j is moved
along the surface normalni such that the splat position
minimizes its maximal distance to all covered points of
P. Figure 1(a) illustrates the optimal choice of center
c j . Thus, for each covered neighborql we compute its
signed distance

εl = nT
i (ql −pi)

to a plane throughpi with normalni . If the smallest
interval that covers all valuesεl is given by[ε −δε ,ε +
δε], we can set the center of the splat to

c j = pi + εni ,

while δε denotes the approximation error. The radius
of the splat is set to

r j = ‖(ql − c j)−nT
i (ql − c j)ni‖2 ,

whereql is the neighbor with largest distance to cen-
ter c j when projected onto the splat. Radiusr j is this
projected distance.
The iteration stops when the approximation errorδε ex-
ceeds a predefined error bound.

3.2 Splat Density
The amount of splats that need to be generated to cover
the surface represented by point cloudP depends on
the chosen error bound. However, its numberm can be
clearly below the number of pointsn. Which splats to
generate and how many is not a trivial task. Wu and
Kobbelt [WK03] pointed out that generating a set of
splats that cover all points ofP does not suffice, as there
may still occur holes in areas between the points. They
proposed to first use a greedy approach to find a set of
splats that covers the surface and then relax their posi-
tions to generate redundant splats that can be removed.
The relaxation step is computationally rather intense.
Thus, we propose a simpler approach based on the rel-
ative distances to the splats’ centers.
Let Sj be the splat that covers the pointpi and itsk
nearest neighborsq1, . . . ,qk, again sorted by increas-
ing distance topi . To not generate holes in the surface,
thesek nearest neighbors should also include all natu-
ral neighbors ofpi , when computing natural neighbors
locally for points projected into a fitting plane. If the
natural neighbors of one of the pointsql , l ∈ {1, . . . ,k},
are also among thek nearest neighbors ofpi , no splat
needs to be generated starting fromql . Obviously, the
smaller the distance of a neighborql to pointpi is, the
higher are the chances that the natural neighbors are
already among the neighbors ofpi .
This motivation led to the following criterion: If splat
Sj is generated starting from pointpi , then no splats

need to be generated starting from neighbored points
within the projected distanceperc· r j from the splat’s
centerc j , whereperc∈ [0,1] is a factor that defines the
percentage of the splat’s radius used for the criterion,
see Figure 1(b). The factorperc is defined globally for
P, which is possible as it is multiplied with the locally
varying radiir j . The optimal choice forperc is a value
such that the generated splats cover the entire surface
and have minimal overlap. Obviously, such an optimal
choice is hard to determine, but it is quite simple to find
a value such that the generated splats cover the entire
surface with low overlap.

3.3 Normal Field
In order to generate a smooth-looking visualization of
a surface with a piece-wise constant representation, we
need to smoothly (e. g. linearly) interpolate the normals
over the surface before locally applying the light and
shading model. Since we do not have connectivity in-
formation for our splats, we cannot interpolate between
the normals of neighbored splats. Instead, we need to
generate a linearly changing normal field within each
splat, cf. [BSK04]. The normal fields of adjacent points
should approximately have the same interpolated nor-
mal where the splats meet or intersect.
Let Sj = (c j ,n j , r j) be one of the splats generated as
described above. In order to define a linearly changing
normal field over the splat, we use a local parameter-
ization on the splat. Letu j be a vector orthogonal to
the normal vectorn j andv j be defined asv j = n j ×u j .
Moreover, let‖u j‖ = ‖v j‖ = r j . The orthogonal vec-
torsu j andv j span the plane that contains splatSj . A
local parameterization of the splat is given by

(u,v) 7→ c j +u·u j +v·v j

with (u,v)∈ℜ2 andu2+v2 ≤ 1. The origin of the local
2D coordinate system is the center of the splatSj .
Using this local parameterization, we define a linearly
changing normal fieldn j(u,v) for splatSj by

n j(u,v) = n j +u·υ j ·u j +v·ω j ·v j .

The vectorn j describes the normal direction in the
splat’s center. It is tilted along the splat with respect to
the yet to be determined factorsυ j ,ω j ∈ ℜ. Figure 1(c)
illustrates the idea.
To determine the tilting factorsυ j andω j , we exploit
the fact that the normal directions are known at the
points of point cloudP that are covered by the splat.
Let pl be one of these points. We projectpl onto the
splat, determine its local coordinates(ul ,vl), and de-
rive equation

nl = n j +ul ·υ j ·u j +vl ·ω j ·v j ,

wherenl denotes the surface normal inpl . Proceed-
ing analogously for all other points out ofP covered
by splatSj , we obtain an system of linear equations
with unknown variablesυ j andω j . Since the system is
overdetermined, it can only be solved approximately.
For a more flexible optimization,n j is also said to be
unknown. The system is solved forn j , υ j , andω j in

Journal of WSCG ISSN 1213-6972 53 ISBN 978-80-86943-00-8

(a)

p

ni

i

ql

c j

δε
r j

S
r j δε

j

(b)

.

Sj

rj

c j

perc rj

(c)

0 1−1

ni

Sj

pi
cj

j

pl

nl

u

Figure 1:(a) Generation of splatSj starts with pointpi and grows the splat with radiusr j by iteratively including neighborsql
of pi until the approximation errorδε for the covered points exceeds a predefined error bound. (b) Splatdensity criterion: Points
whose distance from the splat’s centerc j when projected onto splatSj is smaller than a portionpercof the splat’s radiusr j are
not considered as starting points for splat generation. (c) Generation of linear normal field (green) over splatSj from normals
at points covered by the splat. Normal field is generated using local parameters(u,v) ∈ [−1,1]× [−1,1] over the splat’s plane
spanned by vectorsu j andv j orthogonal to normaln j=ni . The normal of the normal field at center pointc j may differ fromni .

the least-squares sense, cf. [BSK04]. Since we are also
optimizing overn j , the normaln j in the center of the
splat is, in general, not exactlyn j anymore (but approx-
imately).
For the generation of a good normal fieldn j(u,v) over
splat Sj , it is beneficial to haveSj covering a suffi-
ciently large number of points ofP. However, choos-
ing a large radiusr j may violate the error bound used
to generate the splats. Thus, the desires during splat
generation and normal field generation concerning the
splat sizes are contradictory. While the splat generation
should produce small splats with minimal overlap, dur-
ing normal field generation one would like to work with
large splats and overlap should lead to smooth transi-
tions between normal fields of adjacent splats.
We propose to use two different splat sizesr j,splat and
r j,normal with r j,splat ≤ r j,normal. We generate splats
with larger radiusr j,normal, but for splat rendering we
only use the part of the splat within radiusr j,splat. Thus,
the splat fulfills the predefined error bound. For deter-
mining the splat density we use a portion of the smaller
radius perc· r j,splat. Only during normal field com-
putation we make use of the splat with larger radius
r j,normal. This separation yields to good normal field
estimations even in regions with high curvature and low
point sampling density, where radiusr j,splat tends to be
small. Whenr j,splat covers a sufficiently large number
of points, we setr j,normal = r j,splat.
Splat and normal field generation are done in a prepro-
cessing step. We only store the splats of radiir j,splat
and the respective normal fields for these splats. They
are used for the ray-tracing procedure described in Sec-
tion 4. Any additional information including the posi-
tions and normals of the points of point cloudP or the
splats with radiir j,normal is not needed any further.

4 Ray Tracing
4.1 Main Approach
The input of the ray-tracing procedure are them splats
S1, . . . ,Sm generated from point cloudP. Each splat
Sj is given by its centerc j , its radiusr j , and its normal
field n j(u,v) using local parameters(u,v) over the local
coordinate system(u j ,v j).

For proof of concept, we use a plain ray-tracing tech-
nique without anti-aliasing methods, soft-shadow com-
putations, or other sophisticated enhancements. Since
we are not making any restricting assumptions nor are
we modifying the overall ray-tracing concept, we be-
lieve that our approach could be coupled with most im-
provements of the general ray-tracing method.
The standard ray-tracing method we are applying sends
out primary rays from the camera position through the
center of each pixel of the resulting image onto the
scene. We compute the intersection of the primary rays
with the objects of the scene using ray-splat intersec-
tions. From the intersection points we send out sec-
ondary rays, i. e. shadow rays towards all light sources,
reflection rays in case of reflective surfaces, and refrac-
tion rays in case of transmittive surfaces. In the lat-
ter two cases, we enter the recursion until we reach the
ray-trace depth. Primary and secondary rays are treated
equally. We put the results of the secondary ray com-
putations together using the Phong lighting model.

4.2 Octree Generation
In order to process computations of ray-splat intersec-
tions efficiently, we use an octree for storing the splats.
The generation of the octree and the insertion of the
splats is done in two steps.
The first step is the dynamic phase, where the octree
is generated. Starting with an empty octree represented
by the root that describes the bounding box of the entire
scene, we iteratively insert each splat into that leaf cell
that contains the center of the splat. As soon as one leaf
cell would contain more than a given small numbercs
of splat entries, the leaf cell gets subdivided into eight
equally-sized subcells. The splats that were stored in
the former leaf cell get adequately distributed among
its children, which are the new leaf cells. This first
phase is as simple as generating an octree for points.
The iteration stops once all splats have been inserted.
The second step is the static phase. Further splat in-
sertions are made, but the structure of the octree does
not change anymore, i. e. no further cell subdivisions
are executed. The additional splat insertions are neces-
sary, as splats have an expansion and may stretch over
various cells. Thus, in this second phase, we want to

Journal of WSCG ISSN 1213-6972 54 ISBN 978-80-86943-00-8

(a)

cj

rj

jr

jS

(b)

Sj

E (c)

Sj

E

Figure 2:(a) Octree generation: In the first phase, the octree is generated while inserting splatsSj into the cells containing their
centersc j (red cell). In the second phase, splatSj is inserted into all additional cells it intersects (yellow cells). (b)(c) The second
test checks whether the edges of the bounding square of splatSj intersect the planesE that bound the octree leaf cell. (b)Sj is
inserted into the cell. (c)Sj is not inserted into the cell. This second test is only performed if the first test (bounding box test)
was positive.

insert the splats into all leaf cells they intersect, see Fig-
ure 2(a). Since such an exact cell-splat intersection is
computationally rather expensive, we insert the splats
into leaf cells that potentially intersect the splat.
For each splatSj we traverse the tree top-down apply-
ing a nested test for each traversed cell. The first test
checks for splatSj whether the axes-aligned box with
centerc j and side length 2· r j intersects the cell. If the
test fails, tree traversal for that branch stops. For all leaf
cells, for which the first test was positive, we perform a
second test. The second test uses the local parameteri-
zation of the splat. The local parameters(0,0), (0,1),
(1,0), and (1,1) define a 2D square that bounds the
splat. We check the position of these four points against
the leaf cell. If all four points lie on one side of one of
the six planes that bound the leaf cell, the splat cannot
intersect the leaf cell, see Figure 2(c). Otherwise, we
insert the splat into the leaf cell, see Figure 2(b).
This nested test is very simple and fast, yet produces
no false negatives and only few false positives. False
positives means that we store a splat more often than
necessary, which may impact the performance of the
ray tracing. False negatives, on the other hand, would
mean that we miss some splats, which would actually
impact the correctness.

4.3 Ray-splat Intersection
The intersection of rays with splats is computed using
the octree partitioning of the three-dimensional scene.
For primary rays starting from the camera position (or
eye point), we compute the intersection of the ray with
the bounding box of the octree, i. e. with the cell repre-
sented by the octree’s root. We determine the leaf cell,
to which the intersection point belongs, and continue
from there. From then on, primary and secondary rays
can be treated equally.
If the rays hits a (leaf) cell of the octree, we check for
intersection of the ray with all splats stored within that
cell. If the ray does not intersect any of the splats stored
in that cell or if the cell is empty, we proceed with the
adjacent cell in the direction of the ray. If we end up
leaving the bounding box of the octree, we report back
the respective background color. If the ray intersects a
splat stored in the current cell, we compute the precise
intersection point and apply the shading, reflection, and
refraction model possibly using recursive calls to com-

pute the color, which is reported back. If the ray hits
multiple splats stored in the current cell, we compute
the intersection points and pick the most appropriate
one.
For the check whether a rayr(t) = s+ t ·r with origin s
and directionr hits a splatSj with local parameteriza-
tion (u,v) 7→ c j +u·u j +v·v j , we use simple algebraic
and geometric derivations. First, we compute the im-
plicit representation of the plane that containsSj and
insert r(t) into that equation to derive the valuetx of
the intersection pointx = s+ tx · r. Then, we solve

c j +u·u j +v·v j = x

for u andv. We can even picku j such that one of its
coordinates is zero and derive explicit equations for the
computation ofux, vx, and tx, where(ux,vx) denotes
the local parameterization of the position ofx on the
splat. If and only iftx > 0 andu2

x +v2
x ≤ 1 for the com-

puted values, the ray and the splat intersect at intersec-
tion pointx.
In case the ray intersects multiple splats, one is tempted
to pick the one intersection pointx with smallest pos-
itive valuetx. However, this intersection point may be
near the border of a splat, where the normals of the
normal field may not be interpolated very well. Thus,
it would be better to pick the intersection point, which
is located most closely to the center of a splat. Figure
3(a) illustrates the situation. In Figure 3(a), one would
preferx′ over x. Since splats have different sizes, we
should use relative instead of absolute distances for this
criterion. Thus, we choose that intersection pointx, for
whichu2

x +v2
x is smallest.

Since splat-based surface representations are notC0-
continuous and have overlapping splats, a reflected or
refracted ray may hit the same surface again. Figure
3(b) illustrates the problem. If rayr is reflected at the
intersection pointx of splatSj , the reflected rayr ′ may
hit a splat that overlaps withSj . In the figure,r ′ hits
the adjacent splatSj+1 at intersection pointx′. In this
case, the intersection pointx′ should be neglected and
not affect the reflected rayr ′. We achieve this behavior
by demanding that an intersection pointx′ of r ′ starting
from x should not be within anε-neighborhood of point
x, whereε > 0 is a small global constant that depends
on the dimensions of the data set.

Journal of WSCG ISSN 1213-6972 55 ISBN 978-80-86943-00-8

(a)

x

r

x’
+1

j

jS

S (b)

r

r

’

+1

x’

x ε

j

jS

S (c)

+1

x +1
x

x

y

j

jS

S

j
j

Figure 3: (a) Rayr intersects overlapping splatsSj andSj+1 at pointsx′ andx, respectively. Althoughx is closer to the ray’s
origin, we usex′ instead ofx, since it is closer to the center of the splat it is located on. (b) Rayr intersects splatSj at pointx
and is reflected. The reflected rayr ′ intersects splatSj+1 at pointx′. SinceSj andSj+1 are overlapping,x′ should be neglected.
This behavior is achieved by not considering intersection points within anε-neighborhood ofx. (c) Discontinuity in the surface
normal when switching from splatSj to splatSj+1 in point y.

4.4 Ray-trace Normal
When a ray hits a splat, the Phong lighting model is
applied using the local normal. Also, the local normal
is used to compute the directions of the refracted or
reflected rays, in case their computations are required.
Where two splatsSj andSj+1 overlap, the ray-splat in-
tersection computations need to switch fromSj to Sj+1
at a certain pointy. The normal given by the normal
fields of splatsSj andSj+1 do not have to be identical
at y. Thus, we have a discontinuity in the normal field
at pointy.
Figure 3(c) shows an explanation for the discontinuity.
Let x be a point of the point cloud. For the computa-
tion of the normal fields over splatsSj andSj+1, point
x is projected ontoSj andSj+1 leading tox j andx j+1,
respectively. For the normal field computation, the nor-
mal in x is used inx j to compute the normal field over
Sj and inx j+1 to compute the normal field overSj+1.
In general, the normal at pointy defers from the nor-
mal atx j andx j+1, respectively. Hence, the normals at
pointy obtained from the normal field overSj andSj+1
are not identical.
To solve the discontinuity, we average the normals of
overlapping splats. LetS1, . . . ,Sp be all the splats that
are hit by a ray within a small environmentE around
the intersection point computed in Section 4.3. More-
over, let (u1,v1), . . . ,(up,vp) be the local coordinates
of the ray intersection points withS1, . . . ,Sp, respec-
tively, and letn1, . . . ,np be the normals at the inter-
section points Then, we compute the normaln at the
intersection point by weighted averaging over normals
n1, . . . ,np following the equation

n =
∑p

i=1(1−‖(ui ,vi)‖2)ni

∑p
i=1(1−‖(ui ,vi)‖2)

.

This averaging leads to continuously varying normals
on the surface. Note that the contribution of a normal
field vanishes at the splat’s border such that no new nor-
mal discontinuities are introduced.
Finally, we have to mention how environmentE is cho-
sen. A feasible choice it to use a spherical environ-
ment around the first intersection point found along the
considered ray. The radius of the spherical environ-
ment is given by the radius of the splat that is hit first.
When considering our spatial data structure for storing
all splats, the splatsS1, . . . ,Sp do not need to be stored

in the same octree cell. Thus, we may have to trace
our ray further beyond the cell of the first intersection
point. How far we go is bound by the environmentE .

5 Results
We have tested our splat-based ray-tracing approach
on two types of datasets. The first type of data has
been obtained by scanning surfaces of real objects. Fig-
ure 4(c) shows the well-known Happy Buddha dataset
(Dataset courtesy of the Stanford Computer Graph-
ics Laboratory.) and Figure 4(a) shows a Skeleton
Hand dataset (Dataset courtesy of the Large Geomet-
ric Model Archive of the Georgia Institute of Tech-
nology.). The second type of data has been obtained
by extracting points on isosurfaces of scalar volume
datasets. The isosurface extraction technique gener-
ates point clouds from scattered volume data [RL06].
The used scattered volume dataset (Figure 4(b)) is a
uniform random resampling of the Fuel dataset Dataset
courtesy of the SFB 382 of the German Research Coun-
cil (DFG).). In addition, a spherical distance field has
been used to generate point cloud representations of the
spheres in Figures 4(a) and 4(c).
All images have been generated using our splat-based
ray-tracing approach for an output resolution of 1200×
1200 pixel (Figure 4(a) has been cut on top and bot-
tom.)). We have used a ray-trace depth of 2 except for
the image shown in Figure 4(a), for which we used
a ray-trace depth of 4. The images exhibit all the
known properties of ray-traced images including shad-
ows, light reflectance, and light transmittance. All sur-
faces have a reflective component. The reflection of
an object with complicated geometry is shown in Fig-
ure 4(c). In addition, the sphere in Figure 4(a) is reflec-
tive and transmittive representing a solid crystal balls
with an index of refraction of 1.5. Thus, the upper
hemisphere shows the effect of light transmission and
refraction, while the lower hemisphere exhibits the ef-
fect of light reflection and mirroring. Shadows can be
observed in all images and particularly well in Fig-
ure 4(b) where three differently colored light sources
are used.
During splat generation, the number of splats gener-
ated from a given set of points varies significantly de-
pending on the “smoothness” of the surface and the
sampling rate. Intuitively, the sphere dataset leads to
the smoothest surface among the given examples and,

Journal of WSCG ISSN 1213-6972 56 ISBN 978-80-86943-00-8

dataset # points # splats time
Buddha 543,652 384,007 85s
Fuel 34,665 28,379 4s
Sphere 113,682 703 5s
Skeleton Hand 327,323 286,911 47s

Table 1: Splat generation: Number of splats generated and
computation times for all given examples.

dataset resolution depth time
Figure 4(a) 1502 2 1s

3002 2 5s
6002 2 22s
12002 0 45s
12002 1 73s
12002 2 88s
12002 3 102s
12002 4 115s

Figure 4(b) 12002 2 84s
Figure 4(c) 12002 2 408s

Table 2: Computation times for ray-tracing step depending
on the resolution of the output image and the ray-trace depth.

thus, only 703 splats were generated out of the 113,682
points of the point cloud, which is a ratio of 0.6%.
The highest ratio was observed for the Skeleton Hand
dataset, where 286,911 splats were generated out of
327,323 points, which is a ratio of 87.7%. The Skele-
ton Hand surface does not exhibit larger planar regions,
and the used sampling rate did not introduce much re-
dundancy. Table 1 shows the number of points and
splats for all datasets.
The computation times for the splat generation (includ-
ing normal field computation) have an asymptotic com-
plexity of O(nlogn) with n being the number of points
of the point cloud. Nevertheless, the computation times
are governed by the normal field generation (at least
for the examples presented in this paper), even though
the normal field generation has complexityO(m) with
m< n being the number of generated splats. This be-
havior can be observed when looking at the computa-
tion times for the given examples shown in Table 1.
Table 2 lists the computation times for the ray-tracing
step. As expected, the ray-tracing times are linear in
the number of pixels and independent of the number
of splats. The numbers vary from dataset to dataset de-
pending on the number of primary rays hitting a surface
and the number of secondary rays that are traced. Cer-
tainly, increasing the ray-trace depth also increases the
computation times for the respective scenes.
All the given numbers have been computed on a PC
equipped with Intel Xeon 3.06GHz processor. The en-
tire computations are made on the CPU. A major speed-
up should be obtained by implementing the ray-tracing
approach on the GPU, as ray tracing is a highly parallel
process.

6 Discussion
We compare our approach to the state-of-the-art work
by Wald and Seidel [WS05]. We have incorporated

their approach into our frame work to generate ray-
traced images with tranparency and mirroring effects,
as the original work was not capable of producing
such results. Figures 4(d) and (e) show a zoomed-in
side-by-side comparison of our and their approach (us-
ing 10 interpolation steps as suggested in the paper).
The image generated using the approach by Wald and
Seidel produced some single incorrectly shaded pix-
els. Moreover, the computation of the entire image
(Skeleton Hand dataset, 286,911 splats, 3 light sources,
1200×1200 output resolution), part of which is shown
in Figures 4(d) and (e), took 120 or 170 seconds when
using their approach with ray-trace depth 0 or 2, re-
spectively, and only 97 or 128 seconds when using our
approach. Thus, our approach is favorable in quality
and speed.
We have dealt with the problem of overlapping splats.
When a ray intersects two overlapping splats, the in-
tersection point closer to the center of the respective
splat is taken. To take care of varying splat size, the
distance is computed proportionally to the splat’s size.
Ideally, the two splats intersect where the proportional
distances are equal. In this ideal case, the surface rep-
resentation is continuous and independent of the view-
ing direction. In practice, the ideal case is not always
given, but we are always close to it such that no visible
artifacts occurred in our examples.
We have introduced a few parameters, whose choice
still needs to be discussed. It turned out that our com-
putations were not particularly sensitive to the choice
of any parameter. We have used a factorpercof 20%
during splat generation, a tinyε-environment, and the
thresholdδε that bounds the local variation is set to 0.1.
This worked well for all our examples such that we did
not try to optimize the parameters.
One problem inherent to point-based approaches are
silhouettes and sharp features. Up to now, we have used
circular splats and were able to obtain high-quality re-
sults for the used datasets. However, even when using
elliptical splats the silhouettes will exhibits problems
when zooming into silhouette regions. Thus, objects
should be sampled with a sufficiently high sampling
rate.

7 Conclusions
We have presented a ray-tracing technique for surfaces
represented by point clouds using a splat-based ap-
proach. We generate splats with varying radii depend-
ing on the surface’s curvature. The splats overlap to
cover the entire surface and stretch over more than one
point of the point cloud. We generate a normal field
for each splat that describes the change of the surface
normal in the region covered by the splat. The gener-
ated geometry can be preprocessed and handed to a ray
tracer. We have implemented a simple ray-tracing tech-
nique as a proof of concept. The ray tracing is based on
ray-splat intersections which are computed with an oc-
tree data structure. We uniquely solve the problems that
are inherent to any splatting approach due to overlaps.
We applied our techniques to a range of data sets and
achieved good results in terms of quality and speed.

Journal of WSCG ISSN 1213-6972 57 ISBN 978-80-86943-00-8

(a) (d)

(b) (c) (e)

Figure 4: (a) Splat-based ray tracing of the Skeleton Hand dataset combined with a sphere dataset. Shadows, reflection, and
refraction are incorporated in this image using ray-trace depth 4. Both surfaces are reflective. The sphere exhibits the effect of
refraction (upper hemisphere) and reflection (lower hemisphere). (b) Splat-based ray tracing of the Fuel dataset. Three differently
colored light sources generate particularly visible shadows. (c) Splat-based ray tracing of the Happy Buddha dataset in front of
a dark blue, highly reflective sphere. (d)(e) Zoomed-in side-by-side comparison of our approach (d) and the one by Wald and
Seidel (e): The approach by Wald and Seidel exhibits some single incorrectly shaded pixels.

References
[AA03] Anders Adamson and Marc Alexa. Ray tracing point set

surfaces. InSMI ’03: Proceedings of the Shape Modeling In-
ternational 2003, page 272, Washington, DC, USA, 2003. IEEE
Computer Society.

[ABCO+01] Marc Alexa, Johannes Behr, Daniel Cohen-Or,
Shachar Fleishman, David Levin, and Claudio T. Silva. Point
set surfaces. InVIS ’01: Proceedings of the conference on Visu-
alization ’01, pages 21–28, Washington, DC, USA, 2001. IEEE
Computer Society.

[AGP+04] Marc Alexa, Markus Gross, Mark Pauly, Hanspeter Pfis-
ter, Marc Stamminger, and Matthias Zwicker. Point-based com-
puter graphics. InSIGGRAPH 2004 Course Notes. ACM SIG-
GRAPH, 2004.

[App68] A. Appel. Some techniques for shading mashine rendering
of solids. InProceedings of the Spring Joint Computer Confer-
ence, pages 37–45, 1968.

[BSK04] Mario Botsch, Michael Spernat, and Leif Kobbelt. Phong
splatting. InEurographics Symposium on Point-Based Graphics,
pages 25–32, 2004.

[Lev03] David Levin. Mesh-independent surface interpolation. In
G. Brunnett, B. Hamann, H. M̈uller, and L. Linsen, editors,
Geometric Modeling for Scientific Visualization, pages 37–49.
Springer-Verlag, 2003.

[Lin01] Lars Linsen. Point cloud representation. Technical report,
Fakulẗat für Informatik, Universiẗat Karlsruhe, 2001.

[LPC+00] Marc Levoy, Kari Pulli, Brian Curless, Szymon
Rusinkiewicz, David Koller, Lucas Pereira, Matt Ginzton, Sean
Anderson, James Davis, Jeremy Ginsberg, Jonathan Shade, and
Duane Fulk. The digital michelangelo project: 3d scanning of
large statues. InSIGGRAPH ’00, pages 131–144, New York,
NY, USA, 2000. ACM Press/Addison-Wesley Publishing Co.

[PZvBG00] Hanspeter Pfister, Matthias Zwicker, Jeroen van Baar,
and Markus Gross. Surfels: surface elements as rendering prim-
itives. InSIGGRAPH ’00, pages 335–342, New York, NY, USA,
2000. ACM Press/Addison-Wesley Publishing Co.

[RL00] Szymon Rusinkiewicz and Marc Levoy. QSplat: A multires-
olution point rendering system for large meshes. In Kurt Akeley,
editor,Siggraph 2000, pages 343–352. ACM Press / ACM SIG-
GRAPH / Addison Wesley Longman, 2000.

[RL06] Paul Rosenthal and Lars Linsen. Direct isosurface extrac-
tion from scattered volume data. InEurographics / IEEE VGTC
Symposium on Visualization (EuroVis 2006), 2006.

[SJ00] Gernot Schaufler and Henrik Wann Jensen. Ray tracing point
sampled geometry. InProceedings of the Eurographics Work-
shop on Rendering Techniques 2000, pages 319–328, London,
UK, 2000. Springer-Verlag.

[Wat00] Alan Watt. 3D Computer Graphics. Pearson - Addison
Wesley, 3 edition, 2000.

[Whi80] T. Whitted. An improve illumination model for shaded dis-
play. Communications of ACM, 23(6):343–349, 1980.

[WK03] Jianhua Wu and Leif Kobbelt. Optimized sub-sampling
of point sets for surface splatting. InComputer Graphics Fo-
rum (Proceedings of EUROGRAPHICS 2005), volume 23, pages
643–652, 2003.

[WS03] Michael Wand and Wolfgang Straßer. Multi-resolution
point-sample raytracing. InGraphics Interface, pages 139–148,
2003.

[WS05] Ingo Wald and Hans-Peter Seidel. Interactive Ray Tracing
of Point Based Models. InProceedings of 2005 Symposium on
Point Based Graphics, 2005.

[ZPvBG01] Matthias Zwicker, Hanspeter Pfister, Jeroen van Baar,
and Markus Gross. Surface splatting. InSIGGRAPH ’01, pages
371–378, New York, NY, USA, 2001. ACM Press.

Journal of WSCG ISSN 1213-6972 58 ISBN 978-80-86943-00-8

Efficient and Accurate Rendering of Vector Data on
Virtual Landscapes

Martin Schneider
University of Bonn

Institute of Computer Science II
Computer Graphics
Römerstraße 164

53117 Bonn, Germany

{ms,rk}@cs.uni-bonn.de

Reinhard Klein

ABSTRACT

In geographical information systems (GIS) vector data has important applications in the analysis and management
of virtual landscapes. Therefore, methods that allow combined visualization of terrain and geo-spatial vector data
are required. Such methods have to adapt the vector data to the terrain surface and to ensure a precise and efficient
mapping. In this paper, we present a method that is based on the stencil shadow volume algorithm and allows
high-quality real-time overlay of vector data on virtual landscapes. Since the method is a screen-space algorithm
it is per-pixel exact and does not suffer from aliasing artifacts like texture-based techniques. In addition, since the
method is independent of the underlying terrain geometry, its performance does not depend on the complexity of
the data set but only on the complexity of the vector data.

Keywords
vector data, terrain rendering, GIS, shadow volumes

1 Introduction
Vector data is one of the fundamental information rep-
resentation stored and managed in current GIS. It usu-
ally consists of points, lines, polygons, etc., encod-
ing geographic entities, e.g. road networks, buildings,
vegetation and soil types. Typically, vector data is ei-
ther derived (semi-)automatically from measurements
(e.g. satellite imagery or GPS) or is created manually
through user input. Once generated, vector data can be
examined and modified by the user, serving as a valu-
able resource for various kinds of further investiga-
tions. Methods for the visualization of vector data on a
virtual landscape can broadly be divided into two dif-
ferent classes: texture-based and geometry-based tech-
niques. The first group of methods rasterizes the vector
data into a texture and projects it onto the terrain ge-
ometry by applying texture mapping techniques. The

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Copyright UNION Agency – Science Press, Plzen, Czech
Republic.

Figure 1: Visualization of roads in the Wetter-
steingebirge (Germany).

main drawback of this kind of methods is that the accu-
racy of the mapping is limited by texture resolution re-
sulting in aliasing artifacts. An especially critical sce-
nario for these methods are large environments with
vector data of considerable spatial extent. Increasing
texture resolution alleviates the aliasing problems but
at the expense of occupying equally increasingly large
amounts of valuable texture memory.

Journal of WSCG ISSN 1213-6972 59 ISBN 978-80-86943-00-8

Methods belonging to the second class create geome-
try from the vector data by adapting it to the terrain
surface. Most terrain representations are based on a
level-of-detail (LOD) terrain model whose geometry
is refined according to the current viewpoint. There-
fore, geometry from the vector data has to be created
and adapted to each LOD. This results in a drastically
increased primitive count, if precomputed and stored,
or enormous additional computational costs, if per-
formed at run-time. Furthermore, a suitable offset has
to be determined and added to the generated coplanar
primitives in order to avoid z-buffer stitching artifacts.
The basic idea of our approach is to extrude the vector
data to polyhedra and use them to create a mask in the
stencil buffer. The generated mask corresponds to the
projection of the vector data onto the terrain surface. It
is applied to the scene by rasterizing geometry cover-
ing at least the entire mask with the appropriate sten-
cil test enabled. An advantage of our method is that it
works in screen-space and can therefore be performed
per-pixel exact. At the same time, it is independent of
the underlying terrain geometry and utilized rendering
engine offering high performance even for very high
resolution data sets and a wide applicability.
The remaining part of the paper is structured as fol-
lows. First, we briefly review related work. Then, in
Section 3 we formulate the problem of projecting vec-
tor data onto the terrain surface as a point-in-polyhedra
problem and establish a connection to the shadow
determination problem. We describe our approach in
Section 4, discuss it and show results in Section 5 and
draw conclusions in Section 6.

2 Previous Work
Real-time terrain rendering techniques have been ex-
tensively studied for a long time but methods for pro-
jecting additional vector data on a virtual landscape
have gained less attention. The few methods existing
so far can basically be divided into texture-based and
geometry-based approaches.
A texture-based approach to visualize vector data was
proposed by Kersting et al. in [KD02]. Textures con-
taining the vector data are generated on-the-fly using
p-buffers. An on-demand texture pyramid that asso-
ciates equally sized textures with each quadtree node
is used to improve visual quality when zooming in.
However, many expensive p-buffer switches have to be
performed, which leads to decreased rendering perfor-
mance. Even with more recent and efficient extensions
(e.g. framebuffer objects) each switch still requires a
complete pipeline flush. In [SGK05] a texture-based
approach is presented that also creates textures on-the-
fly in an offscreen buffer. A perspective reparameter-
ization adopted from perspective shadow mapping is
applied taking into account the current point-of-view.

The reparameterization allows a drastically improved
utilization of the available texture resolution, which re-
sults in reduced aliasing artifacts.
Wartell et al. [WKW+03] presented an algorithm and
an associated data structure that allows rendering of
polylines on multiresolution terrain geometry. Since
their system is based upon a continuous level-of-detail
terrain rendering engine, an adaption of the polyline
to the current state of geometry is required at run-
time resulting in additional computational costs. In ad-
dition to the previously mentioned texture-based ap-
proach, Schneider et al. also presented in [SGK05] a
geometry-based approach for rendering engines based
on static level-of-details. The vector data geometry is
mapped to each LOD in a preprocessing step and inte-
grated in the used quadtree ensuring rendering of cor-
responding terrain and vector data LODs. Since the
number of geometric primitives that have to be cre-
ated grows with the terrain complexity, this method is
not suited for very high resolution data sets, especially
for vector data covering large areas.

3 Problem Formulation
Rendering vector data on virtual landscapes requires
the determination of its projection along the nadir onto
the terrain geometry. This area is equivalent to the
parts of the terrain that are inside the infinite projection
pyramid defined by the vector data extruded towards
the geocenter and in the opposite direction. Thus, by
restricting the projection volume appropriately at both
ends, i.e. above and below the terrain surface, the prob-
lem of determining the projection area can be inter-
preted as a point-in-polyhedra problem.

3.1 Point-In-Polyhedra Algorithm

A general algorithm for performing a point-in-
polyhedra test can be formulated as follows: Assume
a point O that is outside all polyhedra is given. For
a point P in question we consider the line segment
PO. The objective is then to find all intersections
of this line segment and the polyhedra. At each
intersection a counter is incremented if the line enters
and decremented if the line exits the polyhedron.
After all intersection tests have been performed the
counter corresponds to the number of polyhedra
containing P . For our purposes, it is sufficient to
note that the counter is zero when P is outside all
polyhedra which corresponds to the absence of vector
data. If the counter is non-zero, P is inside at least
one polyhedron denoting the presence of vector data.
Note the relation to the problem of shadow determina-
tion that can also be expressed as a point-in-polyhedra
problem [Cro77]. Crow defined a shadow volume as
a region of space that is in the shadow of a particular

Journal of WSCG ISSN 1213-6972 60 ISBN 978-80-86943-00-8

Figure 2: A 2d diagram of the point-in-polyhedra
problem.

occluder given a particular ideal light source. The
shadow test determines if a given point is inside the
shadow volume of any occluder. Heidmann [Hei91]
adapted Crow’s algorithm to hardware acceleration by
exploiting the stencil buffer to evaluate the per-pixel
count for the point-in-polyhedra test.
By rendering the polyhedra’s front- and back-faces
to the stencil buffer the test can be performed si-
multaneously for all visible points of a scene. Each
pixel is interpreted as a point P and the ray from
the viewpoint through the pixel is considered. There
are two possible choices for a point O along the
ray outside any polyhedron (see Figure 2). The first
choice is the intersection Onear of the ray and the near
clipping plane. This point is known to be outside all
polyhedra if the near clipping plane does not intersect
any polyhedra. The other choice is the point Oinf at
infinity at the far end of the ray. This point is always
outside all polyhedra because it is infinitely far away
from the scene.
Note that entering intersections must correspond to
polyhedra front-faces and exiting intersections must
correspond to polyhedra back-faces. Thus, counting
intersections can be performed by rasterizing the
polyhedra faces in the stencil buffer. The stencil
operation must be configured to increment the stencil
value when a front-face is rasterized and to decrement
the count when a back-face is rasterized. Intersection
counting is actually performed only along POnear or
POinf respectively and not along the entire ray. Since
P is a visible point, these two kinds of intersections
can be discriminated by a depth test. If Onear at
the near clipping plane is used, only polyhedra
faces passing the depth test are counted, if Oinf at
infinity is chosen, only the polyhedra faces failing
the depth test are considered. Counting towards the
near clipping plane is thus called the z-pass method
whereas counting towards infinity the z-fail method

[EK02, MFT+03]. After rendering, a stencil value
of zero indicates that the same number of front- and
back-faces were rendered and thus the corresponding
pixel is outside all polyhedra otherwise the pixel is
inside at least one polyhedron.
In the shadow volume algorithm the z-pass method
fails when the shadow volume intersects the near
clipping plane. This near clipping problem was the
reason for the development of the z-fail technique
which processes shadow volume fragments that fail
(instead of pass) the depth test. This approach moves
the problems from the near to the far clipping plane
which can be handled robustly by moving the far
plane to infinity. However, this robustness comes at
the expense of performance since in the z-fail case the
shadow volumes must be closed at both ends.

4 Our Approach
In our method we take up the idea to utilize the stencil
buffer to perform an efficient point-in-polyhedra test
originally used for shadow determination. Our tech-
nique consists of three parts: constructing the polyhe-
dra from the vector data, rendering the polyhedra to the
stencil buffer to create a mask and applying the mask
to the scene.

4.1 Vector Data Extrusion
In the first step we need to extrude the vector data
geometry into polyhedra that are afterwards rendered
into the stencil buffer to generate an appropriate mask.
Construction is started by duplicating each vertex of
the vector data. One vertex of each of the created pairs
is translated towards the geocenter, the remaining ver-
tices are moved into the opposite direction. The group
of upper and lower vertices constitute the polyhedron’s
top and bottom cap. The amount of translation has to
be chosen such that the top and bottom cap are located

Figure 3: A 2d diagram of the extrusion of a
linestrip. The original vector data points (blue)
are duplicated and moved to the upper and lower
bounds of the line segments bounding box consti-
tuting the top and bottom caps (red).

Journal of WSCG ISSN 1213-6972 61 ISBN 978-80-86943-00-8

Figure 4: Flow chart of the rendering process.

completely above and below the terrain surface respec-
tively. Applying the described construction the result-
ing polyhedron encloses the part of the terrain surface
that is supposed to contain the vector data.
In order to minimize the high rasterization workload
potentially caused by large polyhedra (usually the bot-
tleneck when using shadow volumes) we reduce the
size of the polyhedra. To accomplish this, we move
the top and bottom caps towards the terrain surface
from both sides as far as possible but without inter-
secting it. In our implementation we utilize the bound-
ing boxes of the quadtree cells inherent in the terrain
rendering engine. In particular, the bounding boxes en-
code an upper and lower bound of the enclosed terrain
and therefore provide conservative but reasonable up-
per and lower bounds for the polyhedra caps as well.
In the case of linestrips as vector data primitives we
consider each line segment separately. The height val-
ues of the corresponding vertices of the top and bottom
cap are the minimum and maximum height values of
the bounding boxes containing the projection of the
line segment (see Figure 3). In the case of polygons
we use the minimum and the maximum height value
of the bounding boxes enclosing the projection of the
whole polygon.
The constructed polyhedra are tesselated ensuring a
consistent winding order with all face normals point-
ing outwards. The resulting geometry of each object is
stored in its own vertex buffer object remaining valid
as long as the vector data is not modified.

4.2 Vector Volume Rendering
The creation of the mask and its application to the
scene has to be performed for each object separately.

This is necessary because each object is allowed to
have a different color. Therefore, first rendering all ob-
jects to the stencil buffer and applying the generated
mask afterwards at once by rendering a screen sized
quad would prevent us from distinguishing the sepa-
rate objects. If there are only objects with few different
colors in the scene, sorting by color and then render-
ing each color group at once can help to reduce the
required fill rate and state changes.

4.2.1 Generate Mask in the Stencil Buffer

Now that we have created the polyhedra from the
vector data they can be rendered into the stencil buffer.
It is common practice when using shadow volumes to
decide on a per frame and volume basis if the z-pass
or the z-fail technique is used. The z-pass method
is preferred because it does not need capping, i.e.
top and bottom caps need not to be rendered, and is
therefore generally faster than z-fail. However, since
the z-pass technique does not produce correct results
when the near plane intersects a shadow volume, the
robust z-fail technique is applied in these cases. We
follow this approach and decide conservatively which
method to use by checking if the current viewpoint is
inside the bounding box of the considered polyhedron.
Note that in contrast to shadow volumes we need a
top cap in the z-pass method because in our case there
is no occluder that covers the top end making a cap
unecessary.
First, color, depth and stencil buffer are cleared and
the terrain is rendered initializing the depth buffer with
the required depth values. Next, depth buffer writing
is disabled, but the depth test still remains active. Ren-
dering is then restricted to the stencil buffer only. The

Journal of WSCG ISSN 1213-6972 62 ISBN 978-80-86943-00-8

polyhedron’s faces are rendered using different stencil
operations depending on whether they face towards
or away from the camera. To this end, face culling
is enabled and the polyhedron is rendered twice, one
time with back-face culling enabled, the other time
with front-face culling enabled. If the z-pass method
is used, because the polyhedron does not intersect the
near clipping plane, the values in the stencil buffer are
modified when the depth test passes. The stencil value
is incremented for fragments belonging to front-facing
polygons and decremented for fragments belonging
to back-facing polygons. If the z-fail technique is
applied, values in the stencil buffer are modified when
the depth test fails. The stencil value is incremented
for fragments belonging to back-facing polygons and
decremented for fragments belonging to front-facing
polygons.
We make use of the OpenGL extensions
EXT stencil wrap and EXT stencil two side, if
supported, that aim at simplifying the mask creation
in the stencil buffer. The EXT stencil wrap extension
specifies two additional stencil operations. These new
operations are similiar to the existing increment and
decrement operations, but wrap their result instead
of saturating it, which leads to a reduction of the
likelihood of incorrect shadow results due to limited
stencil buffer resolution. The EXT stencil two side
extension provides two-sided stencil testing where
the stencil-related state can be configured differently
for front- and back-facing polygons. With two-sided
stencil testing front- and back-faces can be rendered
in a single pass instead of two separate passes which
may improve performance.
A simple triangle fan can be used to draw the top
and bottom caps, without needing to triangulate it in
advance, even if they are non-convex or contain holes.
The fan itself may be convex but the pattern of front-
and back-faces will produce the correct non-convex
shape in the stencil buffer. The process is identical
to that of computing the signed area of a polygon by
constructing a fan. An example is shown in Figure
5. The concave polygon on the left is tessellated into
a fan. In the middle the decrements caused by front-
facing polygons (top) and the increments caused by
back-facing polygons (bottom) are shown. Combining
them results in the original concave polygon (right).
This technique has previously been used for rendering
filled silhouettes in the stencil buffer from possible
silhouette edges for Silhouette Clipping [SGG+00].
Another issue we have to deal with in the z-fail case

is to avoid far plane clipping. To accomplish this, we
move the far plane to infinity by using the following
projection matrix to transform from eye-space to

Figure 5: Tesselation of a concave polygon into a
convex fan creating a concave mask in the stencil
buffer.

clip-space: 
2n
r−l 0 r+l

r−l 0
0 2n

t−b
t+b
t−b 0

0 0 −1 −2n
0 0 −1 0


where n and f are the respective distances from the
viewer to the near and far clipping plane. (l, b,−n)
and (r, t,−n) specify the (x, y, z) coordinates of the
lower-left and upper-right corners of the near clipping
plane. Positioning the far plane at infinity typically re-
duces the depth buffer precision only slightly. How-
ever, if the OpenGL NV depth clamp extension is sup-
ported and enabled during rendering of the polyhedra,
the conventional projection matrix can be kept.

4.2.2 Apply Mask to the Scene

Now that we have created the mask in the stencil
buffer we apply it to the scene. Therefore, we reacti-
vate writing to the color buffer and activate additive
blending. The stencil test is configured to pass only
when the value in the stencil buffer does not equal
zero. Instead of drawing a screen-sized quad to apply
the mask to the scene, we rasterize the bounding
box of the respective polyhedron in order to save
rasterization bandwith. This is performed with depth
test enabled and drawing only front-faces in the
z-pass case and with depth test disabled and drawing
only back-faces in the z-fail case. In order to avoid
a complete stencil clear per object we configure the
stencil function to set the value in the stencil buffer to
zero for each fragment that passes the stencil test. As
a consequence, the entire stencil buffer is zero again
when rendering is finished and does not need to be
cleared.

Journal of WSCG ISSN 1213-6972 63 ISBN 978-80-86943-00-8

5 Results and Discussion
The presented algorithm allows high-quality vector
data visualizaton as provided by other geometry-based
methods. However, it does not suffer from their short-
comings, namely the expensive adaption process and
the increased primitive count coupled with the terrain
complexity. In our method we actually render a multi-
ple of the amount of primitives present in the original
vector data but it is a small constant factor independent
of the underlying terrain. Considering the fast evolv-
ing acquisition devices resulting in ever higher sam-
pled terrain data sets this fact will become even more
important in the future.
In comparison to texture-based techniques that imme-
diately render the vector data into a texture our method
demands slightly more primitives to be rendered but
provides superior quality. Interactive editing and ma-
nipulation of the vector data is also possible with our
method. It only requires updating the polyhedra of the
modified vector data object allowing interactive re-
sponse.
In Figure 6 some results obtained with our method are
shown. It is capable of visualizing thin features, like
roads, as well as large and complex polygons (that
may be concave and contain holes) accurately and effi-
ciently. Note that the small deviations visible in some
places of the vector data, e.g. the roads, from their
counterparts in the terrain data are due to inaccuracies
in the definition of the given vector data (which orig-
inate from a different source than the terrain data and
were created at a diferent time) and are by no means
due to deficiencies of our method.
We currently implement vector data extrusion on the
CPU. There also exist techniques for purely hardware
accelerated stencil shadow volumes [BS03] that per-
form silhouette detection and shadow volume extru-
sion on the GPU. However, there is no need for sil-
houtte detection in our case because silhouettes cor-
respond to the vector data and are therefore explic-
itly given. Moreover, available vector data is static and
consequently the advantage of a GPU implementation,
to be able to easily extrude geometry that is animated
by a vertex program, is currently of no use. This may
become an issue in the future when time-varying vec-
tor data, e.g. for modelling processes, will be available.
Another issue are the problems appearing in steep
slopes which are not a special problem of our method
but a general one. When rendering objects that should
retain a constant width on steep slopes, e.g. roads or
contour lines, their projection is distorted.

6 Conclusions
We have presented an algorithm that is capable of visu-
alizing vector data on virtual landscapes offering high-
quality at real-time. The algorithm is robust, straight-

forward and requires no special hardware extensions
that are not ubiquitous today. The fact that it is in-
dependent of the underlying terrain rendering engine
allows an easy integration in any terrain visualization
system. Since our method is not affected by changes
in the terrain geometry it is especially suited to work
with view-dependent LOD representations.
The presented technique has been implemented as a
part of the Scarped [WMD+04] visualization engine.

References
[BS03] Stefan Brabec and Hans-Peter Seidel. Shadow

volumes on programmable graphics hardware.
Comput. Graph. Forum, 22(3):433–440, 2003.

[Cro77] F. Crow. Shadow algorithms for computer
graphics. In Proceedings of SIGGRAPH,
pages 242–248, 1977.

[EK02] C. Everitt and M. Kilgard. Practical and
robust stenciled shadow volumes for
hardware-accelerated rendering. Published
on-line at developer.nvidia.com, 2002.

[Hei91] T. Heidmann. Real shadows real time. IRIS
Universe, 18:28–31, 1991.

[KD02] O. Kersting and J. Döllner. Visualization of
vector data in gis. In Proceedings of the 10th
ACM International Symposium on Advances
in GIS, 2002.

[MFT+03] McGuire M., Hugues J. F., Egan K. T.,
Kilgard M., and Everitt C. Fast, practical and
robust shadows. Technical Report CS03-19,
2003.

[SGG+00] Pedro V. Sander, Xianfeng Gu, Steven J.
Gortler, Hugues Hoppe, and John Snyder.
Silhouette clipping. In Kurt Akeley, editor,
Siggraph 2000, Computer Graphics
Proceedings, pages 327–334. ACM Press /
ACM SIGGRAPH / Addison Wesley
Longman, 2000.

[SGK05] M. Schneider, M. Guthe, and R. Klein.
Real-time rendering of complex vector data
on 3d terrain models. In Proceedings of The
11th International Conference on Virtual
Systems and Multimedia, pages 573–582,
2005.

[WKW+03] Z. Wartell, E. Kang, T. Wasilewski,
W. Ribarsky, and N. Faust. Rendering vector
data over global, multiresolution 3d terrain. In
Proceedings on the Symposium on Data
Visualization, volume 40, pages 213–222,
2003.

[WMD+04] R. Wahl, M. Massing, P. Degener, M. Guthe,
and R. Klein. Scalable compression of
textured terrain data. Journal of WSCG,
12(3):521–528, 2004.

Journal of WSCG ISSN 1213-6972 64 ISBN 978-80-86943-00-8

(a) Forest (red) and debris (yellow) (b) A geomorphological map

(c) The Turtmann glacier (d) Roads and trails

(e) Trails (f) Roads, villages and a nearby lake

Figure 6: Images (a)-(c) are located in the Turtmann valley (Switzerland) showing complex polygonal vector
data rendered semi-transparently on the landscape. In (d)-(e) polygonal and polyline vector data in the
Wettersteingebirge (Germany) representing roads, trails, villages and a lake are overlayed on the terrain.

Journal of WSCG ISSN 1213-6972 65 ISBN 978-80-86943-00-8

Journal of WSCG ISSN 1213-6972 66 ISBN 978-80-86943-00-8

Reducing Artifacts in Surface Meshes
Extracted from Binary Volumes

Ragnar Bade

Otto-von-Guericke-University
Universitaetsplatz 2

D-39106 Magdeburg, Germany

bade@isg.cs.uni-magdeburg.de

Olaf Konrad
MeVis Research

Universitaetsallee 29
D-28359 Bremen, Germany

okonrad@mevis.de

Bernhard Preim
Otto-von-Guericke-University

Universitaetsplatz 2
D-39106 Magdeburg, Germany

preim@isg.cs.uni-magdeburg.de

ABSTRACT
We present a mesh filtering method for surfaces extracted from binary volume data which guarantees a smooth
and correct representation of the original binary sampled surface, even if the original volume data is inaccessible
or unknown. This method reduces the typical block and staircase artifacts but adheres to the underlying binary
volume data yielding an accurate and smooth representation. The proposed method is closest to the technique of
Constrained Elastic Surface Nets (CESN). CESN is a specialized surface extraction method with a subsequent
iterative smoothing process, which uses the binary input data as a set of constraints. In contrast to CESN, our
method processes surface meshes extracted by means of Marching Cubes and does not require the binary vol-
ume. It acts directly and solely on the surface mesh and is thus feasible even for surface meshes of inaccessible
or unknown volume data. This is possible by reconstructing information concerning the binary volume from
artifacts in the extracted mesh and applying a relaxation method constrained to the reconstructed information.

Keywords
Surface reconstruction, mesh smoothing, staircase artifacts, artifact reduction, segmented data, Marching Cubes.

1. INTRODUCTION
The extraction and visualization of surface models
from medical volume data (e.g. CT, MRI) is sup-
ported by any clinical workstation and medical visu-
alization software. For efficient and clear visualiza-
tion, surface models are often extracted from medical
volume data. Iso-surfaces, extracted from binary seg-
mented volume data, suffer from aliasing and stair-
case artifacts. The human visual system is very sensi-
tive to such discontinuities, since they normally
represent salient features for object detection and
classification. To improve the quality of extracted
iso-surfaces, three strategies exist: (1) filtering of the
binary volume (at the voxel level), (2) applying an
extended extraction mechanism (combining voxel
and mesh level), and (3) filtering of the extracted
surface mesh (see Figure 1). While the first two
strategies enable artifact reduction constrained to the
volume data, methods following the third strategy

did not yet address such volume data constraints.
Consequently, mesh filtering approaches can not
guarantee that a resulting mesh is a correct represen-
tation of the volume data. But if the underlying vol-
ume data is inaccessible or unknown, mesh filtering
is the only possible approach.

This paper presents a surface mesh filtering approach
that enables artifact reduction in iso-surface meshes
extracted from binary volumes. The filtering process
is constrained by information about the volume data.
For this purpose, we reconstruct this information
about the volume data from the iso-surface mesh.
This strategy enables artifact reduction in iso-surface
meshes constrained to the underling volume data,
independent of the presence of the original volume
data. The presented work splits up into two major
parts. The first part deals with the extraction of in-
formation about the original volume data from a
given iso-surface mesh. The second part adopts the
technique of Constrained Elastic Surface Nets
(CESN) [Gib98] for constrained smoothing of iso-
surface meshes extracted by Marching Cubes (MC).

In Section 2, we discuss relevant previous work in
the area of artifact reduction in iso-surfaces. Then we
present our method for reconstructing volume data
information from iso-surface meshes in Section 3 and
smoothing of these meshes constrained to the volume

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.
Copyright UNION Agency – Science Press, Plzen, Czech
Republic.

Journal of WSCG ISSN 1213-6972 67 ISBN 978-80-86943-00-8

data in Section 4. In Section 5, we present applica-
tions and results of the proposed method and com-
pare them with the results of previous work. Section
6 concludes and finally discusses the work presented.

2. PREVIOUS WORK
The most prevalent high-quality artifact reduction
method at the voxel level is smoothing of the binary
volume by means of a level-set method as described
in [Whi00]. This method has several advantages: the
volume is directly processed, no explicit surface rep-
resentation is needed, and no tuning of parameters is
required. Complex implementation and relatively
long calculation times are drawbacks of the level-set
method. Since this method is confined to the voxel-
level, it is appropriate for volume rendering, but if
surface rendering is the goal, extracted surfaces can
still suffer from artifacts due to the subsequent ex-
traction process.

Relevant mesh-extraction methods that include arti-
fact reduction are Precise Marching Cubes [All98],
Constrained Elastic Surface Nets (CESN) [Gib98],
and Dual Marching Cubes (DualMC) [Nie04].

Precise Marching Cubes [All98] extended the origi-
nal Marching Cubes (MC) [Lor87] by trilinear inter-
polation and adaptive error-controlled refinement of
surface patches inside surface-containing cells. As a
result, the precision as well as the smoothness of the
extracted iso-surfaces could be improved. Unfortu-
nately, this method creates a lot more triangles, re-
quires much longer calculation time than MC and is
not well suited for binary volumes.

Constrained Elastic Surface Nets (CESN) [Gib98] is
the mesh extraction method closest to our work. It is
dedicated to visualize binary volume data smoothly
and precisely. In contrast to MC, [Gib98] uses an
extraction scheme that builds a surface by connecting
the centers of all cells that contain the surface to
quadrilateral patches. In a second step, this initial
surface is iteratively relaxed while all vertices are
constrained to remain in their original surface cell.
This method creates a well smoothed surface repre-
sentation of the original binary volume. A compa-
rable method is proposed by [Nie04]. His Dual
Marching Cubes (DualMC) approach also connects
adjacent surface cells to quadrilateral surface patches
and then iteratively relaxes the extracted surface con-
strained to the binary volume. The major differences

are a smoother initial surface extracted by means of
an adapted extraction method and another relaxation
scheme compared to CESN. While the methods by
[Whi00], [Nie04], and [Gib98] enable appropriate
artifact reduction, all methods discussed so far re-
quire the original binary volume data.

On the mesh-level, numerous mesh filtering and
smoothing approaches exist, ranging from simple
Laplacian filters to more complex Mean Curvature
Flow and further advanced anisotropic filtering ap-
proaches (for example see [Baj03], [Des99],
[Tau95]). Despite the diversity, all methods aim at
noise reduction. Advanced methods additionally at-
tempt to preserve salient features and edges. Reduc-
tion of staircase artifacts is usually not a goal of sur-
face mesh smoothing approaches. Nevertheless, to
smooth surfaces suffering from such artifacts all
edge-preserving filtering methods are not appropri-
ate. Staircase and block artifacts would be interpreted
as salient features and preserved by those methods.
Furthermore, smoothing methods that yield shrink-
age and deformation of the mesh are not appropriate
for anatomical and pathological structures.

[Tau95] introduced a signal processing driven two-
stage Laplacian mesh filter (λ/μ-Filter) that first
smoothes the mesh with a positive smoothing factor
and then with a negative one. This strategy avoids
shrinkage and [Tau95] showed that it behaves like a
low-pass filter, if a large number of iterations is ap-
plied. Applying this filter can significantly reduce
aliasing artifacts [Tau95]. A similar method has been
presented by [VMM99], where in the second stage
all vertices are moved back towards a linear combi-
nation of their original location and the inverse dis-
placement of their neighbors. Unfortunately, in prac-
tice, finding the right parameters to smooth a specific
object is tedious. While well chosen parameters can
also yield shrinkage (see Figure 2b), wrong parame-
ters will degenerate the mesh. In an empirical study,
[Bad06] showed that even these non-shrinkage ap-
proaches are not appropriate to reduce artifacts in all
iso-surface meshes without significant shrinkage and
distortion.

In essence, none of the mesh-filtering techniques can
ensure a correct representation of the original binary
volume. Furthermore, considerable parameter tuning
is required to avoid strongly distorted results. In con-
trast, filtering of the binary volume or filtering of the

voxel-level

binary volume filtering of
binary volume

mesh-level

mesh extraction mesh filtering

Figure 1: Surface extraction pipeline: Reduction of artifacts in iso-surfaces extracted from binary volume data is
possible on the voxel-level (filtering of binary image), a combination of voxel- and mesh-level (as part of the
mesh extraction process) as well as on the mesh-level (filtering of the mesh) which is the focus of this paper.

Journal of WSCG ISSN 1213-6972 68 ISBN 978-80-86943-00-8

mesh constrained to the volume data as part of the
mesh extraction process can yield smooth and correct
results. Furthermore, a constrained smoothing proc-
ess converges against a surface of minimal area
within the given constraints and requires no tuning of
parameters. Unfortunately, these approaches require
the original binary volume data.
Since extracted surfaces still bear information about
the original volume data, we first address the prob-
lem of smoothing iso-surface meshes by detecting
properties of the underlying volume in the extracted
surface meshes. This information can then be used to
constrain the mesh smoothing.

3. RECONSTRUCTION OF VOLUME
DATA INFORMATION

In this section, we discuss how to reconstruct volume
data information from iso-surface meshes. First, we
discuss the basics of iso-surface extraction from bi-
nary volumes and derive legal assumptions about
extracted surfaces. According to these assumptions,
we present methods to reconstruct information about
the underlying volume data from iso-surface meshes.

3.1 Iso-Surface Extraction from Binary
Volumes

A binary volume from medical volume data (e.g. a
segmentation result from CT or MRI data) is a three-
dimensional, axis-aligned, regular grid with constant
distances in each dimension (∂x, ∂y, ∂z) and with
only two possible values (e.g. background and fore-
ground) at each grid point. An iso-surface represent-
ing the border between foreground and background
is defined as the surface located at the center between
adjacent grid points with different values. The MC
extraction method [Lor87] iterates cells defined by 8

grid points (voxels) over the whole volume and
searches for cells containing the surface. Then, for
each of these surface cells (with at least one fore-
ground and one background labeled voxel) surface
vertices are created. MC creates vertices exactly lo-
cated at the midpoint of the edges of these surface
cells (see Figure 3). Other methods act similar but
may also create vertices inside the cells. Explaining
each extraction algorithm in detail is beyond the
scope of this paper. Thus, we will further refer to the
Marching Cubes extraction scheme and its case table
as illustrated in Figure 3.

In general, all common surface extraction methods
create vertices that are located either inside or at the
edge of the cells containing the surface. Therefore,
we assume that each mesh vertex can be moved in-
side its cell or on its cell edge respectively without
creating incorrect iso-surface representations of the
binary volume. Exactly this effect is used by CESN
to smooth the surface constrained to the cells in
which each surface vertex is located.

For mesh smoothing without the original binary vol-
ume, cell size and cell centers have to be recon-

Figure 3: Marching Cubes case table. Concerning

binary volumes: iso-surface vertices are only
created at the midpoint of cube edges.

Figure 2: Extracted surface model of human bones from a binary segmented CT data set. (a) Marching Cubes

result (104K triangles, 52k vertices); (b) surface (a) filtered by means of the λ/μ-Filter [Tau95] (with λ ≈
0.7143, μ ≈ -0.7692 and 110 iterations in 9.9 sec.) and corresponding distance map to (a) (max distance = 0.91);
(c) surface (a) filtered by the proposed diamond-constrained method (stopping threshold of 0.002 achieved af-
ter 110 iterations in 7.4 sec.) and corresponding distance map to (a) (max distance = 0.29). (Distance measure is
the symmetric Hausdorff-distance given as fraction of the cell diagonal)

(a) (b) (c)

Journal of WSCG ISSN 1213-6972 69 ISBN 978-80-86943-00-8

structed from the surface mesh. In the next sections,
we present methods to reconstruct information about
the volume data from iso-surface meshes. Since this
is related to the extraction process used to extract a
surface, we will explain cell size, cell center, and cell
edge detection for Marching-Cubes (MC)-extracted
meshes. We also give hints on easy adoption of this
method for other extraction methods.

3.2 Cell Size Determination
The cell size of the original binary volume has an
effect on the distance of extracted surface vertices.
Here we use this relation to derive cell size from ver-
tex distances.

Using MC, vertices are only created at cell edges.
With the assumption of axis-aligned grid lines, the
distance between adjacent mesh vertices in each di-
mension can only take three different values: 0, ½∂h,
∂h (see Figure 4a). Here, ∂h represents the extent of
the cell in the current dimension. Thus, we determine
the cell properties ∂x, ∂y, and ∂z by finding two dif-
ferent non-zero distances in each dimension.

3.3 Cell Center Determination
To determine surface cell centers from a MC-
extracted surface, one defined MC cell case has to be
identified within the mesh. For simplicity, we de-
cided to search for a cell of case 1 (see Figure 3).
This is realized by searching for the vertex with the
lowest x-, y-, and z-position.

With this strategy, we find vertex minV and its corre-
sponding cell of case 1 as illustrated in Figure 4b.
Since we know the position of vertex minV and the
case of the cell, the coordinates of the cell center c
are given by equation (1) as illustrated in Figure 4b.

c[x,y,z] = [minV.x, minV.y - ½∂y, minV.z - ½∂z] (1)

Independent of the extraction method from one
known cell center c, it is now possible to determine a
cell center c(v) for each mesh vertex v. The position
of the cell center for vertex v can be determined ac-
cording to equation (2) for the x-dimension. The
other dimensions are treated similarly.

c(v).x = c.x + { round[(c.x – v.x) / ∂x] × ∂x } (2)

As a special property of MC-extracted iso-surfaces,
their vertices can not be clearly associated with
solely one cell center. Since vertices are positioned at
the cell edges, each vertex can be associated with
four neighboring cell centers. At this stage, it is suf-
ficient to find one associated cell center. In Section
4.2, we will return to this problem.

3.4 Cell Edge Determination
Since MC creates vertices at cell edges, we have to
determine the cell edge where each vertex is located.
As illustrated in Figure 4a, there are 12 possible ver-
tex locations. The distance in each dimension be-
tween a vertex and its associated cell center can be
easily used to determine the cell edge where the ver-
tex is located (see Figure 4b). The following pseu-
docode encodes each cell edge with a number as il-
lustrated in Figure 4a:

The presented cell size, cell center, and cell edge
determination methods yield sufficient information
about the original binary volume. It must be noted
that the presented determination methods have to be
extended for arbitrarily rotated, skewed or otherwise
manipulated surface meshes.

The gathered information can now be used to con-
strain vertex displacement during smoothing and it
could even be used to reconstruct the binary volume

FOR all vertices v ∈ Mesh DO
 FOR all n ∈ Neighbors(v) DO
 d = |v – n|
 IF d.x > 0 THEN
 add d.x to {sorted x-distances}
 (Note: The distance is only added
 if it is not in list yet)
 END IF
 IF d.y > 0 THEN
 add d.y to {sorted y-distances}
 END IF
 IF d.z > 0 THEN
 add d.z to {sorted z-distances}
 END IF
 END FOR
 IF each sorted distance list has two
 entries THEN terminate processing
END FOR

FOR all vertices v ∈ Mesh DO
 IF v.x < minV.x THEN
 minV = v
 ELSE IF v.x = minV.x THEN
 IF v.y < minV.y THEN
 minV = v
 ELSE IF v.y = minV.y THEN
 IF v.z < minV.z THEN
 minV = v
 END IF
 END IF
 END IF
END FOR

FOR all vertices v ∈ Mesh DO
 d = c(v) – v
 IF d.x = 0 THEN //x-direction
 case(v) = 1
 IF d.y < 0 THEN case(v) = 3
 IF d.z < 0 THEN case(v) += 1
 ELSE IF d.y = 0 THEN //y-direction
 case(v) = 5
 IF d.x < 0 THEN case(v) = 7
 IF d.z < 0 THEN case(v) += 1
 ELSE IF d.z = 0 THEN //z-direction
 case(v) = 9
 IF d.x < 0 THEN case(v) = 11
 IF d.y < 0 THEN case(v) += 1
 END IF
END FOR

Journal of WSCG ISSN 1213-6972 70 ISBN 978-80-86943-00-8

itself. Since we focus on mesh smoothing, we further
investigate the reduction of aliasing artifacts in iso-
surfaces with this additional information.

4. CONSTRAINED ARTIFACT RE-
DUCTION IN SURFACE MESHES

In this section, we discuss different schemes to con-
strain vertex displacement during smoothing. We
derive these schemes from different levels of infor-
mation about the volume data. We start by relying
only on the cell size (e.g. voxel spacing) and proceed
by adding more and more information about the vol-
ume data (see Section 3 for determination of this
information). Furthermore, we derive a scheme to
reduce artifacts in iso-surface meshes extracted from
binary volume data by means of Marching Cubes.

4.1 Cell-Size-Constrained Smoothing
Assuming that all surface vertices are located inside a
cell of the original discrete volume data, we state that
the location of each vertex exhibits a discretization
error of plus/minus one half of the cell size ±½(∂x,
∂y, ∂z). Consequently, we assume that the original
object surface as well as a smooth surface representa-
tion of it is located within the given range of ±½(∂x,
∂y, ∂z) around each surface vertex. Now we can con-
strain the position of each vertex to that range around
its original location.

For simplicity of the smoothing procedure, we itera-
tively move each vertex v towards a position sv equi-
distant to its neighbors. If sv is outside the given
range around the original vertex position vo, the dis-
placement vector from vo to sv is clipped at the bor-
der of the allowed range. This position is then used
as the new vertex position v. Relaxation is stopped
when the maximum occurring vertex displacement
maxDispl in one iteration is lower than a given stop-
ping threshold.

This strategy yields smooth results, but the underly-
ing assumption is only fulfilled if all vertices are lo-
cated in the center of the surface cells. This explains
why CESN need to extract a mesh with vertices at
cell centers only. For all other extraction processes,
this method can yield incorrect representations of the
binary volume as illustrated in Figure 5a.

With a maximum error to the original surface mesh
of one half of the cell diagonal, this method can also
be applied to MC-extracted surfaces if the precision
is still adequate for the desired application. Consider-
ing the very low computation times (cell size deter-
mination included) and its error bound, this smooth-
ing scheme can be considered as superior to most of
the traditional mesh smoothing approaches (for re-
sults and comparison see Section 5).

4.2 Cell-Center-Constrained Smoothing
To guarantee a correct representation of the original
volume data for surface meshes with vertices that are
not located at cell centers, the vertices of those
meshes have to remain inside their original surface
cells. Thus, the algorithm from Section 4.1 has to be
changed by replacing the original vertex location vo
by the cell center c(v) (recall Section 3.3) for each
vertex v. This method works well for all iso-surface
meshes extracted by methods that create surface ver-
tices inside surface cells (for example DualMC
[Nie04]). This condition is not fulfilled for MC-
extracted surfaces. Here, vertices are located at cell

WHILE maxDispl > stoppingThreshold DO
 maxDispl = 0
 FOR all vertices v ∈ Mesh DO
 sv = equi-distant location between
 neighbors of v
 dv = sv – vo //displacement vector
 IF |dv.x| > ½δx THEN clip(dv.x, ½δx)
 IF |dv.y| > ½δy THEN clip(dv.y, ½δy)
 IF |dv.z| > ½δz THEN clip(dv.z, ½δz)
 v = vo + dv
 maxDispl = max(maxDispl, ||dv||)
 END FOR
WHEND

(a) (b)

minV

c

Figure 4: Cell size and cell center determination: (a)
12 possible vertex locations per cell with illus-
trated distance between vertex 5 and 4. (b) Ver-
tex minV with minimal x-, y-, and z-position
and illustrated distance to cell center.

(a) (b) (c)

Figure 5: Incorrect Results: (a) vertices are allowed
to move ±½(∂x, ∂y, ∂z); (b) vertex v1 is con-
strained to remain inside its associated cell c1
and v2 to remain inside c2 – To get a correct re-
sult, at least one vertex (v1 or v2) has to be con-
strained to c3. However, whether v1 or v2
should be selected, depends on their neighbors.
(c) 3d case where 6 vertices have to be con-
strained to 8 cell centers.

Journal of WSCG ISSN 1213-6972 71 ISBN 978-80-86943-00-8

edges and are associated with four neighboring cell
centers. As illustrated in Figure 5b, it is crucial which
of those four cell centers is used for constraining a
vertex. If it is not the correct one, constrained
smoothing as described above can yield an incorrect
representation of the original volume data.
Solving this assignment problem is not trivial. If one
vertex has been assigned to one of its associated cell
centers, the determination of the appropriate cell cen-
ter for its neighboring vertices depends on the previ-
ous decision and on the decisions for all their
neighbors. In 3d space, this assignment problem may
also be insolvable in some cases. Figure 5c illustrates
an example case with eight cells and only six verti-
ces. Here all possible solutions leave two cell centers
unassigned which may lead to incorrect representa-
tions. Thus, cell-center-constrained smoothing that
guarantees a correct representation of the underlying
volume data is not possible for surfaces extracted by
means of MC.

4.3 Cell-Edge-Constrained Smoothing
To keep as close as possible to the original MC-
extraction process and to guarantee correct represen-
tations of the underlying volume data, we constrain
vertices to their cell edges where they are located. In
Section 3.4, we presented a method to determine the
exact cell edge where a vertex is located. Here we
can simplify this method to distinguish only between
cell edges in x-, y-, and z-direction. With that infor-
mation for each vertex and the determined cell size,
we can constrain vertices to move along their cell
edge by a maximum of one half of the cell size in
edge direction. This also speeds up the smoothing
procedure since only the x-, y-, or z-component of a
vertex according to the cell edge has to be calculated
in each smoothing step.

With this approach, each surface vertex remains at
the cell edge where it was created. This strongly fa-
vors correctness over smoothness and forces the sur-
face to retain small details. As a consequence, this
method does not yield surfaces as smooth as possible
with the other approaches (see Section 5). However,
results are much smoother than an original MC-
extracted surface and a correct representation of the
original volume data is guaranteed in contrast to
standard mesh smoothing approaches.

4.4 Diamond-Constrained Smoothing
Since cell-edge-constrained smoothing of MC-
extracted surfaces does not yield well smoothed re-
sults, we derive a new constrained method that al-
lows significant artifact reduction in MC-extracted
iso-surface meshes while maintaining a correct repre-
sentation of the original binary volume.

As Figure 6a illustrates in 2d space: Vertices created
at the edge of a cell can be moved arbitrarily inside a
rotated square or rhomboid centered at the cell edges
while the resulting surface remains a correct repre-
sentation of the binary data. We rely on this property
and constrain vertices of MC-extracted surfaces to
remain inside a diamond-shaped region as illustrated
in Figure 6b. The diamond is centered at the vertex v
with extents in x-, y-, and z-direction equal to the cell
size in these directions.

To define these diamonds, we only need to recon-
struct the cell size as described in Section 3.2. Then,
the plane equations of the eight faces of the diamond
can be pre-computed and re-used for each vertex. We
use the standard equation ax + by + cz + D = 0 to
represent the faces as planes, where n=(a,b,c) repre-
sents the normal of the plane and D its distance from
the center of the diamond. Since D is equal for all
faces, we only store a single D and the normal of
each of the eight faces.

During each smoothing step we can determine the
vertex displacement vector dv from v to its relaxed
position sv and clip dv with the appropriate face of

//cell edge constrained mesh smoothing
WHILE maxDispl > stoppingThreshold DO
 maxDispl = 0
 FOR all vertices v ∈ Mesh DO
 IF case(v) = x_edge THEN
 sv.x= equi-distant position between
 neighbors in x-direction only
 dv.x= sv.x – vo.x //distance vector
 IF |dv.x|> ½δx THEN clip(dv.x, ½δx)
 v.x = vo.x + dv.x
 maxDispl = max(maxDispl, |dv.x|)
 ELSE IF case(v) = y_edge THEN
 ...
 ELSE IF case(v) = z_edge THEN
 ...
 END IF
 END FOR
WHEND

//determine cell edge type simplified
FOR all vertices v ∈ Mesh DO
 d = c(v) – v
 IF d.x = 0 THEN case(v) = x_edge
 ELSE IF d.y = 0 THEN case(v) = y_edge
 ELSE IF d.z = 0 THEN case(v) = z_edge
 END IF
END FOR

(a) (b)

px
py

pz

Figure 6: Vertices created at cell edges are con-

strained to a rhomboid in 2d (a) and to a dia-
mond-shaped region in 3d (b) to ensure correct
representations of the binary volume.

Journal of WSCG ISSN 1213-6972 72 ISBN 978-80-86943-00-8

the diamond to find the new constrained position of
v. To determine the appropriate face for clipping we
check the sign of the displacement vector compo-
nents. Then we calculate the intersection point of the
displacement vector and the determined diamond
face. If there is an intersection, we use this point as
the new location of the current vertex.

With this approach, fast, converging, and volume-
data-constrained artifact reduction in surface meshes
extracted from binary volumes can be performed at
the mesh-level. In contrast to previous work, it re-
constructs information about the underlying volume
data and constrains the smoothing process to yield
correct representations of the binary volume inde-
pendent of the presence of the original volume data.

5. RESULTS
We used the MeVisLab SDK [MeV06] to implement
the proposed methods: cell-size-constrained, cell-
edge-constrained and diamond-constrained smooth-
ing as well as CESN for comparison. Each method
facilitates the same extended Winged-Edge-Mesh
data structure for fast triangle mesh processing. Thus,
computation times of the smoothing step can be com-
pared between the different methods.

Figure 7 compares the results of the different
smoothing approaches by means of a MC-extracted
surface from a synthetic binary volume representing
a binary sampled sphere with a diameter of 60 units.
Furthermore, computation time (t in sec.), number of
iterations (i), remaining percentage of original vol-
ume (V in %) as well as the maximum symmetric
Hausdorff-distance to the MC-extracted surface
(maxD as fraction of the cell diagonal) are given in
the figure caption. For all smoothing examples we
used a stopping threshold of 0.002 units.

As can be seen in Figure 7b, cell-size-constrained
smoothing yields the best smoothing results but no
correct representation of the underlying volume data
(recall Section 4.1). Nevertheless, this method limits
the maximum possible deviation to the initial mesh to
one half of the cell diagonal which is superior to pre-
vious mesh smoothing approaches (see Figure 2b).

Correct representations are guaranteed by cell-edge-
constrained (Figure 7c) and diamond-constrained
smoothing (Figure 7d), while the diamond-constraint
approach yields much better smoothing. In contrast
to other mesh-smoothing approaches, the error is
limited to the cell size in each dimension, artifacts
are significantly reduced, and a correct representation
is guaranteed. Similar results can only be achieved
by CESN (Figure 7e), but that requires the binary
volume.

Figure 8 shows smoothing results for a clinical data-
set containing a segmented aneurysm (vessel pathol-
ogy) achieved by the proposed diamond-constrained
smoothing on the mesh level (Figure 8c) and by
CESN on the mesh extraction level (Figure 8b).
Since quantitative and visual results are very similar
to each other, MC-extraction and subsequent dia-
mond-constrained smoothing may also be used as an
alternative to CESN on the mesh-extraction level.

6. CONCLUSION
We presented a strategy for artifact reduction in sur-
face meshes extracted from binary volume data that
acts (independently from the volume data) directly
and solely on the surface mesh. In contrast to previ-
ous mesh filtering approaches, our method uses the
volume data properties inherent in an extracted sur-
face mesh to constrain the filtering process which
requires no parameter tuning and yields smooth, con-
verging, and correct representations. In detail, we
presented the diamond-constrained mesh filtering
method for surfaces extracted from binary volumes
by means of Marching Cubes. Results are compara-
ble to CESN, while in contrast to our method, CESN
require the volume data and a specialized surface
extraction scheme.

//diamond clipping
diamondClipping(dv) {
 //Determine diamond face vector dv is
 //pointing at.
 IF dv.x > 0 THEN face = 4 ELSE face = 0
 IF dv.y > 0 THEN face = face + 2
 IF dv.z > 0 THEN face = face + 1
 //determine if dv has to be clipped
 denom = |n[face].dot(dv)|
 IF denom > D THEN //clip dv
 t = D / denom
 dv = dv × t
 ENDIF
 RETURN dv
}

//diamond generation
//face normals:
n[7] = (py – px).cross(pz – px)
n[7] = n[7] / ||n[7]||
n[0] = -n[7]
...
// face-center distance
// D = | t × Pn.dot(Rd) |
// t = 1; Pn = n[7]; Rd = (px, 0, 0);
D = | 1 × n[7].x × px |

//diamond constrained mesh smoothing
WHILE maxDispl > stoppingThreshold DO
 maxDispl = 0
 FOR all vertices v ∈ Mesh DO
 sv = equi-distant position between
 neighbors of v
 dv = sv – vo //distance vector
 dv = diamondClipping(dv)
 v = vo + dv
 maxDispl = max(maxDispl, ||dv||)
 END FOR
WHEND

Journal of WSCG ISSN 1213-6972 73 ISBN 978-80-86943-00-8

In spite of the correctness and visual quality of arti-
fact reduction in surface meshes by our method, it
would be much better to reduce or avoid artifacts at
an earlier stage of the surface extraction pipeline
(recall Figure 1).

A still open surface mesh filtering problem is artifact
reduction in elongated surface parts with a diameter
of only one voxel, since such structures may collapse
to a single point or line during smoothing. Thus, fu-
ture work may focus on an appropriate treatment of
such fine structures.

7. REFERENCES
[All98] Allamandri F., Cignoni P., et al. Adaptively

adjusting Marching Cubes output to fit a trilinear
reconstruction filter. EG Workshop on Scientific
Visualization '98, pp. 25-34, 1998.

[Bad06] Bade R., Haase J., Preim B. Comparison of
fundamental mesh smoothing algorithms for
medical surface models. SimVis’06, pp. 289-
304, 2006.

[Baj03] Bajaj C. and Xu G. Anisotropic Difusion on
Surfaces and Functions on Surfaces. ACM
Trans. on Graphics, Vol. 22(1), pp. 4–32, 2003.

[Des99] Desbrun M., Meyer M., et al. Implicit fair-
ing of irregular meshes using diffusion and cur-
vature flow. SIGGRAPH ’99, pp. 317–324,
1999.

[Gib98] Gibson S. F. F. Constrained Elastic Surface
Nets: Generating Smooth Surfaces from Binary
Segmented Data. MICCAI'98, pp. 888-898,
1998.

[Lor87] Lorensen W. E., Cline H. E. Marching
Cubes: A high resolution 3D surface construc-
tion algorithm. SIGGRAPH’87, pp. 163-169,
1987.

[MeV06] MeVis Research. MeVisLab: Medical Im-
age Processing and Visualization.
www.mevislab.de. last viewed: Sep. 29th 2006.

[Nie04] Nielson, Gregory M. Dual Marching Cubes.
IEEE Visualization'04, pp. 489-496, 2004.

[Tau95] Taubin, G. A signal processing approach to
fair surface design. SIGGRAPH’95, pp. 351–
358, 1995.

[VMM99] Vollmer, J.; Mencel, R. and Mueller, H.
Improved laplacian smoothing of noisy surface
meshes. EuroGraphics’99, pp. 131–138, 1999.

[Whi00] Whitaker, Ross T. Reducing aliasing arti-
facts in iso-surfaces of binary volumes. IEEE
VolVis’00, pp. 23-32, 2000.

(a) (b) (c) (d) (e)

Figure 7: Surface of a binary sampled sphere (diameter: 60 units): (a) original MC result (35k triangles, 17k verti-
ces); (b) cell-size-constrained smoothing ([incorrect representation], t=2.0, i=147, V=95.5%, maxD=0.5); (c) cell-
edge-constrained smoothing (t=1.3, i=76, V=99.6%, maxD=0.29), (d) diamond-constrained smoothing (t=1.3,
i=76, V=99.2%, maxD=0.24), (e) CESN (t=1.4, i=102, V=97.6%, maxD=0.39). (stopping threshold = 0.002)

Figure 8: Surface representation of an aneurysm data
set: (a) original MC-extracted surface (53k triangles,
26k vertices), (b) CESN result (t = 2.5 sec., i = 93, V =
89.9%, mD = 0.41), (c) diamond-constrained result (t =
2.6 sec., i = 59, V = 97.1%, mD = 0.28). (stopping thresh-
old = 0.002).

(a)

(b)

(c)

Journal of WSCG ISSN 1213-6972 74 ISBN 978-80-86943-00-8

Extracting Separation Surfaces of Path Line Oriented
Topology in Periodic 2D Time-Dependent Vector Fields

Kuangyu Shi
MPI Informatik

66123 Saarbrücken, Germany
skyshi@mpi-inf.mpg.de

Holger Theisel
Bielefeld University

33501 Bielefeld, Germany
theisel@techfak.uni-bielefeld.de

Tino Weinkauf
Zuse Institute Berlin

14159 Berlin, Germany
weinkauf@zib.de

Helwig Hauser
VRVis Research Center

1220 Vienna, Austria
hauser@vrvis.at

Hans-Christian Hege
Zuse Institute Berlin

14159 Berlin, Germany
hege@zib.de

Hans-Peter Seidel
MPI Informatik

66123 Saarbrücken, Germany
hpseidel@mpi-inf.mpg.de

ABSTRACT

This paper presents an approach to extracting the separation surfaces from periodic 2D time-dependent vector fields based on a
recently introduced path line oriented topology. This topology is based on critical path lines which repeat the same spatial cycle
per time period. Around those path lines there are areas of similar asymptotic flow behavior (basins) which are captured by a
2D Poincaré map as a discrete dynamical system. Due to pseudo discontinuities in this map and the discrete integration scheme,
separatrices between the basins can’t be obtained as integral curves. Instead we choose a point-wise approach to segment the
Poincaré map and apply image analysis algorithms to extract the 2D separation curves. Starting from those curves we integrate
separation surfaces which partition the periodic 2D time-dependent vector field into areas of similar path line behavior. We
apply our approach to a number of data sets to demonstrate its utility.

Keywords: Flow Visualization, Time-dependent vector fields, Topological methods.

1 INTRODUCTION

Over the last decade, topological methods have be-
come standard in vector field visualization. Initially
introduced as a visualization tool in [6], topological
methods have been extended to higher order critical
points [12], boundary switch points [1], and closed tra-
jectories [30]. In addition, methods have been proposed
to simplify flow topology [1, 2, 21, 22, 28]. Also topo-
logical methods have been presented to smooth [29],
compress [8, 17] and construct [16, 26] vector fields.
The topology of 3D vector fields has also been used for
visualization [4, 9, 11, 19, 25].

The main idea behind topological methods is to seg-
ment a vector field into areas of similar asymptotic be-
havior. This means classifying each point x in the do-
main with respect to the asymptotic behavior of the flow
trajectory through it, i.e., a forward and backward inte-
gration starting from x with an integration time con-
verging to infinity is considered. Usually, this integra-
tion does not have to be carried out for every point but
only for a certain number of starting points of separatri-
ces.
Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Copyright UNION Agency – Science Press, Plzen, Czech
Republic.

For time-dependent vector fields there exists a num-
ber of relevant integration curves, such as stream lines,
path lines, streak lines and time lines. Among them,
stream lines, and path lines have the uniqueness prop-
erty: through each point in the space-time domain there
is exactly one stream line and exactly one path line.
This means that two different kinds of topologies can be
considered: a stream line oriented topology segmenting
areas of similar stream line behavior, and a path line
oriented topology which does so for path lines. Extract-
ing a stream line oriented topology ends up in track-
ing critical points and considering certain bifurcations
[23, 31, 18, 3, 20].

Path lines are important structures in time-dependent
vector fields because they describe the paths of mass-
less particles in the flow. Hence, a path line oriented
segmentation gives a different kind of insight into the
vector field data than the stream lines oriented variants.
One can even argue that a path line oriented flow topol-
ogy is more truthful to intrinsic characteristics of the
flow. Theisel et al. consider the local topological be-
havior by segmenting the domain into regions of lo-
cally attracting, repelling, or saddle-like path lines [20].
As the practical experience, many real or simulated
time-dependent vector fields are periodic or quasi pe-
riodic. Shi et al. present a point based approach to ex-
tract the asymptotic path line behavior of periodic 2D
time-dependent vector fields [13]. This approach uses
a Poincaré map as a discrete dynamical system to de-
tect critical path lines as well as basins from which path
lines converge to the critical cycles. However, within

Journal of WSCG ISSN 1213-6972 75 ISBN 978-80-86943-00-8

this approach basins can only be computed for a given
time slice. A segmentation of the whole 3D space-time
domain is missing. This is due to the fact that separatri-
ces between the basins can not be obtained as integral
curves, because of the discrete integration scheme and
certain pseudo discontinuities in the Poincaré map.

This paper extends this work [13] by presenting an
approach to extract the separatrices of the Poincaré map
using algorithms from the field of image analysis. Once
those 2D separation curves are extracted, the segmen-
tation of the whole 3D space-time domain can be ob-
tained by a stream surface integration starting at the
separatrices of the Poincaré map.

The rest of the paper is organized as follows: Sec-
tion 2 recalls the concepts of path line oriented topol-
ogy for periodic time-dependent vector fields. Sec-
tion 3 analyzes the difficulties in calculating the separa-
tion surfaces using classical topological methods. Sec-
tion 4 describes how to extract the separation curves of
the Poincaré map for a given time step and presents a
stream surface integration algorithm with error correc-
tion to obtain the separation surfaces for the whole 3D
space-time domain. Section 5 outlines our algorithm
for extracting the topological skeleton. Section 6 shows
a number of applications of our approach, while con-
clusions are drawn in section 7.

2 PATH LINE ORIENTED TOPOLOGY
FOR PERIODIC VECTOR FIELD

Given a 2D time-dependent vector field v(x, t)
in the space-time domain D × [tmin,tmax] with
D = [xmin,xmax] × [ymin,ymax], then x describes a
point in the spatial domain and t is the respective
temporal component.

A path line oriented topological segmentation of v
can’t be made by applying conventional topological
methods of 3D vector fields because an integration of
a path line until infinity is impossible due to the finite
temporal domain. This restriction is no longer valid
when considering periodic vector fields. And periodic
or quasi periodic vector fields is one of the main cate-
gories of time-dependent vector fields in scientific visu-
alization. So it is reasonable to focus our consideration
on periodic time-dependent vector fields.

Assume that v describes one period, with v(x, tmin) =
v(x, tmax). Then it is sufficient to consider this period
which can be repeated as often as necessary. We can
assume v to be defined in the whole domain D× IR by
setting

v(x,t) = v(x, t + k ∆ t),

where ∆ t = (tmax− tmin) and k is an integer chosen such
that tmin ≤ t + k ∆ t < tmax.

In order to integrate a path line in the periodic field v
, two equivalent strategies can be applied:

x

y

t

tmin

tmax

t

y

x

tmin

tmax

(a) (b)

Figure 1: Two equivalent approaches of a stream line
integration in a periodic field v: (a) In the unbounded
time-domain; (b) Periodically continued in the time-
domain [tmin, tmax].

• The integration is done over the unbounded time-
domain as illustrated in figure 1a.

• If the integration approaches a point (x, tmax), it is
mapped to (x, tmin). From there, the integration is
continued until tmax is reached again. Figure 1b il-
lustrates this.

Instead of integrating path lines directly, the point
based approach of topological path line segmenta-
tion [13] constructs two 2D Poincaré maps to analyze
the asymptotic behavior of those path lines starting at
certain times.

2.1 2D Poincaré maps
Picking a certain reference time τ with tmin ≤ τ < tmax,
two 2D maps mτ (x) and m̄τ (x) are constructed for the
segmentation of the asymptotic behavior of all path
lines starting at the time τ . For mτ(x), a forward in-
tegration of v from (x,τ) is carried out until one of the
following cases occurs:

1. The integration reaches the time level τ + ∆ t, i.e. it
comes to a certain point (x f ,τ +∆ t). Then mτ(x) is
set to x f .

2. The integration leaves D before reaching the level
τ + ∆ t. In this case mτ(x) is marked as undefined.

In a similar way, m̄τ(x) is defined by starting a back-
ward integration of v from (x,τ) until the time level
τ −∆ t is reached at a point (xb,τ −∆ t), or until the in-
tegration leaves D. Figure 2a illustrates the definitions
of mτ(x) and m̄τ (x).

Instead of the definition of the maps mτ (x) and
m̄τ(x) as described above, a vector-oriented, relative
description of the map can also be used:

qτ (x) = mτ (x)−x

q̄τ (x) = m̄τ (x)−x (1)

Journal of WSCG ISSN 1213-6972 76 ISBN 978-80-86943-00-8

xy

t

tmin

tmax

�
x

xf

xb

m x
�
()

m x()
�

stream line of p

���t

� �- t xy

t

�

���t

stream line of p

����t

m x()
�

m x()1�

x1x

x2

(a) (b)

Figure 2: (a) The definition of mτ(x) and m̄τ (x); (b)
A continuous forward integration of v corresponds to a
discrete integration of mτ (x).

mτ(x) and qτ(x) and all of the related considerations in
the remainder of this paper can be easily transformed
into each other.

The maps mτ and m̄τ can be interpreted as 2D
Poincaré maps [10]. In order to analyze the asymptotic
behavior of a path line starting from (x,τ) in forward
direction, we do not have to integrate v any more but
can restrict ourselves to a sequence of maps of mτ(x):

x0 = x

xi+1 = mτ (xi) (2)

and considering the asymptotic behavior for i→∞. Fig-
ure 2b illustrates this relation. A similar statement holds
for the backward integration of v and a sequence of
maps of m̄τ .

2.2 Point based topological segmentation
of 2D Poincaré map

The segmentation of areas of similar path line behav-
ior corresponds to the topological segmentation of the
2D Poincaré maps mτ and m̄τ , respectively. Critical
path lines in v correspond to fixed points in mτ and
m̄τ . They may act as sources, sinks, or saddle path lines
building α- and ω-basins in D.

The point-wise approach is applied as follows: for
every point x in D, an integration of mτ is carried out
using (2) until one of the following conditions is ful-
filled:

• xi comes close to a fixed point of mτ ,

• xi leaves the domain D,

• i exceeds a certain maximal threshold.

In the first case, x is assumed to be part of the basin of
the fixed point. This means that the path line starting
at (x,τ) converges to a critical path line under forward
integration. In the second case, the path line is known
to leave the domain under forward integration. In the
last case, x is marked as unknown. A similar procedure
is applied for the segmentation of backward Poincaré
map m̄τ .

C

xy

t

�

���t

X1

X2

m X2�
()m X1�

()

(a) (b)

Figure 3: Pseudo discontinuities in mτ : (a) If x1 and
x2 are close but at different sides of a separatrix of
v(x) = v(x, t), mτ has too large changes that it is im-
possible for discrete numerical method to deal with it
though it is still continuous; (b) The pseudo discontinu-
ity in corresponding Poincaré map.

3 DIFFICULTIES WITH SEPARATION
SURFACE EXTRACTION

In the point based approach [13], the topological seg-
mentation of path lines starting at a certain time is suc-
cessfully computed. However, this is still not the clas-
sical topological structure of the whole data set. The
computation for every considered time is time consum-
ing, so the separation surfaces are needed to present the
general path line oriented topological structure.

However it is difficult to generate the separation sur-
faces. The discrete integration and the pseudo disconti-
nuity of a Poincaré map are two key problems for classi-
cal topological method when extracting separation sur-
faces.

3.1 Discrete dynamic systems
Both Poincaré maps mτ and m̄τ can be considered as
discrete invertible dynamical systems. As shown in
equation (2), the integration of Poincaré maps is equiv-
alent to a numerical Euler integration of qτ with step
size 1: xi+1 = xi +1 qτ(xi).

For discrete dynamical systems, classical topological
vector field approaches fail to give the correct segmen-
tation because they reflect continuous dynamical sys-
tems. For continuous dynamical systems, the different
basins are separated by stream lines starting from sad-
dle points. However, such a stream line integration does
not exist for the discrete systems mτ and m̄τ .

Note that the topology of discrete dynamical systems
can get a lot more complicated, even for lower dimen-
sions, when compared to the continuous case.

3.2 Pseudo discontinuity
Although v is continuous, both mτ and m̄τ may have
pseudo discontinuities, which means that mτ and m̄τ
are still continuous mathematically, but they may have
areas with tremendous large gradient, which appear as
discontinuities for discrete treatment. To see this point,

Journal of WSCG ISSN 1213-6972 77 ISBN 978-80-86943-00-8

x
y

t

�

���t

C1

m X
�
()

C
ritical

p
ath

lin
e

C
ri

ti
ca

l
p
at

h
li

n
e

C2

basin1

basin2

S

�
���t

P X()

�
�

X

Figure 4: The relation between the basin edges and
the separation surfaces for asymptotical path line be-
havior.

we consider the example of a steady 2D vector field
v(x) = v(x, t) which can also be considered as as peri-
odic time-depending vector field. Setting a certain time
∆ t as period, mτ(x) is obtained by a stream line inte-
gration of v at x over a time ∆ t. If v consists of saddles,
its separatrices may induce tremendous changes in mτ
so that it appears as discontinuities for normal discrete
numerical programs. Figure 3 illustrates this.

4 TOPOLOGICAL SEPARATION SUR-
FACE EXTRACTION

If we integrate the edges of the segmentation basins ob-
tained from point based method (section 2.2) either in
forward or backward directions, we could get the sep-
aration surfaces for the asymptotic behavior of corre-
sponding path lines.

For a given periodic 2D time-dependent vector field
v, suppose we have extracted the separation surface S
and at time τ , we have obtained the basin segmentation
using point based method. λτ is the intersection curve
of S and plane t = τ . It is obvious that λτ exactly coin-
cides with the edges of the segmentation basins in τ and
λτ exactly coincides with λτ+∆t . For any point x in λτ ,
if we integrate a path line P(x), we can conclude that
P(x) coincides in S within the domain and mτ(x) coin-
cides λτ+∆t after a period at time τ + ∆t if mτ(x) does
not leave the domain. Thus, the integration surface of
λτ coincides with S. Otherwise, mτ(x) would end up
either in basin1 or basin2, then x must also be classi-
fied either basin1 or basin2 since it asymptotically con-
verges to critical path lines either in basin1 or basin2,
which results in a contradiction. Note that mτ(x) does
not necessary equal x, though it must falls in λτ . Figure
4 illustrates this relation.

Here the problem of extraction of separation surface
turns to the detection of basin edges as seeding curves
and the integration of these seeding curves to surfaces.

Gx Gy

-1

-2

-1

0

0

0

1

2

1

1

0

-1

2

0

-2

1

0

-1

Figure 5: Sobel Operator.

4.1 Seeding curve detection

We apply an image analysis approach to detect the basin
edges.

The basin edges are step discontinuities where the
image intensity abruptly changes from one value to an-
other. Many algorithms have been developed to detect
such edges [5, 7]. Wallisch applied an extended march-
ing cube approach to extracting the basin boundaries of
3D dynamical systems [24]. Since we aim at a special
problem, we apply one simple algorithm here.

Suppose the basin image is f (x,y) in domain D =
[xmin,xmax]× [ymin,ymax], where f (x,y) is the id values
for different basins. The gradient at location (x,y) is
defined as follows:

∇ f =
(

Gx

Gy

)
=

(
∂ f
∂x
∂ f
∂y

)
(3)

the magnitude of the gradient vector is denoted g(x,y)
where

g(x,y) = |∇ f | =
√

Gx
2 +Gy

2 (4)

Let α(x,y) represent the direction angle of the gradient
vector with respect to the x−axis.

α(x,y) = arctan(
Gy

Gx
) (5)

The direction of an edge at (x,y) is perpendicular to the
direction of the gradient vector.

Here, for the discrete case, we use Sobel operator to
calculate the gradient vector as shown in figure 5 [5].

We analyze the characteristics of pixels in a small
neighborhood (say, 3× 3 or 5× 5) about every point
(x,y) in the basin image. Thus an edge pixel with coor-
dinates (x0,y0) in the predefined neighborhood of (x,y)
is similar in magnitude to the pixel at (x,y) if

|g(x,y)−g(x0,y0)| ≤ E (6)

where E is a nonnegative threshold. Similarly (x0,y0)
has similar direction as (x,y) if

|α(x,y)−α(x0,y0)| ≤ A (7)

where A is a nonnegative threshold.

Journal of WSCG ISSN 1213-6972 78 ISBN 978-80-86943-00-8

xy

t

�

���t

basin1

basin2

S

�
���t

�
�

���t

��� �t t-

X

X
1

X

(a) (b)

Figure 6: (a) The integration of seeding curves with
super sampling in both forward and backward direc-
tion until they meet each other; (b) The polar stratified
super sampling: n×n subdivide the circular neighbor-
hood in both radius and angle direction, for each sub-
divided grid, randomly select a point as sample point.

A point in the predefined neighborhood of (x,y) is
linked to the pixel at (x,y) if both magnitude and di-
rection similarity criteria are satisfied. This process is
repeated at every location in the basin image and finally
we obtain the edges of the basins.

4.2 Step advancing integration with super
sampling adjustment

With the detected seeding curve, the classical stream
surface integration method is applied to generate the
separation surface. However the pseudo discontinuity
(section 3.2) makes the integration quite unstable: a
small error in the seeding curve may cause large error
in the integration.

Here we apply step advancing integration in both for-
ward and backward direction until they meet each other.
In each integration step we use super sampling to ad-
just the result position. Figure 6 illustrates this. We
divide period ∆t into small steps δ t, and integrate the
surface step by step. For a seeding point x in the seed-
ing curve λ , we consider a small circular neighborhood
around it and use polar stratified sampling (as shown in
Figure 6b) to select the sample points, we integrate all
these sample points for δ t, and compare the end posi-
tions of them to collect the adjusted sampling result x1.
Two strategies can be used to collect the adjusted result:
(1) closest point to the neighbor adjusted result; (2) the
average of sample end points in the most frequent area.
In practice we haven’t found significant differences be-
tween these two sample collection strategies. With the
adjusted sampling result, we can integrate step by step
further until the final surface is obtained.

5 THE ALGORITHM

In this section we formulate our algorithm to extract the
path line oriented topological segmentation surface of a
periodic 2D vector field v(x,t):

1. Pick a time τ with tmin ≤ τ < tmax for which we com-
pute the topological segmentation.

2. Compute the Poincaré maps mτ and m̄τ , or equiva-
lently, the vector fields qτ and q̄τ [13].

3. Extract the fix points of mτ and m̄τ and classify
them [13].

4. Generate the topological segmentation at time τ in
both forward and backward direction using point
based method [13].

5. Extract the edges of both the forward and backward
segmentation basins as seeding curves.

6. Integrate the forward seeding curves in both forward
and backward direction until the separation surfaces
of forward asymptotic path line behavior for a whole
period is obtained.

7. Similar to 6 for separation surfaces of backward as-
ymptotic path line behavior.

Note that the extracted edges may have small jags,
before integrating the separation surfaces, we must
smooth them. Here we apply the Gaussian filter to
smooth the edges.

6 APPLICATIONS
In this section we apply our technique to a number of
test data sets.

Figure 7 and figure 9a-c illustrate our technique at a
random vector field. We use random fields as a proof-
of-concept because they contain a maximal amount of
topological information. The vector field is piecewise
trilinear over a 7×7×7 grid where the time i-th and the
(6− i)th time slices coincide for i = 0, ..,2. Figure 9a
shows the visualization of v using LIC planes at three
different time slices as well as a number of illuminated
stream lines. Figure 7a-7b show the 2D vector fields
qτ and q̄τ which correspond to the Poincaré maps mτ
and m̄τ for τ = tmin. The LIC images reveal the pseudo
discontinuities in the Poincaré maps. However, the LIC
images also present information about the stream lines
of qτ and q̄τ . Since only a discrete integration is carried
out, stream lines of qτ and q̄τ do not have a physical
interpretation. Figure 7c shows the basins of the sinks
of mτ and figure 7d does so for the basins of m̄τ .

Figure 9b shows the detected 7 sink behavior critical
path lines and their corresponding extracted separation
surfaces. These critical path lines are sinks in forward
integration of v (marked with blue points), and all the
path lines in the area between the critical path line and
the surrounding separation surface asymptotically con-
verge to the critical path line when integrated forward.
Figure 9c shows the detected 4 source behavior critical
path lines and their corresponding extracted separation

Journal of WSCG ISSN 1213-6972 79 ISBN 978-80-86943-00-8

(a) (b)

(c) (d)

Figure 7: The random data set: (a) qτ at τ = tmin; (b)
q̄τ at τ = tmin; (c) Basins of qτ at τ = tmin; (d) Basins
of q̄τ at τ = tmin.

surfaces. These critical path lines are sinks in backward
integration of v (marked with red points), and all the
path lines in the area between the critical path line and
the surrounding separation surface asymptotically con-
verge to the critical path line when integrate backward.
The computing time for this data set was 10 minutes for
the basin generation, several seconds for seeding curve
extraction and 30 minutes for the separation surface in-
tegration with 50 integration steps and 8×8 polar strat-
ified super sampling on a Pentium 4 with 3.40 GHz.

Figure 8 and figure 9d-f visualize the path line ori-
ented topology of the electrostatic field around a ben-
zene molecule. This data set was calculated on a 1013

regular grid using the fractional charges method de-
scribed in [14]. Originally this is a 3D steady gradient
field describing the force of the electrostatic potential
upon a positive point charge given in a certain location.
If such a point charge is situated very close to the mole-
cule, the closest atom will exert the highest force on it,
i.e., attract or repel it. The influence of a single atom
decreases the farther the point charge is located from
the whole molecule. Instead, all atoms have nearly the
same influence. One might say that the molecule as a
whole is exerting force on a somewhat far located point
charge. Thus, it is possible to distinguish between a
near and a far field.

Since the behavior of this field is rather complex
[19, 27], we applied our method to find a simplified vi-
sual representation by neglecting the w-component of
the field and interpreting the z-axis as time. This yields

(a) (b)

Figure 8: The periodic benzene data set: (a) Basins of
qτ at τ = tmin; (b) Basins of q̄τ at τ = tmin.

inside into the forces induced by the distribution of the
atoms in the main plane of the molecule: as one moves
away from the molecule, the influence of a single atom
decreases and therefore the influence of the atom dis-
tribution decreases as well. The field can now be inter-
preted as a 2D periodic vector field, since the 2D forces
are the same on both sides of the molecule.

Figure 9d elucidates the influence of atom distribu-
tion: the trajectories change radically close to the mole-
cule (high influence in near field) while in other areas
they are nearly straight (low influence in far field). To
get insight into the attracting and repelling behavior,
we computed the basins for forward and backward inte-
gration (figure 8) as well as their corresponding critical
path lines (figures 9e-f).

Figure 9e shows the 18 sink behavior critical path
lines and their corresponding extracted separation sur-
faces for periodic benzene force field. All the point
charges in the area between the critical path line and
the surrounding separation surface asymptotically con-
verge to the critical path line as time goes. Similarly fig-
ure 9f shows the 13 sink behavior critical path lines and
their corresponding extracted separation surfaces. All
the point charges in the area between the critical path
line and the surrounding separation surface asymptoti-
cally converge to the critical path line for backward in-
tegration. The computing time for benzene data set was
15 minutes for the basin generation, several seconds for
seeding curve extraction and 100 minutes for the sepa-
ration surface integration with 80 integration steps and
8×8 polar stratified super sampling.

7 CONCLUSIONS

In this paper we introduced an approach to extracting
the separation surfaces for asymptotic behavior of path
lines in periodic time-dependent vector fields. We apply
an image analysis method to extract the seeding curves
and integrate these seeding curves with step advancing
super sampling adjustment to generate the final separa-
tion surfaces. The main limitation of our separation sur-
face extraction approach is that the basin shape must be
contiguous enough. If they are quite irregular and dis-

Journal of WSCG ISSN 1213-6972 80 ISBN 978-80-86943-00-8

(a) (b) (c)

(d) (e) (f)

Figure 9: (a) The visualization of a random periodic vector field and the corresponding path lines; (b) The forward
converge separation surfaces and the corresponding sink critical path lines for the random data set; (c) The
backward converge separation surfaces and the corresponding source critical path lines for the random data
set; (d) The visualization of the periodic benzene force field, the benzene molecule and the corresponding path
lines; (e) The forward converge separation surfaces and the corresponding sink critical path lines for the benzene
data set; (f) The backward converge separation surfaces and the corresponding source critical path lines for the
benzene data set.

continuous, the seeding curve extraction will fail. How-
ever the basins of many applications are regular enough
to extract the separation surfaces.

ACKNOWLEDGMENT

All visualizations in this paper have been created using
AMIRA – a system for advanced 3D visualization and
volume modeling [15] (see http://amira.zib.de/). The
project has partially been supported by Max Planck
Center of Visual Computing and Communication
(MPC-VCC). Parts of this work have been done in
the scope of the basic research on visualization at the
VRVis Research Center in Vienna, Austria, which is
funded by an Austrian research program called Kplus.

REFERENCES

[1] W. de Leeuw and R. van Liere. Collapsing flow
topology using area metrics. In Proc. IEEE Visu-
alization ’99, pages 149–354, 1999.

[2] W. de Leeuw and R. van Liere. Visualization
of global flow structures using multiple levels of
topology. In Data Visualization 1999. Proc. Vis-
Sym 99, pages 45–52, 1999.

[3] C. Garth, X. Tricoche, and G. Scheuermann.
Tracking of vector field singularities in unstruc-

tured 3D time-dependent datasets. In Proc. IEEE
Visualization 2004, pages 329–336, 2004.

[4] A. Globus, C. Levit, and T. Lasinski. A tool for
visualizing the topology of three-dimensional vec-
tor fields. In Proc. IEEE Visualization ’91, pages
33–40, 1991.

[5] R. C. Gonzalez and R. E. Woods. Digital Image
Processing. Addison-Wesley, 3rd edition, 1992.

[6] J. Helman and L. Hesselink. Representation and
display of vector field topology in fluid flow data
sets. IEEE Computer, 22(8):27–36, August 1989.

[7] R. C. Jain, R. Kasturi, and B. G. Schunck. Ma-
chine Vision. McGraw-Hill, 1995.

[8] S.K. Lodha, J.C. Renteria, and K.M. Roskin.
Topology preserving compression of 2D vector
fields. In Proc. IEEE Visualization 2000, pages
343–350, 2000.

[9] H. Löffelmann, H. Doleisch, and E. Gröller. Vi-
sualizing dynamical systems near critical points.
In Spring Conference on Computer Graphics and
its Applications, pages 175–184, Budmerice, Slo-
vakia, 1998.

[10] H. Löffelmann, T. Kučera, and E. Gröller. Visual-
izing Poincaré maps together with the underlying
flow. In Proc. VisMath ’97, pages 315–328, 1998.

Journal of WSCG ISSN 1213-6972 81 ISBN 978-80-86943-00-8

[11] K. Mahrous, J. Bennett, G. Scheuermann,
B. Hamann, and K. Joy. Topological segmentation
in three-dimensional vector fields. IEEE Trans-
actions on Visualization and Computer Graphics,
10(2):198–205, 2004.

[12] G. Scheuermann, H. Krüger, M. Menzel, and
A. Rockwood. Visualizing non-linear vector field
topology. IEEE Transactions on Visualization and
Computer Graphics, 4(2):109–116, 1998.

[13] K. Shi, H. Theisel, T. Weinkauf, H. Hauser, H.-C.
Hege, and H.-P. Seidel. Path line oriented topol-
ogy for periodic 2d time-dependent vector fields.
In Data Visualization 2006. Proc. EuroVis ’06,
pages 139–146, 2006.

[14] D. Stalling and T. Steinke. Visualization of
vector fields in quantum chemistry. Tech-
nical report, ZIB Preprint SC-96-01, 1996.
ftp://ftp.zib.de/pub/zib-publications/reports/SC-
96-01.ps.

[15] D. Stalling, M. Westerhoff, and H.-C. Hege.
Amira: A highly interactive system for visual data
analysis. The Visualization Handbook, pages 749–
767, 2005.

[16] H. Theisel. Designing 2D vector fields of arbitrary
topology. Computer Graphics Forum (Eurograph-
ics 2002), 21(3):595–604, 2002.

[17] H. Theisel, Ch. Rössl, and H.-P. Seidel. Compres-
sion of 2D vector fields under guaranteed topol-
ogy preservation. Computer Graphics Forum (Eu-
rographics 2003), 22(3):333–342, 2003.

[18] H. Theisel and H.-P. Seidel. Feature flow fields. In
Data Visualization 2003. Proc. VisSym 03, pages
141–148, 2003.

[19] H. Theisel, T. Weinkauf, H.-C. Hege, and H.-P.
Seidel. Saddle connectors - an approach to visual-
izing the topological skeleton of complex 3D vec-
tor fields. In Proc. IEEE Visualization 2003, pages
225–232, 2003.

[20] H. Theisel, T. Weinkauf, H.-C. Hege, and H.-
P. Seidel. Topological methods for 2D time-
dependent vector fields based on stream lines and
path lines. IEEE Transactions on Visualization
and Computer Graphics, 11(4):383–394, 2005.

[21] X. Tricoche, G. Scheuermann, and H. Hagen.
A topology simplification method for 2D vector
fields. In Proc. IEEE Visualization 2000, pages
359–366, 2000.

[22] X. Tricoche, G. Scheuermann, and H. Hagen.
Continuous topology simplification of planar vec-
tor fields. In Proc. Visualization 01, pages 159 –
166, 2001.

[23] X. Tricoche, T. Wischgoll, G. Scheuermann, and
H. Hagen. Topology tracking for the visualization

of time-dependent two-dimensional flows. Com-
puters & Graphics, 26:249–257, 2002.

[24] B. Wallisch. Internet-based visualization of basin
boundaries for three-dimensional dynamical sys-
tems, 2000.

[25] T. Weinkauf, H. Theisel, H.-C. Hege, and H.-P.
Seidel. Boundary switch connectors for topolog-
ical visualization of complex 3D vector fields. In
Data Visualization 2004. Proc. VisSym 04, pages
183–192, 2004.

[26] T. Weinkauf, H. Theisel, H.-C. Hege, and H.-
P. Seidel. Topological construction and vi-
sualization of higher order 3D vector fields.
Computer Graphics Forum (Eurographics 2004),
23(3):469–478, 2004.

[27] T. Weinkauf, H. Theisel, K. Shi, H.-C. Hege,
and H.-P. Seidel. Extracting higher order critical
points and topological simplification of 3D vec-
tor fields. In IEEE Visualization, page 71. IEEE
Computer Society, 2005.

[28] T. Weinkauf, H. Theisel, K. Shi, H.-C. Hege, and
H.-P. Seidel. Topological simplification of 3d vec-
tor fields by extracting higher order critical points.
In Proc. IEEE Visualization 2005, pages 559–566,
2005.

[29] R. Westermann, C. Johnson, and T. Ertl.
Topology-preserving smoothing of vector fields.
IEEE Transactions on Visualization and Com-
puter Graphics, 7(3):222–229, 2001.

[30] T. Wischgoll and G. Scheuermann. Detection
and visualization of closed streamlines in planar
flows. IEEE Transactions on Visualization and
Computer Graphics, 7(2):165–172, 2001.

[31] T. Wischgoll, G. Scheuermann, and H. Hagen.
Tracking closed stream lines in time-dependent
planar flows. In Proc. Vision, Modeling and Vi-
sualization 2001, pages 447–454, 2001.

Journal of WSCG ISSN 1213-6972 82 ISBN 978-80-86943-00-8

Evaluation of a Bricked Volume Layout for a Medical
Workstation based on Java

Peter Kohlmann†, Stefan Bruckner†, Armin Kanitsar‡, M. Eduard Gröller†
†Vienna University of Technology

Institute of Computer Graphics and Algorithms
Favoritenstrasse 9-11/E186

1040 Wien, Austria
{kohlmann | bruckner | groeller}@cg.tuwien.ac.at

‡AGFA
Diefenbachgasse 35
1150 Wien, Austria

armin.kanitsar@gwi-ag.com

ABSTRACT

Volumes acquired for medical examination purposes are constantly increasing in size. For this reason, the computer’s memory
is the limiting factor for visualizing the data. Bricking is a well-known concept used for rendering large data sets. The volume
data is subdivided into smaller blocks to achieve better memory utilization. Until now, the vast majority of medical workstations
use a linear volume layout. We implemented a bricked volume layout for such a workstation based on Java as required by our
collaborative company partner to evaluate different common access patterns to the volume data. For rendering, we were mainly
interested to see how the performance will differ from the traditional linear volume layout if we generate images of arbitrarily
oriented slices via Multi-Planar Reformatting (MPR). Furthermore, we tested access patterns which are crucial for segmentation
issues like a random access to data values and a simulated region growing. Our goal was to find out if it makes sense to change
the volume layout of a medical workstation to benefit from bricking. We were also interested to identify the tasks where
problems might occur if bricking is applied. Overall, our results show that it is feasible to use a bricked volume layout in the
stringent context of a medical workstation implemented in Java.

Keywords: Medical Visualization, Bricked Volume Layout, MPR, Medical Workstation.

1 INTRODUCTION

Usually, medical volume data sets are available as
stacks of two-dimensional images (slices). In a linear
volume layout these values are stored in a single
array. The rendering of enormously large data sets
becomes problematic with this storing approach. For
instance, the male data set of the National Library of
Medicine’s Visible Human Project [NLM] consists of
1871 axial anatomical images. Each is composed by
2048 x 1216 pixels with a color depth of 24 bit, which
amounts to about 14 GB. As this is considerably more
than the address space of a typical PC, the data set has
to be stored on hard disk and needs to be transferred
to main memory on demand. Because of limited
bandwidth these transfers are quite costly and result in
undesirable latency.
Bricking is a technique to subdivide the volume into
smaller parts to overcome the mentioned problem. A
single brick contains a fixed number of data values in
x-, y- and z-dimension. Accessing a certain data value

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

Copyright UNION Agency – Science Press, Plzen, Czech
Republic

in a bricked volume is inevitably more costly than in a
linear volume layout. After it is determined in which
brick the value is located, its position inside this brick
has to be calculated. Additional computational effort
is necessary if interpolation and gradient calculation
come into play. For instance, if the interpolation at a
certain location needs data values from several bricks,
an intelligent structure to ensure fast access to the
according values is required. Solving this task becomes
especially difficult within a Java-based implementation
as required by our collaborating company partner.
There are efficient addressing solutions implemented
in C++ which require a lot of array accesses. An array
access is quite cheap in C++, but it is significantly
slower in Java because of costly boundary checks.
However, the implementation of a PACS (Picture
Archiving and Communications System) in Java has
several benefits. Java offers tools for a convenient
plug-in development. In addition, it provides platform
independence.
For the evaluation whether a bricked volume layout
is applicable for a medical workstation based on Java
we investigate some common access patterns to the
volume data. Important tasks of such a workstation
are efficient handling, manipulation and display of
images. As most radiologists still prefer to examine
two-dimensional slices, our approach focuses on a
visualization technique called Multi-Planar Reformat-
ting (MPR). MPR provides an arbitrary reformation of

Journal of WSCG ISSN 1213-6972 83 ISBN 978-80-86943-00-8

a given two-dimensional image stack. Basically, a two-
dimensional plane is positioned and oriented inside the
three-dimensional volume and the interpolated data
values are displayed on this plane as shown in Figure 1.
The left image shows a three-dimensional view of the
data set and the slicing plane. In the right image the
corresponding MPR slice is presented.
In various PACSs it is possible to display medical data
by using three two-dimensional planes as shown in
Figure 2. These planes are aligned with the three major
axes to provide the axial, the sagittal and the coronal
view simultaneously.

Figure 1: To generate an MPR-slice, a plane is defined
which intersects the volume (left). Interpolated data
values are shown on this plane (right).

With a linear volume layout the time for computing
these different views varies according to the main data
alignment. As all views are displayed at the same time,
the slowest one is the performance bottleneck. For this
reason, it is important that our approach provides not
only a high, but also a rather constant frame rate for the
different views.

Figure 2: Axial, sagittal and coronal view of a CT
head data set. They are displayed simultaneously by
a PACS. In the lower right part of the display area an
overview image (scout view) is provided.

Segmentation is a very important task in medical vi-
sualization. Only if the access to the values of the data
set is possible in an adequate time it makes sense to
change the volume layout of a medical workstation.
Therefore, we compare the linear and the bricked vol-

ume layout in respect to important access patterns for
segmentation.
The remainder of this paper is structured as follows.
Section 2 provides an overview of the relevant previ-
ous work. In Section 3, our algorithms for the MPR
calculation are presented in more detail. We show the
different steps starting with the generation of the bricks
up to the final MPR image. A discussion of our results
concerning the performance of different access patterns
is provided in Section 4. Finally, Section 5 concludes
the paper and presents some ideas for future work.

2 RELATED WORK
Several approaches address bricking for ray casting.
Law and Yagel [LY96a] presented a distributed ray
tracing system. They identify coherency (data locality)
as a very important factor which highly influences
the performance. As their work employs an object
data-flow approach, objects which are once fetched
have to be fully processed before they are replaced
by other objects. To ensure multi-frame thrashless
ray casting, they divide the volume into equally sized
cells and advance a ray front to generate the image.
In addition, the screen is subdivided into a number of
stripes of equal width, which are distributed to different
available processors. Beside these stripes, each brick is
randomly assigned to a certain processor. A linked-list
data structure handles the information how the rays are
advanced through the cells.
Our work is also inspired by the approach of Grimm
et al. [GBKG04]. They focused on memory-efficient
CPU-based volume rendering and presented several
high-level optimizations for this purpose. As mini-
mization of memory usage is crucial for their approach,
several computations are performed on the fly. A
bricked volume layout is used along with refined data
addressing techniques to accelerate the on-the-fly
computations. Costly computations to address the data
values and performance-decreasing if-else statements
are avoided by using elaborated shift-operations in
addition to look-up tables. Efficient utilization of the
CPU like thread-level parallelism enables a significant
speedup compared to other techniques.
Approaches for interactive ray tracing based on brick-
ing which are optimized for distributed systems have
been presented by Parker et al. [PPL+99] and by
DeMarle et al. [DPH+03]. Guthe et al. [GWGS02]
accomplished an interactive walkthrough of large data
sets on standard PC hardware. They apply wavelet
filters to the subdivided (bricked) volume to get a
compression of the volume data. This representation
can be decompressed on-the-fly. Hardware texture
mapping is used for the rendering.
Weiskopf et al. [WWE04] presented a solution to
maintain constant frame rates in 3D texture-based
volume rendering. For direct volume visualization the

Journal of WSCG ISSN 1213-6972 84 ISBN 978-80-86943-00-8

Figure 3: The MPR pipeline.

performance is highly view-dependent because of the
texture memory layout of current graphics hardware.
Using bricks with alternating orientations helps to
avoid this varying performance.
A rendering pipeline for real-time rendering of isosur-
faces was introduced by Hadwiger et al. [HSS+05].
With bricking and acceleration techniques like empty
space skipping, they achieve interactive frame rates for
large volumes which exceed the GPU texture memory.

3 BASIC ALGORITHMS
Most of the approaches mentioned in the previous sec-
tion are focused on volume ray casting. As many ra-
diologists prefer to examine two-dimensional slices we
decided to evaluate the performance of an MPR imple-
mentation based on the different volume layouts. Our
goal was to achieve an implementation with a high and
rather constant frame rate. In this section, the basic al-
gorithms for the generation of the bricks and the MPR
implementation based on a bricked volume layout are
presented.

3.1 Brick Generation
To benefit from an efficient data addressing, the brick
size has to be a power of two. Grimm et al. [GBKG04]
experimented with various sizes and came to the con-
clusion that 64 KB (32 x 32 x 32 * 16 bit) is an
appropriate size in their hardware setup. Law and
Yagel [LY96b] also showed that this size is a good
choice. If the bricks are smaller, this is helpful for
acceleration techniques such as empty-space skipping.
But as a drawback additional computational effort is
necessary to manage smaller bricks.
In our case a brick is quite a simple data structure with
only few attributes. It has a unique ID to reference the
brick, the min- and the max-value of the contained data
and the information if it is padded. Padding has to be
performed if a certain brick is not completely filled with
data values. This occurs if the number of data values is
not a multiple of the brick dimension (32) in one of the
volume dimensions. As we want to store several bricks
instead of the monolithic volume, an important ques-
tion is how the bricks are generated.

First of all, we consider from where the data is ex-
tracted. The DICOM (Digital Imaging and Commu-
nications in Medicine) format is an open standard for
medical images. It provides a container for image data
and meta information like parameters of the scanner
and patient information and it contains a single file for
every slice. These slices are loaded successively but
not necessarily in the correct order. If a file is read,
its data array is extracted and the values are written to
the corresponding brick arrays. A layer of bricks in
xy-dimension is called a slab. For a volume in which
each slice is recorded with a resolution of 512 x 512,
a slab is built by 256 (16 x 16) bricks. The total num-
ber of slabs corresponds to the number of bricks in the
z-direction. As soon as all the brick arrays for a single
slab are filled with data values a notification is sent out.
Then, the MPR renderer can start to generate part of the
image. With this approach, it is not necessary to wait
until the whole set of DICOM images is loaded to start
the rendering process.

3.2 MPR Computation
After the generation of the bricks we focus on an impor-
tant access pattern to medical volume data. In Figure 3
our MPR pipeline shows the steps which are necessary
to produce the final image. The presented approach is
based on a brick-wise resampling of the volume along
rays. At first, a brick rasterization is performed to iden-
tify the bricks which are intersected by the MPR plane.
In the next step, rays within the plane are cast to deter-
mine enter- and exit points where the rays hit the vol-
ume. Then, the list of intersected bricks is traversed
and trilinear interpolation is performed to calculate the
values at the sample positions along the rays. A ray is
propagated to the next brick as soon as it is completely
processed for the current brick.
To ensure high frame rates we avoid floating-point oper-
ations as much as possible. Therefore, several floating-
point variables are converted into a fix-point represen-
tation via bit shifting. With this approach it is possible
to perform the whole interpolation process and many
intersection tests exclusively based on fix-point arith-
metic. In the following sections, the steps of the MPR
pipeline will be described in detail.

Journal of WSCG ISSN 1213-6972 85 ISBN 978-80-86943-00-8

3.2.1 Brick Rasterization

MPR visualizes the information which is resampled
on an arbitrarily oriented plane that intersects the vol-
ume. It is important to efficiently determine all the
bricks which have to be processed to render the result-
ing image. An efficient method to detect plane and
axis-aligned bounding box intersections, presented by
Möller and Haines [MH99], is used for these calcula-
tions.
At this point we do not need to know where exactly the
bricks are intersected. In a loop over all bricks, the rel-
evant ones are extracted. The used algorithm exploits
the fact that only a single diagonal of the box has to
be tested for intersection. It is the one which is most
closely aligned with the normal of the plane. In Fig-
ure 4 this is illustrated for the two-dimensional case.
The three gray squares represent bricks and the black
line is the two-dimensional version of the plane. The
thickened gray lines are the diagonals of the squares
which are most closely aligned with the plane’s normal
(black vector). It is sufficient to check if the black line
intersects these selected diagonals to determine if the
corresponding square is intersected.

Figure 4: Brick rasterization in the two-dimensional
case. Only the thickened diagonals of the squares (the
ones which are most closely aligned with the normal of
the plane) have to be checked for intersections with the
plane.

In the three-dimensional case we have to identify the
vertices of the diagonal of interest only for a single
brick. The diagonals of the other bricks which need
to be checked are calculated by adding the offset of the
specific brick in x-, y-, and z-direction. With this al-
gorithm the brick rasterization is performed very effi-
ciently.

3.2.2 Basic Ray Setup

This section describes the basic setup of the rays and
introduces some data structures. Two vectors and a
point are used to define the MPR plane as shown in Fig-
ure 5 (top). Position p defines the center of the plane.
The vectors u and v are orthogonal to each other and
span the plane. In Figure 5 (bottom) the mapping of this
plane to the image space is illustrated. A ray which is
lying within the MPR plane is cast through the volume

on each scan line. The pixels in image space are filled
by an equidistant sampling along each ray. In contrast
to ray casting, a ray is not utilized to gather the value for
a single pixel but to collect the values for a complete
scan line. To store some required information for re-
sampling, the rays are initially cast through the volume.
Each ray is an object with the following attributes:

• int enteringBrick

• int firstVolumeSample

• int lastVolumeSample

• int currentSamplePos

Figure 5: The point p and vectors u and v define the
MPR plane in object space (top). This plane is mapped
to the image space and rays are cast through the vol-
ume (bottom). The volume is resampled along these
rays.

Figure 6 illustrates the values which are stored by
these variables. We do a test if the ray intersects
the volume. If this is the case, there is a volume-
entry- and a volume-exit point. The ID of the first hit
brick is assigned to enteringBrick. As resampling is
performed along the ray, the first and the last of the
ray’s sample positions inside the volume are assigned
to f irstVolumeSample and lastVolumeSample. All the
sample positions of a ray which are outside the volume

Journal of WSCG ISSN 1213-6972 86 ISBN 978-80-86943-00-8

are set to the background color. The current sample po-
sition currentSamplePos is initially set to the value of
f irstVolumeSample.

Figure 6: Two-dimensional illustration of a ray which is
initially cast through the volume.

In addition, two arrays are used to store brick-
relevant information:

• short[] brick_fromRay

• short[] brick_toRay

The size of these arrays corresponds to the total num-
ber of bricks. A loop over all rays is performed to deter-
mine the attributes of each ray. Each of these ray tests
results in an update of the two brick arrays. The first ray
which hits a certain brick is stored in brick_ f romRay
and the respective last one is written to brick_toRay.
This structure keeps track of all the rays which intersect
a certain brick. In Figure 7 this is shown for an example
brick. It is intersected by the rays 231 to 235. The ac-
cording entries in the brick_ f romRay and brick_toRay
arrays are set to 231 and 235.

Figure 7: The brick is intersected by a number of
rays. Two brick_ f romRay and brick_toRay arrays
keep track of this by storing the number of the first and
of the last ray.

3.2.3 Brick Prefetching

In the brick rasterization step we identified all the bricks
which are intersected by the defined plane. The bricks
are organized in a cache implementation and they can
be addressed with unique IDs. There is a function call
to fetch and to release a single brick. It is necessary to
minimize the number of function calls as much as pos-
sible to achieve optimal performance. Therefore, we

fetch all the bricks which are needed to calculate an
image before we start with the resampling. After one
image is calculated, all the bricks are released again to
ensure an efficient usage of the available memory.
The image-relevant bricks are those which were iden-
tified by the brick rasterization and all their neighbor-
ing bricks. The brick neighbors are needed for access
patterns to the data during resampling or the computa-
tion of gradients as described by Grimm [Gri05]. In
Figure 8 this is illustrated for the two-dimensional sce-
nario.

Figure 8: Subdivision of the sample positions inside a
brick in 2D for the access patterns during resampling
and gradient computation. For resampling the samples
can be divided into 4 subsets (left). To calculate gradi-
ents 9 subsets can be built (right).

The left image shows that the sample positions of a
brick can be divided into 4 subsets if resampling has to
be performed. This subdivision is based on the fact that
for a resampling operation either only samples from the
same brick suffice or (in 2D) samples from one or three
neighboring bricks are necessary. For the majority of
the sample positions the needed neighboring samples
are available inside the same brick. But for the sam-
ple positions on the top edge, the right edge and the
top-right corner, samples from neighboring bricks are
needed. In three dimensions an 8-neighborhood is used
for resampling. Figure 8 (right) shows the subdivision
of the sample positions for the gradient calculation. An
8-neighborhood is needed for two dimensions. This
leads to 26 neighbors which have to be addressed in
three dimensions.

3.2.4 Brick-Wise Processing

For performance reasons it is not sufficient to traverse
one ray after another. This is very inefficient because it
is likely that consecutive rays partially process the same
data. As the cache size is limited, the same data is read
from main memory several times and slows down the
image computation. It is necessary to process the vol-
ume data brick wise to benefit from the bricked memory
layout and to improve data locality. The bricks, which
were identified during the brick rasterization step, need

Journal of WSCG ISSN 1213-6972 87 ISBN 978-80-86943-00-8

to be ordered in a front-to-back manner according to the
ray direction.
Afterwards, one brick after another is processed in the
determined order. For each brick, references to its
26 neighbors point to the according prefetched bricks.
Now, it is possible to look up the intersecting rays from
the brick_ f romRay and brick_toRay arrays for the cur-
rently active brick. A further loop is used to process this
list of rays. Depending on the three components of the
ray direction, a ray has to be tested with three sides of
the brick to determine how many ray samples are inside
the current brick. In a third loop the samples along the
ray are traversed within the brick. A brick is entirely
processed as soon as the contribution of all sample po-
sitions along its intersecting rays to the final image is
computed.
Grimm et al. [GBKG04] presented a very efficient way
to address the values within a brick. To facilitate tri-
linear interpolation they precompute the offsets for the
eight neighboring samples and store them in a look-up
table. With this approach they avoid to compute several
Boolean conditions in costly if-else constructs. These
look ups are on the one hand used to determine the brick
in which a certain sample position is located and on the
other hand to get the offset inside this brick. However,
they have an implementation in C++ where the access
of array elements is quite cheap. As the number of ar-
ray accesses in their approach is rather large for the in-
terpolation case, it is not applicable to our Java imple-
mentation. The high number of look ups would lead
to poor performance because of the array implementa-
tion of Java. For each access a boundary check is per-
formed, with the result that the performance drawback
compared with an array access in C++ is significant.
Depending on the sample position within a brick, we
can determine if the needed values for the trilinear in-
terpolation are entirely inside the brick or if they are
spread over neighboring bricks. To identify the in-
volved bricks we use a method presented by Grimm
et al. [GBKG04]. We assume to have the x-, y- and
z-position where the sample is located inside a brick.
Then it is possible to calculate the case of the location
inside the brick with the equation

case = 9*(((((x-1)&(b))|1)+1)>>5)
+ 3*(((((y-1)&(b))|1)+1)>>5)
+ (((((z-1)&(b))|1)+1)>>5),

where b is two times the brick dimension (32) mi-
nus 1 and >> 5 corresponds to a division by the
brick dimension. The case represents the subset of the
brick where the specific sample position is located as
shown in Figure 8 (right). Extended to three dimen-
sions there are 27 brick subsets. The case calculation
provides a value within the range [0,26]. This value
defines the location of the sample position inside the
active brick. With this information we know which

neighboring bricks are needed for the resampling
process. The case computation helps to avoid the
evaluation of a number of long Boolean statements
to determine the sample position inside the brick. A
switch/case construct is used to select the adequate
equation for the trilinear interpolation.

3.2.5 Ray Propagation

As soon as all the sample positions along a ray are pro-
cessed for the active brick, this ray is propagated to the
adjacent brick it enters as shown in Figure 9.

Figure 9: A ray is propagated to the adjacent brick
it enters after it is processed for the active brick. To
achieve this, the entries of the corresponding brick ar-
rays brick_ f romRay and brick_toRay are updated.

This has to be done because we have only registered
the rays at the bricks which they are entering first at
their way through the volume. We have already calcu-
lated the number of samples along the ray within the
active brick, the current sample position and the last
sample position of the ray which is inside the volume.
With this information we can determine the position of
the first sample along the ray which is outside the cur-
rent brick. This position is used to calculate the ID of
the next brick which is intersected by the current ray.
Afterwards, the ray is propagated by updating the two
arrays brick_ f romRay and brick_toRay and the current
sample position of the ray.

4 RESULTS
This section provides an overview of the results of the
presented implementation. At first, we will evaluate the
performance of the MPR computation for the bricked
volume layout versus the linear volume layout. Sec-
ondly, we will examine how the bricking influences
other important access patterns like the random access
to data values or a simulated region growing approach.
The PC for the performance tests is configured with an
AMD Athlon 64 Dual Core Processor 4400+, 2 GB
of main memory and an NVIDIA GeForce 7800 GTX
graphics card with 256 MB of internal memory. On the

Journal of WSCG ISSN 1213-6972 88 ISBN 978-80-86943-00-8

software side, the used Java version is the Java Runtime
Environment Version 5.0 Update 6.

4.1 MPR Computation
To compare the performance of an MPR implementa-
tion based on a linear volume layout with our imple-
mentation we measured the time to calculate a single
image. The specifications of the CT data set we used
for these tests are:

• Resolution: 512 x 512 x 333
• Spacing: 0.40/0.40/0.90 mm

We measured the time for the computation of a sin-
gle image for the cases where the slices are parallel
to the xy-plane (coronal), the xz-plane (axial) and the
yz-plane (sagittal). Additionally, the performance for
the computation of an arbitrarily orientated slice is of
interest. For the axial, sagittal and coronal test case
the plane is moved through the volume and the aver-
aged time per slice is calculated. In the case of the arbi-
trarily oriented slice, a plane, which is spanned by two
randomly generated vectors that are orthogonal to each
other, is defined within the volume. The directions of
these vectors are changed in a loop and the averaged
time is taken as the result. The size of the output im-
ages is 512 pixels in height and width. In Figure 10 the
results of these tests are listed.

Figure 10: The averaged time in milliseconds which is
needed to compute one MPR image for the axial, the
sagittal, the coronal and the random case.

Whereas we have a performance loss in the axial and
the coronal case of about 30 %, the sagittal case is ac-
celerated by about 30 %. In the case of the randomly
oriented plane the loss is about 16 %. This rather high
performance gap between the axial and coronal versus
the sagittal case using a linear volume layout is caused
by different memory access patterns. The CT scanner
that recorded the used data set generated primary im-
ages which were axially aligned. Thus, the cache hit
ratio for the calculation of an axial slice is very good in
contrast to the sagittal case. The utilization of a bricked
volume layout offers a much better data locality.

4.2 Random Access
The worst case scenario to access the data values con-
cerning data locality is a random access. We compared

the time to access 512 x 512 values which are randomly
distributed within the volume. The needed time for
this access pattern is 21.4 ms in the monolithic versus
41.4 ms in the bricked case. For a bricked volume lay-
out more address computations have to be performed to
get a certain value. We assume that we have three ran-
dom values x, y and z, the number of values per data di-
mension (xValues, yValues, zValues) and the array with
all the data values (data). For a monolithic volume lay-
out it is easy to access the value through

val = data[z*xValues*yValues
+ y*xValues + x];

Compared to this, the following effort is necessary
to access one value in a bricked volume layout. We
know the number of bricks in the three dimensions
(xBricks, yBricks, zBricks). At first, the number of the
brick (brickNum) which contains the sample position
has to be calculated.

int brickNumX = x >> 5;
int brickNumY = y >> 5;
int brickNumZ = z >> 5;

int brickNum = brickNumX
+ brickNumY*xBricks
+ brickNumZ*xBricks*yBricks;

After this, it is necessary to calculate the position in-
side the active brick (posInBrick) to access the value.

int xPosBrick = x%32;
int yPosBrick = y%32;
int zPosBrick = z%32;

int posInBrick = xPosBrick
+ (yPosBrick << 5)
+ (zPosBrick << 10);

val = bricks[brickNum][posInBrick];

The increased effort for this hierarchical address
computation compared to the simple calculation for the
linear volume layout causes the measured performance
difference of a factor two.

4.3 Spherical Access
The last access pattern we evaluated is a spherical ac-
cess. We used a parameterized sphere to simulate re-
gion growing which is a popular segmentation algo-
rithm to identify homogeneous areas inside the volume.
Therefore, the center of a sphere is randomly placed
inside the volume, with the constraint that the whole
sphere fits into the volume. For the test volume with
resolution 512 x 512 x 333, we measured the time to
access 512 x 512 data values on the parameterized sur-
face of the sphere. To simulate region growing, the ra-
dius of the sphere is varied between 5 and 150. With a

Journal of WSCG ISSN 1213-6972 89 ISBN 978-80-86943-00-8

linear volume layout the access times are quite stable.
They increase from 10.5 ms (radius 5) to 13.6 ms (ra-
dius 150). The reason for this is the worse cache hit
ratio if the values are more widespread within the vol-
ume. With bricking we have a constant access time of
15.5 ms in the case that all the bricks are prefetched.
But this strategy simulates a monolithic volume and
counteracts the benefit of bricking. In another scenario,
only the brick which holds the currently needed value
is fetched. One optimization ensures that no brick is
fetched if consecutive values are inside the same brick.
The needed time for the access of all the values takes
32 ms for a sphere with the radius 5 and increases up to
260 ms with a radius of 150.

5 CONCLUSIONS AND FUTURE
WORK

We have presented an implementation of a bricked
volume layout and evaluated different access patterns
to medical volume data. Our overall goal was to inves-
tigate the question if bricking is a good choice for a
medical workstation based on Java. The previous work
was almost exclusively based on ray casting. As many
radiologists prefer the examination of two-dimensional
slices, we focused on an MPR implementation. Com-
pared to a linear volume layout we achieved a very
good performance for this access pattern. Many PACSs
divide the screen into different sections to display MPR
images. Because of this splitting, the axial, the sagittal
and the coronal view can be displayed simultaneously.
As the computation of the different views can be
easily parallelized if a machine with several CPUs is
available, the view which needs the most time to be
computed is the performance bottleneck. Provided that
this parallelization is done, we can compare the frame
rates of the implementation based on a linear volume
layout with the ones which are based on the bricked
volume layout. Therefore, it is enough to compare the
frame rates of the according slowest views - the sagittal
ones. In this case we have an improvement for the
bricked volume layout from 40 to 57 fps or 42.5 %.
Beside this acceleration, it can be seen that the frame
rates for the different views (axial: 76 fps, sagit-
tal: 40 fps, coronal: 76 fps) are varying quite a lot using
a linear volume layout. With the bricked volume layout
we achieve almost constant frame rates for these views
because of a better data locality. Another important
point is, that the benefits of the bricked layout will
be more pronounced if the data set is large enough so
that it does not fit into the computer’s main memory
anymore.
The performance for the other access patterns is not
yet fully satisfying. Random access to the data values
takes about twice the time when bricking is used. For
the spherical access the radius of the sphere is crucial
for the performance. We are sure that optimizations

by taking into account and prefetching only affected
bricks improve the performance significantly. For
instance, the sphere can be subdivided and the bricks
which contain the surface of one part can be prefetched
and fully processed before moving to the next part.
Overall, we can recommend the application of a
bricked volume layout to medical workstations based
on Java. Future work needs to be done for different
segmentation algorithms like watershed or edge-based
techniques. Furthermore tracking algorithms and the
masking of certain areas of the volume have to be
adapted to ensure good performance for the bricked
volume layout.

ACKNOWLEDGMENTS
The work presented in this paper has been funded by
AGFA in the scope of the DiagVis project. We would
like to thank Rainer Wegenkittl and Lukas Mroz of
AGFA Wien for their collaboration and for providing
different CT data sets.

REFERENCES
[DPH+03] D. DeMarle, S. Parker, M. Hartner, C. Gribble, and

C. Hansen. Distributed interactive ray tracing for large
volume visualization. In Proceedings of IEEE Sym-
posium on Parallel and Large-Data Visualization and
Graphics, pages 87–94, 2003.

[GBKG04] S. Grimm, S. Bruckner, A. Kanitsar, and E. Gröller. A
refined data addressing and processing scheme to ac-
celerate volume raycasting. Computers and Graphics,
28(5):719–729, 2004.

[Gri05] S. Grimm. Real-Time Mono- and Multi-Volume Render-
ing of Large Medical Datasets on Standard PC Hard-
ware. PhD thesis, Vienna University of Technology,
2005.

[GWGS02] S. Guthe, M. Wand, J. Gonser, and W. Straßer. Interac-
tive rendering of large volume data sets. In Proceedings
of IEEE Visualization, pages 53–60, 2002.

[HSS+05] M. Hadwiger, C. Sigg, H. Scharsach, K. Bühler, and
M. Gross. Real-time ray-casting and advanced shading
of discrete isosurfaces. In Proceedings of Eurographics
2005, pages 303–312, 2005.

[LY96a] A. Law and R. Yagel. Multi-frame thrashless ray casting
with advancing ray-front. In Proceedings of Graphics
Interfaces, pages 70–77, 1996.

[LY96b] A. Law and R. Yagel. An optimal ray traversal scheme
for visualizing colossal medical volumes. In Proceed-
ings of Visualization in Biomedical Computing, pages
33–43, 1996.

[MH99] T. Möller and E. Haines. Real-Time Rendering. AK
Peters, Ltd., Natick, MA, 1999.

[NLM] The National Library of Medicine. The Vis-
ible Human Project. Available online at
http://www.nlm.nih.gov/research/visible/.

[PPL+99] S. Parker, M. Parker, Y. Livant, P.-P. Sloan, C. Hansen,
and P. Shirley. Interactive ray tracing for volume visual-
ization. IEEE Transactions on Visualization and Com-
puter Graphics, 5(3):238–250, 1999.

[WWE04] D. Weiskopf, M. Weiler, and T. Ertl. Maintaining con-
stant frame rates in 3D texture-based volume rendering.
In Proceedings of IEEE Computer Graphics Interna-
tional, pages 604–607, 2004.

Journal of WSCG ISSN 1213-6972 90 ISBN 978-80-86943-00-8

Real-Time Rendering of Planets with Atmospheres
Tobias Schafhitzel Martin Falk Thomas Ertl

Visualization and Interactive Systems, Universität Stuttgart

Universitätsstraße 38, 70569 Stuttgart, Germany

{schafhitzel|falkmn|ertl}@vis.uni-stuttgart.de

ABSTRACT

This paper presents a real time technique for planetary rendering and atmospheric scattering effects. Our implementation
is based on Nishita’s atmospheric model which describes actual physical phenomena, taking into account air molecules and
aerosols, and on a continuous level-of-detail planetary renderer. We obtain interactive frame rates by combining the CPU
bound spherical terrain rendering with the GPU computation of the atmospheric scattering. In contrast to volume rendering
approaches, the parametrization of the light attenuation integral we use makes it possible to pre-compute it completely. The
GPU is used for determining the texture coordinates of the pre computed 3D texture, taking into account the actual spatial
parameters. Our approach benefits from its independence of the rendered terrain geometry. Therefore, we demonstrate the
utility of our approach showing planetary renderings of Earth and Mars.

Keywords: Atmospheric scattering; Ray Tracing; Planets; Terrain Rendering; Multiresolution; GPU Programming;

1 INTRODUCTION

Realistic image synthesis plays a crucial role in mod-
ern computer graphics. One topic is the light scattering
and absorbtion of small particles in the air, called at-
mospheric scattering. In the last years, several methods
were developed to simulate this effect. These meth-
ods make it possible to simulate light beams4, the
sky8;15(including the colors of sunrise and sunset) and
the Earth viewed from space12. Also, the application
area of these methods is very broad, reaching from ed-
ucational programs, CAD applications and terrain rep-
resentations to driving, space or flight simulations in
games. However, all these methods have to overcome
the high computational costs, caused by the complexity
of solving the scattering integral.

In this paper, we discuss a fast and precise method for
physically based image synthesis of atmospheric scat-
tering. Exact integration is provided by a pre computa-
tion step, where the whole scattering integral is solved.
This unloads the graphics hardware in a way, that the
GPU is only used for transforming the actual spatial
parameters to fetch the pre computed values. In con-
trast to volume rendering approaches, we simulate the
atmospheric scattering effect from each point of view
by rendering only two spheres.

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

Copyright UNION Agency – Science Press, Plzen,
Czech Republic.

First, the light intensity reaching the observer’s eye
is pre computed for each point inside and outside the
atmosphere. This is followed by a fast evaluation of
the scattering integral for each rendered vertex easily
by fetching the pre computed texture. This fast compu-
tation makes this method applicable to rendering scenes
consisting of a larger amount of vertices, as they occur
in terrain rendering. Therefor, we prove our method
by combining atmospheric scattering and a continuous
level of detail planetary terrain renderer. Due to the
fact, that the pre computed light scattering values are
valid for planar spheres only, applying a rough planet’s
surface would implicate several problems. Thereby, the
integration distances change depending on the planet’s
structure, as well as the light contribution of the terrain
itself, which has to be accounted additionally. To ad-
dress this issues, we discuss the correct use of the pre
computed lookup texture using a minimal number of
shader instructions.

2 PREVIOUS WORK

Since physical phenomena are one of the most interest-
ing research topics in computer graphics, there has been
a considerably large amount of work on atmospheric
scattering in the last years. Most of the earlier work are
based on ray tracing, which is an appropriate method
for the creation of photo-realistic representations of the
atmosphere. But due to the high computational costs,
an interactive visualization was not realizable this time.
In previous work7;10;18, the scattering and absorbtion
of light is discussed. In 1993, Nishita et al.12 discussed
the basic equations of Rayleigh and Mie scattering ef-
fects. In this work, the attenuation of the incident light
was considered at each point of the atmosphere as well
as the attenuation from this point to the viewer. Further-

Journal of WSCG ISSN 1213-6972 91 ISBN 978-80-86943-00-8

P Pb

Pa

sl

sv

Pv

atmosphere

earth

Pc

Figure 1: Calculation of light reaching Pv.

more, additional to the sky’s color, the colors of clouds
and sea were discussed. Another model for rendering
the sky in the daytime was proposed by Preetham15

and Hoffman6, a physics based night model was de-
scribed by Jensen8. An extension of Preethams’s model
was proposed by Nielsen11 by considering a varying
density inside the atmosphere. In 2002, Dobashi et
al.4 proposed a GPU based method to implement at-
mospheric scattering using a spherical volume render-
ing. They solved the discrete form of the light scatter-
ing integral by sampling it with slices. Depending on
the shape of the slices, which are planar or spherical,
atmospheric scattering effects as well as shafts of light,
as occurring between clouds can be visualized. Later,
in 2004, O’Neil13 proposed an interactive CPU imple-
mentation, solving the scattering integral by ray cast-
ing. This method avoids expensive volume rendering
by representing the atmosphere by only two spheres,
one for the outer and one the inner boundary of the at-
mosphere. Ray casting is used to solve the discrete form
of the scattering integral by separating the ray into seg-
ments and calculate the attenuation of the light and to
the viewer for each sample point. As the connection be-
tween the vertices of the two spheres and the viewer is
used as view ray, this approach strongly depends on the
complexity of the scene. A vertex shader implementa-
tion was published by O’Neil14.

One of the main topics in terrain visualization con-
sists of the application of continuous level of detail
methods5;9;16. Cignoni et al.1 as well as Röttger et al.17

used a quadtree based approach to achieve an adaptive
mesh refinement of the terrain data. An adaption of the
BDAM approach for the application of planetary height
fields was published by Cignioni2. In our approach,
the method of Roettger is extended for planetary terrain
rendering.

3 ATMOSPHERIC SCATTERING

In this section, the basic equations of Rayleigh and
Mie scattering are considered (according to Nishita12).

First, we discuss the scattering of air molecules, de-
scribed by the Rayleigh scattering equation:

Ip(λ ,θ) = I0(λ)KρFr(θ)/λ 4, (1)

which describes the light scattered in a sample pointP,
in dependence ofλ , the wavelength of the incident light
atP andθ , the scattering angle between the viewer and
the incident light atP. I0 stands for the incident light,
ρ for the density ratio (given byρ = exp(−h

H0
)), de-

pending on the altitudeh and scale heightH0 = 7994m,
and Fr for the scattering phase function, which indi-
cates the directional characteristic of scattering (Fr =
3
4(1+cos2(θ))).

K describes the constant molecular density at sea
level

K =
2π2(n2−1)2

3Ns
, (2)

with Ns, the molecular number density of the standard
atmosphere andn, the index of refraction of the air.

In equation 1, the relation between the scattered light
and the wavelength of the incident light describes the
strong attenuation of short wavelengths. This is due to
the wavelength’s inversely proportional behavior to the
light attenuation. To determine the light intensity reach-
ing Pv in Figure 1, we have to consider two steps. First,
for each pointP betweenPa andPb, the light reaching
this point needs to be attenuated. Second, the resulting
light intensity on each pointP needs to be attenuated
a second time on its way to the viewer atPv. The at-
tenuation between two points inside the atmosphere is
determined by the optical length, which is computed by
integrating the attenuation coefficient standing for the
extinction ratio per unit length, along the distancesv.
The attenuation coefficientβ is given by:

β =
8π3(n2−1)2

3Nsλ 4 =
4πK
λ 4 , (3)

which is integrated along the distanceSand yields

t(S,λ) =
∫ S

0
β (s)ρ(s)ds=

4πK
λ 4

∫ S

0
ρ(s)ds. (4)

The scattering of aerosols is described with a differ-
ent phase function. Therefor, the improved Henyey-
Greenstein function by Cornette3 is used. To adjust
the rate of decrease of the aerosol’s density ratio, the
scale heightH0 has to be 1.2km19. The optical length
of aerosols is the same as for air molecules, except for
the 1

λ 4 dependance. According to Nishita12, if the equa-
tions above are applied to Equation 1, the light intensity
atPv leads to:

Iv(λ) = Is(λ)
KFr(θ)

λ 4 · (5)
∫ Pb

Pa

ρ exp(−t(PPc,λ)− t(PPa,λ))ds.

Journal of WSCG ISSN 1213-6972 92 ISBN 978-80-86943-00-8

4 REAL-TIME ATMOSPHERIC SCAT-
TERING

In current approaches for computing atmospheric scat-
tering effects, the performance mainly depends on the
complexity of the scene. Therefor, the scattering in-
tegral of Equation 5 is solved for each vertex belong-
ing to the scene geometry. By applying modern graph-
ics hardware, this approaches are quite fast, especially
when planets are restricted to simple spheres, consisting
only of few vertices. But an increasing complexity of
the scene makes it impossible to compute the scattering
integral for each vertex in real time anymore. This is
the case if you intend to render the structure of planets.
We avoid this lack of performance, by sourcing out the
scattering integral. Therefor, we pre compute the scat-
tering integral and store it in a 3D texture, and thereby,
we reduce the number of instructions which are neces-
sary to obtain the light attenuation value. The following
sections describe the creation of the lookup texture and
its use at the rendering stage.

4.1 Creating the Scattering Texture
As we aim to pre compute the light scattering inte-
gral, we have to reconsider Equation 5. It defines the
light contribution reaching the observers eye, when it
is placed at a positionPv and his view ray penetrates
the atmosphere from the pointPa to the pointPb. Basi-
cally, the light is attenuated two times, for each point on
PaPb. The first time from the light source to a position
P on the view ray, and the second time fromP to the
observer’s positionPv. In accordance with this obser-
vation, the resulting light contribution depends on four
variables: the observer’s positionPv, the position of the
light sourcePc and the entry and exit position of the at-
mospherePa andPb. Furthermore, approximating the
integral as a Riemann sum requires an additional sam-
ple variableP. If we naively pre compute the scattering
integral, we have to compute the light intensity for each
point in the atmosphere, looking in each direction. This
means that we have to consider several distancesPaPb.
And we also have to keep in mind, that all this pre com-
putations have to be done for each position of the light
source. This would result in nine scalar values when
the distancePaPb is represented by a three dimensional
vector.

O’Neil 13 suggested to simplify the computation of
the optical depth (Eq. 4) from the light source toP by
parameterizing each pointP by its height and its angle
to the Sun. This simplifies Equation 5 enormously, be-
cause the pre computed values can be used to determine
the optical depth from the light source to the sample
point t(PPc,λ) as well as for the attenuation from the
sample point to the observer. Nevertheless, the integral
from Pv to P remains. For dealing with this expensive
computation, we have extended O’Neils approach by
additionally considering the view direction.

The algorithm works as follows: first, we define the
parametrization of our 3D texture. As discussed above,
we have to consider a number of parameters, which
have to be reformulated in a way they can be used to
parameterize a three dimensional lookup table. For the
sake of simplicity, we now assume the observer to be
situated inside the atmosphere, and discuss the general
case later in this section. Basically, the observer can
be situated at an arbitrary position, looking in an ar-
bitrary direction at an arbitrary daytime. Considering
the observer’s positionPv and his view directionRv at a
specific daytime we can assume that ifP′v = (0, |Pv|,0)T

andR′v = (sin(θ),cos(θ),0)T then

cos(θ) =
1

|Pv||Rv| < Pv,Rv >=
1
|P′v|

< P′v,R
′
v > . (6)

This means, that each actual position and the corre-
sponding view direction can be described by its height
h = |Pv| and the view angleθ . Exploiting this behav-
ior, we place the camera at each height inside the at-
mosphere to send out the view rays in each direction.
Based on the fact, that the boundaries of the atmosphere
are considered as spherical, also the distancePaPb is the
same for every view ray with angleθ with respect to the
current positionP′v. While computingPaPb, it is quite
important to testR′v for intersection with the inner and
the outer boundary sphere. We also have to consider,
that the pre computation regards the planet’s surface as
a simple sphere. How to deal with structured surfaces
is described in Section 4.2.

To complete this formulation, we have to introduce
a light source to our model. As discussed above, the
attenuation from a light source to an arbitrary position
can also be described by the height of the sample point
and the angleδ to the light source. For solving equation
5 for a positionP′v and a view rayR′v, the light attenua-
tion t(PPc,λ) andt(PPa,λ) can easily be computed by
sampling alongR′v and computing the values according
to the height of the sample point and its angle to the
light source. Finally, we introduce the daytime to our
model, by applying the pre computation for all angles
to the sun. Thus, the angleδ builds the third parameter
of the 3D texture.

Special consideration should be taken for the case,
when the observer is situated outside the atmosphere.
Since there is no light scattering outside the planet’s
atmosphere, the distance of the observer to the planet
is not accounted in our pre computation step. Never-
theless, viewing the planet from outside builds a spe-
cial case, in which the computation can be considered
the same for each position, even if the camera is sit-
uated on the atmosphere’s outer boundary or the cam-
era is far away. Thus, the camera has to be virtually
moved towards the planet, until it hits the outer bound-
ary of the atmosphere. Afterwards, we start the compu-
tation. Thus, we only need to consider one additional

Journal of WSCG ISSN 1213-6972 93 ISBN 978-80-86943-00-8

height in our pre computation: the height if the cam-
era is outside the atmosphere, which the height of the
atmosphere plus an additional, minimal offset.

// Loop over all view angles to the

camera

foreachangleViewer < resZdo1

// Get angle θ
θ = GetViewAngle(angleViewer);2

// Generate a view vector

R′v = vec3d(sin(θ),cos(θ),0);3

// Loop over all view angles to the

light source

foreachangleSun < resYdo4

// Get angle δ
δ = GetLightAngle(angleSun);5

// Loop over all heights of the

camera

foreachheight < resXdo6

// Get current height inside

the atmosphere

h = f RadIn+((f RadOut− f RadIn) ·7

height)/(resX−1);
// Generate the position

vector

Pv = vec3d(0,h,0);8

// Finally, compute the light

scattering

color = ComputeScattering(Pv, δ , Rv);9

end10

end11

end12

The code sample above shows how simple the 3D
lookup texture is created. The texture is given with
its sizes in the x,y and z direction. For each voxel,
the corresponding angles and the height is used for
computing the light intensity, by evaluating the light
scattering integral. Therefor, we solve the discrete
form of Equation 5:

Iv(λ) = Is(λ)
KFr(θ)

λ 4

k

∑
i=0

ρ exp(−tl − tv) (7)

Due to the fact that the whole scattering integral is pre
comuted, the sample ratek as well as the sample rate
for the optical depthtl andtv can be set very high.

4.2 Applying the Scattering Texture

Since the lookup texture is computed, the calculation of
the light intensity is quite simple and needs only few in-
structions on the GPU. During the rendering phase, two
independent scene objects are drawn: a sphere, repre-
senting the sky and the planet’s surface. In Section 5,
the rendering of the terrain is discussed in more detail.
To demonstrate how the light intensity influences our
scene, we first consider the rendering of the sky.

Actually, the sky is represented by rendering only
one tesselated sphere, which is placed nearby the outer

PVPV

Pg

Pb

Figure 2: Obtaining the wrong light intensity: instead
of PgPv the distance PvPb was used for the pre compu-
tation

boundary of the atmosphere. Furthermore, we enable
front face culling to ensure, that the ray between the
observer and the sphere is penetrating the atmosphere
before the intersection. In contrast to the atmosphere,
the terrain is rendered with back face culling enabled,
because we are only interested in the visible part of
the planet’s surface. To obtain the light contribution,
first the view rayRv = Pg − Pv is computed, where
Pg stands for the position of the current vertex. If
the observer is outside the atmosphere, the camera is
moved to the outer boundary. Then, the height is ob-
tained byh = |Pv| as well as the cosine of the view
angle cos(θ) = 1

|Pv||Rv| < Rv,Pv > and the sun angle
cos(δ) =< Pc,Pv >. After rescaling this three para-
meters to[0,1], the lookup texture is fetched. Because
of the nonlinear behavior of the scattering function, it
makes sense to implement the texture fetch as a frag-
ment program, instead of a vertex program, with trilin-
ear interpolation enabled. This minimizes the interpo-
lation error, since the sample frequency of the fragment
shader is much higher and much faster than a compara-
ble vertex shader implementation.

In contrast to the sky, the computation of the terrain
needs some more consideration. If we simply apply the
texture lookup to any other vertices of the scene geom-
etry, like the vertices representing the terrain, the com-
putation fails. Figure 2 shows this case. This behav-
ior results from the pre computation, which treats the
ray to intersect a simple sphere without considering the
height field of the terrain. Thus, the light scattering is
computed for the whole distancePvPb. To discuss how
it is possible to compute the light scattering along the
distancePgPv, the pre computed values have to be an-
alyzed. The pre computed light scattering alongPvPb

can be formulated as the scattering alongPgPv plus the
scattering alongPgPb. Rewriting Equation 5 to obtain
the light scattering alongPgPv would lead to

I ′v(λ) = Is(λ)
KFr(θ)

λ 4 · (8)
(∫ Pb

Pv

ρ exp(−tl − tv)−
∫ Pb

Pg

ρ exp(−tl − tv)
)
,

Journal of WSCG ISSN 1213-6972 94 ISBN 978-80-86943-00-8

where both terms can be obtained fetching the pre com-
puted texture. In fact, the first term is obtained any-
way, simply using the current parameters as input. The
second light contribution can be determined easily by
moving the camera to the intersection pointPg without
changing the view angle. Then we access the lookup
texture a second time and subtract the result from the
color value of the first texture lookup. By using this
mechanism, it is possible to obtain the light contribution
for any point inside the atmosphere considering several
kinds of geometry.

Finally, we discuss the correct illumination of the ter-
rain. As we are able to compute the light scattering be-
tween the object and the viewer, the contribution of the
illuminated terrain has been not considered yet. Similar
to the air molecules and aerosols, the light illuminat-
ing the terrain is attenuated two times. While the atten-
uation from the light source to the terrain is even the
same, the spectral shift of the illuminated terrain to the
observer needs to be discussed in more detail: first, we
only consider the light intensityIg reaching the terrain
geometry. Mathematically it is defined as

Ig(λ) = Is(λ)
KFr(θ)

λ 4 ·ρ exp(−t(PgPc,λ))ds. (9)

The resultingIg is used as incident light intensity for
illuminating the terrain geometry. We have applied a
Lambert reflection, which considers the cosine of the
angleϕ between the incident light and the terrain nor-
mal as the intensity of the light absorbed by the terrain.
Introducing the diffuse reflection to equation 9 yields

Ig(λ) = Is(λ)
KFr(θ)

λ 4 ·ρcos(ϕ)exp(−t(PgPc,λ))ds. (10)

Additionally, the attenuation of the reflected color
needs to be attenuated on its way to the viewer. As de-
fined by Nishita12, the attenuation has to be multiplied
with the intensity of the terrain geometry

Igv(λ) = Igexp(−t(PgPv,λ))ds. (11)

This equation describes the light contribution of the ter-
rain, without considering the light scattering along the
distancePgPv. Since the light contributions of all sam-
ple points are accumulated to determine the intensity
reaching the observer, Equation 8 has to be accounted
as

I ′′v (λ) = Igv+ I ′v, (12)

where I ′′v stands for the overall intensity reaching the
observer’s eye if he is looking on the rough surface
of a planet. While Equation 8 is implemented as two
fetches of the pre computed 3D texture, the easiest way
to obtainIg and Igv, is to adopt the 2D lookup texture
described in O’Neil13. As this texture stores the op-
tical depth for each point inside the atmosphere, the

light attenuation between the light and the geometry can
fetched as well as the attenuation between the geome-
try and the observer. For the other parameters shader
constants are used, excepting the phase functionFr(θ)
which is pre computed as 1D texture. The follow-
ing pseudo fragment shader code demonstrates the low
number of instructions used for this complex computa-
tion.

// Compute Rv

Rv = normalize(Pg−Pv);1

// If the camera is outside the

atmosphere, move it to the outer

boundary

dist = Intersect(Pv, Rv, SphereOut));2

if dist > 0 then3

Pv = Pv +Rv ·dist;4

end5

// Compute h, θ and δ
h = MapToUnit(|Pv|);6

θ = MapToUnit(< Pv,Rv >);7

δ = MapToUnit(< Pc,Pv >);8

// Get the light intensity without

considering the height field

Iv = tex3D(texPre3D, vec3d(h,δ ,θ));9

// Move the camera to the intersection

point to obtain the offset

h′ = MapToUnit(|Pg|);10

δ ′ = MapToUnit(< Pc,Pg >);11

Io f f = tex3D(texPre3D, vec3d(h′,δ ′,θ));12

// Correct the intensity

I ′v = Iv− Io f f ;13

// Now compute the light contribution

of the terrain

Fr = tex1D(texPhase, θ);14

tgc = tex2D(texPre2D, h′, δ ′);15

tgv = tex2D(texPre2D, h′, MapToUnit(< Pg,Rv >));16

Igv = IsKFr1/λ 4 ·ρ·< Ng,Pc > ·exp(−tgc− tgv);17

// Finally, get the overall light

intensity at Pv

I ′′v = Igv+ I ′v;18

return I ′′v ;19

Please keep in mind, that in the case the camera is sit-
uated inside the atmosphere, the computation oftgv re-
quires one additional lookup (see O’Neil13).

5 PLANETARY TERRAIN RENDER-
ING

In this section we discuss the terrain renderer we have
optimized for the visualization of round shapes, like
planets. Therefor, we extended an existing planar ter-
rain renderer17 to render spherical objects. Indeed, the
extension to achieve the round shape of a planet is quite
easy, simply applying a spherical mapping of the ver-
tices. However, this modification implicates a number
of further necessary adaptations.

Journal of WSCG ISSN 1213-6972 95 ISBN 978-80-86943-00-8

Figure 3: A two stage clipping algorithm is applied on
the whole planet. Upper left: the corresponding image
reaching the observer.

One adaption consists of the dynamic mesh refine-
ment (geomorphing). As defined in17, the mesh refine-
ment criterionf is defined by:

f =
l

d ·C ·max(c·d2,1)
, (13)

wherel is the distance to the viewer andd is the length
of the block, which needs to be refined. The constant
valuesC and c are standing for minimum global res-
olution and the desired global resolution. The surface
roughness value is defined asd2 = 1

d max|dhi |, where
dhi is the elevation difference between two refinement
levels. If f < l , the mesh needs to be refined. Applying
this criterion to a spherical terrain representation, the
viewpoint and the vertices needs to be in the same coor-
dinate system. To obtain a correct lengthl , the spherical
transformation of the terrain needs to be attended (see
Figure 4(i)). Therefore, if we assume the positionPv

of the viewer given in world space, an inverse spherical
mapping ofPv is necessary.

For further optimization, we introduced a spherical
view frustum clipping: the terrain consists of several
tiles, which can differ in the resolution of their local
height field, but not in their size in world space. Thus,
a tile with a higher local resolution implicates a higher
level of refinement in world space. Due to their con-
stant size, these tiles are well suited as input for the
clipping algorithm. The clipping algorithm consists of
two stages: in the first stage, all non-visible tiles are
clipped. This stage is accomplished before the mesh
refinement, by a comparison of the vector of the view
direction and the four vertices, building the border of
the tile to be tested. If the cosine between this vectors
is negative, the tile can be considered as visible. Thus,
the first stage can be considered like a kind of crude
back face culling, just working with whole terrain tiles.
The second stage implements a smoother clipping, tak-
ing into account the grid refinement. Therefor, the quad
tree (for further information see17), in which the geom-
etry is stored, is traversed down and each vertex, situ-
ated in the center of the current quad, is tested against
the four clipping planes. If the visibility test fails, the

Earth Dataset Mars Dataset
domain size 2572×24×12 652×24×12

outside 67.26 83.51
inside 30.31 56.02

only terrain
outside 76.44 102.37
inside 35.83 61.19

Table 1: Performance outside and inside the at-
mosphere (in fps).

Resolution Optimized Vertex Shader

1282 608.49 151.06
2562 181.54 35.92
5122 48.67 9.97

Table 2: Performance of the atmosphere only, (in fps).

quad is clipped, by removing the entry of the quad tree.
Figure 3 shows the two-stage clipping (center) and the
resulting visualization (upper left).

6 RESULTS

Table 1 shows the measured performance in frames per
seconds. All the measurements are made on an AMD
Athlon64 X2 Dualcore 4800+ 2.4 GHz machine with a
GeForce 7900 GT graphics card with 256 MB of mem-
ory and a viewport of800× 600. First, the planets
are viewed from "outside" the atmosphere, as in Fig-
ure 4(a) and (g). The "inside" measurement considers
the frames per second when the camera is situated in-
side the atmosphere, like in Figure 4 (c) and (h). Both
data sets are divided into 24 tiles with respect to the
longitude and 12 tiles with respect to the latitude. The
quadratic value stands for the size of the tile. The reso-
lution of the pre computed 3D texture was chosen with
1283. This size can be considered as sufficient. Further-
more, it is noticeable, that larger sizes of this texture
are not really influencing the performance. If we con-
sider the measurements of Table 1, we can see that the
rendering outside the atmosphere is much faster than
inside. This is due to the adaptive refinement of the ter-
rain mesh, which is inactive, when the observer’s dis-
tance to the planet is too large. In this case, only a tes-
selated sphere is rendered. In contrast to this case, the
number of triangles increases extremely if the camera is
situated nearby the planet’s surface. In order to demon-
strate that the resulting frames per second strongly de-
pends on the performance of the terrain renderer, we re-
placed the 10 tiles representing the focused mountains,
with high resolution height fields of1800×1800cells.
This allows us to increase the number of drawn trian-
gles to compare it with the achieved rendering speed, if

Journal of WSCG ISSN 1213-6972 96 ISBN 978-80-86943-00-8

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4: (a) the Earth viewed from space, (b) South America after the sunrise, (c) sunrise over the Alps, (d)
sunrise (e) early morning, (f) midday, (g) Mars viewed from space, (h) Valles Marineris with martian atmosphere,
(i) adaptive mesh refinement

only the terrain is rendered without any atmospheric ef-
fects. The mean value of the rendering power, required
for the atmospheric scattering effects, is about15%.

Table 2 shows the increase in performance, when the
evaluation of the scattering integral is optimized by our
method. The frames per second of our implementation
are compared with a vertex shader implementation. For
this measurements, only the atmosphere is rendered ap-
plying 2 spheres with the given number of vertices per
sphere. The resolution of the pre computed 3D texture
is also1283. The table shows, that our method is 4 - 5.3
times faster than the vertex shader implementation. It is
also perceptible, that this ratio increases proportional to
the number of rendered triangles, what can be ascribed
to the high number of vertex shader instructions and the
costs of vertex texture fetches.

Figure 4 (g) and (h) demonstrate the flexibility of the
applied light scattering method, by replacing the Earth’s
atmosphere with the Martian atmosphere by simply

modifying the molecular density and the wavelength
of the incident light. Additional dust particles, which
mainly influences the color of the Martian atmosphere,
are unaccounted. Figure 4 (d), (e) and (f) show the Alps
viewed from Italy at different day times, starting with
the sunrise, over to the early morning hours to mid-
day. This sequence illustrates the dependency of the
light scattering and the angle to the sun. Finally, (i)
demonstrates how our spherical refinement mechanism
works.

7 CONCLUSION AND FUTURE
WORK

We have presented an interactive technique for plane-
tary rendering taking into account atmospheric scatter-
ing effects. High efficiency is achieved by combining
the CPU based terrain renderer with the atmospheric
rendering. Therefor, the complete scattering integral,
described by Nishita12, is evaluated in a separate pre

Journal of WSCG ISSN 1213-6972 97 ISBN 978-80-86943-00-8

computation step. This is done by computing the at-
mospheric scattering for each position inside the at-
mosphere, parameterized by its height and the angles
to the viewer and to the Sun. The results are stored
into one 3D texture. The GPU is used to compute the
light intensity reaching the observer’s eye, regarding the
structure of the planet’s surface and the correct illumi-
nation of the terrain geometry. We have discussed, how
the pre computed 3D texture can be used to solve the
problems mentioned above. Finally, a planetary terrain
renderer was introduced for the adaptive mesh gener-
ation and rendering of height fields on spherical ob-
jects. The results shows clearly, that the evaluation of
the scattering integral is absolutely independent of the
scene complexity, what makes it attractive to utilize it
with large scale renderings.

In the future, the 3D texture can also be used for
rendering other scenes, like snow or rain simulations. It
is also thinkable to use it as part of a complete weather
simulation or to illuminate large outdoor scenes in
games.

8 ACKNOWLEDGMENTS

We would like to thank the NASA for providing the
earth textures and the MOLA datasets of Earth and
Mars.

REFERENCES
[1] P. Cignoni, F. Ganovelli, E. Gobbetti, F. Marton,

F. Ponchio, and R. Scopigno. BDAM – batched
dynamic adaptive meshes for high performance
terrain visualization.Computer Graphics Forum,
22(2):505–514, 2003.

[2] P. Cignoni, F. Ganovelli, E. Gobbetti, F. Marton,
F. Ponchio, and R. Scopigno. Planet-sized batched
dynamic adaptive meshes (P-BDAM). InProc.
IEEE Visualization, pages 147–155, 2003.

[3] W.M. Cornette and J.G. Shanks. Physical reason-
able analytic expression for the single-scattering
phase function. Applied Optics, 31(16):3152–
3160, 1992.

[4] Y. Dobashi, T. Yamamoto, and T. Nishita. Inter-
active rendering of atmospheric scattering effects
using graphics hardware. InHWWS ’02: Proceed-
ings of the ACM SIGGRAPH/EUROGRAPHICS
conference on Graphics hardware, pages 99–107,
2002.

[5] M.H. Gross, R. Gatti, and O. Staadt. Fast multires-
olution surface meshing. InVIS ’95: Proceedings
of the 6th conference on Visualization ’95, page
135, 1995.

[6] N. Hoffman and A.J. Preetham. Real-time
light-atmosphere interactions for outdoor scenes.
Graphics programming methods, pages 337–352,
2003.

[7] H.W. Jensen and P.H. Christensen. Efficient sim-
ulation of light transport in scences with partici-
pating media using photon maps. InSIGGRAPH
’98: Proceedings of the 25th annual conference
on Computer graphics and interactive techniques,
pages 311–320, 1998.

[8] H.W. Jensen, F. Durand, J. Dorsey, M.M. Stark,
P. Shirley, and S. Premoze. A physically-based
night sky model. InSIGGRAPH ’01: Proceed-
ings of the 28th annual conference on Computer
graphics and interactive techniques, pages 399–
408, 2001.

[9] P. Lindstrom, D. Koller, W. Ribarsky, L. F.
Hodges, N. Faust, and G.A. Turner. Real-time,
continuous level of detail rendering of height
fields. In SIGGRAPH ’96: Proceedings of the
23rd annual conference on Computer graphics
and interactive techniques, pages 109–118, 1996.

[10] N.L. Max. Atmospheric illumination and shad-
ows. InSIGGRAPH ’86: Proceedings of the 13th
annual conference on Computer graphics and in-
teractive techniques, pages 117–124, 1986.

[11] R.S. Nielsen. Real time rendering of atmospheric
scattering effects for flight simulators. Master’s
thesis, Informatics and Mathematical Modelling,
Technical University of Denmark, DTU, 2003.

[12] T. Nishita, T. Sirai, K. Tadamura, and E. Naka-
mae. Display of the earth taking into account at-
mospheric scattering. InSIGGRAPH ’93: Pro-
ceedings of the 20th annual conference on Com-
puter graphics and interactive techniques, pages
175–182, 1993.

[13] S. O’Neal. Real-time atmospheric scattering.
www.gamedev.net/reference/articles/article2093.asp,
2004.

[14] S. O’Neal. Accurate atmospheric scattering.GPU
Gems, 2:253–268, 2005.

[15] A.J. Preetham, P. Shirley, and B. Smits. A prac-
tical analytic model for daylight. InSIGGRAPH
’99: Proceedings of the 26th annual conference
on Computer graphics and interactive techniques,
pages 91–100, 1999.

[16] E. Puppo. Variable resolution terrain surfaces. In
Proceedings of the 8th Canadian Conference on
Computational Geometry, pages 202–210, 1996.

[17] S. Röttger, W. Heidrich, P. Slusallek, and H.-P.
Seidel. Real-time generation of continuous lev-
els of detail for height fields. InProc. WSCG ’98,
pages 315–322, 1998.

[18] H.E. Rushmeier and K.E. Torrance. The zonal
method for calculating light intensities in the pres-
ence of a participating medium. InSIGGRAPH
’87: Proceedings of the 14th annual conference
on Computer graphics and interactive techniques,
pages 293–302, 1987.

[19] S. Sekine. Optical characteristics of turbid at-
mosphere.J Illum Eng Int Jpn, 71(6):333, 1992.

Journal of WSCG ISSN 1213-6972 98 ISBN 978-80-86943-00-8

Efficient Compression of 3D Dynamic Mesh Sequences

Rachida Amjoun and Wolfgang Straßer
WSI / GRIS

University of Tübingen, Germany
{amjoun, strasser}@gris.uni-tuebingen.de

Figure 1 : Sample frames of the animations used for the analysis. From left to right: dance with 14, dolphin with 9, chicken
with 10 and cow with 6 clusters. Each cluster is colored differently and encoded separately.

ABSTRACT

This paper presents a new compression algorithm for 3D dynamic mesh sequences based on the local principal component anal-
ysis (LPCA). The algorithm clusters the vertices into a number of clusters using the local similarity between the trajectories in
a coordinate system that is defined in each cluster, and thus transforms the original vertex coordinates into the local coordinate
frame of their cluster. This operation leads to a strong clustering behavior of vertices and makes each region invariant to any
deformation over time. Then, each cluster is efficiently encoded with the principal component analysis. The appropriate num-
bers of basis vectors to approximate the clusters are optimally chosen using the bit allocation process. For further compression,
quantization and entropy encoding are used. According to the experimental results, the proposed coding scheme provides a
significantly improvement in compression ratio over existing coders.

Keywords: 3D animation, animated mesh compression, segmentation, PCA, rate-distortion optimization.

1 INTRODUCTION

Animated meshes are commonly used in computer
games, computer generated movies, and many scien-
tific applications. The animations in these applications
are often complex, nonlinearly generated and contain
large geometric datasets. They often consist of many
frames, each of which stores an own mesh. Even if key
frame animations are used, they are too voluminous to
be stored. Often the meshes differ only slightly between
neighboring frames, leading to a large redundancy be-
tween frames and between neighboring vertices in the
same frame. Therefore, it is important to develop com-
pact representations that significantly reduce the stor-
age space of animated models and facilitate their trans-
mission over networks. Moreover, we need compres-
sion algorithms that allow for small compressed repre-

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

Copyright UNION Agency – Science Press
Plzen, Czech Republic

sentations that maintain good visual fidelity.
Many existing compression schemes are restricted

to animated meshes that do not change the topology
from frame to frame so that the topology can be com-
pressed once and only the vertex positions need to be
compressed for the individual frames. Here, we dis-
tinguish between four methods: predictive based meth-
ods [JCS02, IR03], PCA based representations [AM00,
KG04, SSK05], wavelet based techniques [GK04,
PA05] and clustering-based approaches [Len99, ZO04].

In this paper, we present a new PCA-based tech-
nique as extension of the work [ASS06]. The advan-
tage of using PCA is that it captures the linear correla-
tions present in the dataset. The set of vertices can be
represented by very few components and coefficients
depending on the user’s desired visual quality. The
PCA is a good compressor for rigid motion and pro-
vides a more compact representation for temporally-
invariant meshes. In many applications, however, ani-
mated meshes exhibit highly nonlinear behavior, which
is globally difficult to capture using standard PCA. Lo-
cally, the neighboring vertices have a strong tendency
to behave and to move in a similar way. The nonlinear
behavior can therefore be described in a linear fashion
by grouping the vertices of similar motion into clus-

Journal of WSCG ISSN 1213-6972 99 ISBN 978-80-86943-00-8

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

(a) (b)

Figure 2: The position of six different vertices over time (il-
lustrated with different colors) are represented with global co-
ordinates (a) and local coordinates (b)(dance animation).

ters or by segmenting the mesh into meaningful parts.
Then a PCA is performed in each group. The process
to construct this representation is called Local Principal
Component Analysis.

On the other hand, introducing a local coordinate
frame (LCF) in each cluster may lead to extra cluster-
ing of the coordinates before performing the PCA. If
the segmentation or clustering process is efficient then it
would be highly probable that these coordinates change
very slightly relative to the coordinate frame of their
cluster. Of course, the number of clusters/segments will
also affect the compression. If the number of clusters
is very small, then a cluster might contain vertices that
have different behaviors. To overcome this problem one
might possible improve on the present approach by au-
tomatizing the selection of the number of clusters.

Figure 2 demonstrates the idea of using local coordi-
nate systems. Figure 2 (a) shows the path of six points
of a dance animation in the world coordinates. Note the
highly nonlinear behavior of the trajectories. Figure 2
(b) shows the path of the points using a local coordi-
nates. Note the relative small changes and the tendency
of the trajectory of individual points to cluster.

In our approach, we perform a PCA on the local co-
ordinates rather than the world coordinates. The advan-
tage of combining PCA with the LCF is now obvious:
if the motion of a group of vertices is rigid in the world
coordinates, the positions of the vertices are slightly in-
variant relative to their LCF. Therefore, performing a
PCA in these invariant groups of vertices leads to a
more compact representation than the original data, and
a large number of PCA coefficients are close to zero.

1.1 Overview
We propose a new compression algorithm for animated
meshes of fixed number of vertices based on LPCA.
Our main contribution is to cluster the mesh vertices
using the local similarity of trajectories. The original
vertex coordinates are transformed into several LCFs
defined by seed triangles. One LCF (one seed triangle)
is associated with each cluster. The vertices are then
clustered depending on the variation of their local co-
ordinates in each LCF. Thus, each vertex is added to

the cluster where the vertex coordinates have the small-
est variation over time. This automatically "transforms"
the nonlinear behavior of the original vertices into the
clustering behavior which is very well compressable.
The vertex positions will tend to cluster around the
same position over time (see Figure 2(b)). Thus, the
clusters themselves are almost invariant to any defor-
mation. A PCA is then performed on each cluster such
that the local coordinates of the vertices are transformed
into another basis which allows for very efficient com-
pression.

Our clustering process produces clusters of different
sizes. If one chooses a fixed number of basis vectors
for all clusters, then there may be too few eigenvec-
tors to recover the clustered vertices at a desired ac-
curacy and eventually too many eigenvectors for other
clusters (which we call underfitting and overfitting, re-
spectively). Moreover, the number of bits needed to en-
code the unnecessary basis vectors in overfitting cases
may be better allocated for other clusters in underfit-
ting cases. Therefore the selection of the best number
of basis vectors to be extracted from animation data is
necessary to properly recover the original data of each
cluster with a certain accuracy. We introduce a rate dis-
tortion optimization that trades off between rate and the
total distortion. We call our approach Relative Local
Principal Component Analysis (RLPCA) compression.
We use the term Relative as the LPCA is performed in
local coordinates. Our Algorithm achieves an increased
compression performance, is computationally inexpen-
sive (compared to a PCA for the full mesh) and is well
suited for progressive transmission.

2 RELATED WORK

Static Meshes A large number of compression tech-
niques have been developed for static meshes. Deer-
ing [Dee95] was the first to publish work on geometry
compression for triangle meshes. Then, a succession of
efficient schemes were proposed for both connectivity
and geometry compression [TR98, GS98, TG98, IA02].
Progressive compression techniques [Hop96], which
enable a mesh to stream from a server to a client have
also been proposed. Recently some comprehensive
surveys of the developed techniques have been pro-
vided [Ros04, AG05, JPK05].
Animated Meshes Recently, research has started to
focus on animated meshes with fixed connectivity.
Lengyel [Len99] introduced the first work on animated
geometry compression. He partitioned the mesh into
submeshes and described the motion of the submeshes
by rigid body transformations. The rigid body trans-
formation of a submesh was thereby estimated to best
match the trajectories of its vertices. His approach is
very effective when large parts of an animated model
can be described well by rigid body transformations.

Journal of WSCG ISSN 1213-6972 100 ISBN 978-80-86943-00-8

Segmentation

LCF residuals

computation
Quantization

Geometry data

Connectivity

Static
compression

Stream

PCA1, PCA2… PCAN

WCS to LCS
Transformation

Input:
,,M,

F21
MM

Encoder

Local coordinates
reconstruction

Output:

F21
M
~

,,M
~

,M
~

Connectivity

PCA details + residuals

LCS to WCS
Transformation

Stream
Decoder

Figure 3: Overview of the compression / decompression pipeline.

Jinghua et al. [ZO04] used an octree to spatially clus-
ter the vertices and to represent their motion from the
previous frame to the current frame with a very few
number of motion vectors. The algorithm predicts the
motion of the vertices enclosed in each cell by tri-linear
interpolation in the form of weighted sum of eight mo-
tion vectors associated with the cell corners. The octree
approach is later used by K. Mueller et al. [MSK+05]
to cluster the difference vectors between the predicted
and the original positions.

Alexa et al. [AM00] used PCA to achieve a compact
representation of animation sequences. The PCA co-
efficients were shown to be well compressable. Karni
and Gotsman [KG04] improved this method by apply-
ing second-order Linear Prediction Coding (LPC) to the
PCA coefficients such that the large temporal coher-
ence present in the sequence is further exploited. Sat-
tler et al. [SSK05] introduced the clustered PCA. The
mesh is segmented into meaningful clusters which are
then compressed independently using a few PCA com-
ponents only.

Prediction techniques can also be used to efficiently
compress animated meshes. Assuming that the connec-
tivity of the meshes doesn’t change, the neighborhood
in the current and previous frame(s) of the compressed
vertex is exploited to predict its location or its displace-
ment [JCS02, IR03]. The residuals are compressed up
to a user-defined error.

Guskov et al. [GK04] used wavelets for a multireso-
lution analysis and exploited the parametric coherence
in animated sequences. The wavelet detail coefficients
are progressively encoded. Payan et al. [PA05] intro-
duced the lifting scheme to exploit the temporal coher-
ence. The wavelet coefficients are thereby optimally
quantized.
Segmentation Mesh segmentation has recently become
useful for many applications in geometry processing. In
the context of compression, segmentation is often used
to decrease the computational costs as well as to pre-
serve the global shape of the mesh because some com-
pression algorithms (e.g. PCA for a full mesh) can de-
stroy important features of the mesh.

To find the vertices that have similar motion,
Lengyel [Len99] proposed that one select a set of seed

triangles randomly and compared their trajectories. Tri-
angles with a similar motion are combined. Then the
vertices are associated with the triangle whose trajec-
tory best fit theirs. Sattler et al. [SSK05] proposed that
one cluster the trajectories of vertices using Lloyd’s al-
gorithm in combination with PCA. In the both cases,
the segmentation is computationally expensive.

3 ANIMATION COMPRESSION
In this section, we describe in detail the core of our
compression algorithm for the motion of vertices of an-
imated triangle meshes. An overview of compression
and decompression pipeline is illustrated in Figure 3.

Given a sequence of triangle meshes Mi, i = 1, ..,F
of constant connectivity with V vertices and F frames
(meshes), we first construct N LCFs in each frame, then
group the mesh vertices into N clusters, where each
cluster contains Vi, i = 1, ..,N, vertices.

3.1 Local Coordinate System
Expressing the vertex locations in a LCF is an opti-
mal way of exhibiting clustering behavior. It makes the
clusters quite invariant over time to any rotation and/or
translation. This representation can be very compress-
able with the PCA. This is the key feature of our algo-
rithm.

Figure 4 illustrates the LCF that we use in our algo-
rithm during and after segmentation. We consider that
each cluster is initialized with seed triangle (p1,p2,p3).
Each cluster Ci has its own LCF defined on the seed
triangle. The origin o is the center of one of its three
edges (typically (p1,p2)), the x-axis (red arrow) points
down the edge (p1,p2), the y-axis (green arrow) is or-
thogonal to the x-axis in the plane of the seed triangle
and the z-axis is orthogonal to the x- and y-axis. The
transformation of a point p to its local coordinate sys-
tem q can be accomplished by an affine transformation
with a translation o and a linear transformation T (or-
thonormal matrix):

q = T(p−o)
In our algorithm, for each frame f (1 ≤ f ≤ F) and
for each frame cluster G f

i ∈ Ci (1 ≤ i ≤ N), we com-
puted {T f

i ,o f
i } from the points of the seed triangle

(pi, f
1 ,pi, f

2 ,pi, f
3).

Journal of WSCG ISSN 1213-6972 101 ISBN 978-80-86943-00-8

Figure 4: Illustration of the local coordinate frame

3.2 Segmentation based on Clustering
Our segmentation algorithm starts with several seed
triangles upon which the LCFs are constructed. Then
the clustering is obtained by assigning the vertices to
the seed triangle in whose local coordinate frame they
have minimal coordinates variation across the F frames.
The clustering process consists of the following steps:

Initialization: Initializes the N cluster Si, i = 1, ...,N,
to be empty. All vertices are unvisited.

Seed Selection: Selects N seeds using the far distance
approach [YKK01]. The first seed is selected as the
vertex corresponding to the largest euclidian distance
from the geometrical center of all vertices in the first
frame. The next seeds are selected sequentially until
all N seeds are selected. Each seed is selected to be the
vertex with the farthest distance from the set of already
selected seeds. We associate with each seed one of
its incident triangles and call this triangle the seed
triangle. The regions are initialized with their three
incident vertices denoted as (pi, f

1 ,pi, f
2 ,pi, f

3) the three
vertices of seed triangle of i-th cluster in the f -th frame.

Local Frame Construction: A local coordinate frame
is constructed for each seed triangle (see section 3.1).

Vertex clustering: Given an unvisited vertex p f
k , we

do the following: Transform its world coordinates into
the N local coordinate frames constructed in each frame
f , so: {q1, f

k ,q2, f
k , ...,qN, f

k }, (f = 1, ...,F), compute the
total deviation (motion) of the vertex between each two
adjacent frames f and f −1 in euclidian space:

θk,i =
F

∑
f=1
‖qi, f

k −qi, f−1
k ‖2

θk,i represents the total motion of the vertex k in the
LCF associated with the cluster i. A small value means
that the vertex position has motion that is similar to Ci.
Thus the vertex should belong to the cluster i for which
the deviation is very small, note imin:

imin := argmin1≤i≤N{θk,i}

We iterate over all vertices, adding the unvisited
vertex whose local coordinates are almost invariant in

the LCF to the cluster Ci and store its local coordinates
for the next step (compression). The iteration stops
if no more candidate vertices exist. When a vertex is
added to a cluster, it is marked as visited. We end up
with N clusters that have Vi vertices each.

Our algorithm provides a simple and effective way of
efficiently clustering mesh vertices. The results of the
segmentation technique can be seen in figure 1.

3.3 Compression
Once the mesh vertices are clustered, their coordinate
systems need to be encoded using PCA. In order to be
able to transform back to the world coordinates during
the decoding step, we also have to encode the world
coordinate of the points of seed triangles (used to con-
struct the transformations). The affine transformation
should then be correctly computed (at decoding) with-
out loss of information. Therefore, we propose the seed
triangle points be encoded separately with delta coding.

Delta coding
Given the sequence of the seed triangle points

(pi, f
1 ,pi, f

2 ,pi, f
3), we first encode their world coordinates

in the first frame. Then, the differences between each
two adjacent frames in the sequence are computed. To
avoid error accumulation during animation, these resid-
uals are computed between the coordinates of the point
pi, f

j in the current frame and their recovered coordi-

nates p̃i, f−1
j in the previous frame: δ i, f

j = pi, f
j − p̃i, f−1

j ,
(j = 1,2,3) where i = 1, ...,N and f = 1, ...,F .

Principal Component Analysis
Principal Component Analysis (PCA) is a statisti-

cal technique that can reduce the dimensionality of a
dataset. It determines linear combinations of the orig-
inal dataset which contain maximal variation and rep-
resents them in an orthogonal basis. PCA reconstructs
the original dataset optimally in the mean square-error
sense. If we have F frames of 3V dimension each, PCA
produces a reduced number L¿ F of principal compo-
nents that represent the original dataset.

We now consider how a cluster evolves over the
frames of the animation. Let G f

i be the i-th cluster in the
f -th frame, i = 1, ...,N and f = 1, ...,F . A single clus-
ter Ci thus consists of F clusters (one for each frame)
Ci = {G1

i ,G
2
i , ...,G

F
i } where G f

i represents the vector
with the geometry of the cluster i in frame f

G f
i = (qi, f

4 ,qi, f
5 , ..,qi, f

Vi
)t ,

whose elements are the local coordinates of correspond-
ing vertices (except the coordinate of the seed triangle).
All these vectors G f

i have the same length 3(Vi − 3),
and construct a geometric matrix Ai with 3Vi− 9 rows
and F columns. Ai =

[
G1

i G2
i ...G

F
i

]

A singular value decomposition on Ai is
Ai = UiDiVt

i

Journal of WSCG ISSN 1213-6972 102 ISBN 978-80-86943-00-8

where Ui is a (3Vi − 9)× F column-orthogonal ma-
trix that forms an orthogonal basis and contains the
eigenvectors of the AiAi

t . Di is a diagonal matrix
whose nonzero elements represent the singular val-
ues and are sorted in decreasing order. Thus Di =
diag{λ1,λ2, ...,λF}. V is a F×F orthogonal matrix.

To reduce the dataset, we pick only the first L eigen-
vectors (L is a user specified number). So, U′

i =
{ui,l , l = 1, ...,L} contains the most important principal
components ui that correspond to the largest eigenval-
ues λ1, ...,λL. Then each cluster G f

i is projected into the
new basis U′

i to get a new matrix of coefficients C′
i of

size L×F . C′
i = U′t

i Ai

After performing the PCA for all N clusters Ci,
we get N new sets {U′

1,U
′
2, ...,U

′
N} and coefficient

matrices {C′
1,C

′
2, ...,C

′
N} with different sizes.

Quantization and Arithmetic Coder
For further compression, the floating-point values

(32 or 64 bits) are often quantized to a user specified
number of bits per coordinate relative to the maximum
extend of the bounding box of the model. The quantized
values are encoded with an arithmetic coder [WNC87].

In the case of an animation, the quantization is of-
ten performed according either to the tight axis-aligned
bounding box for each frame or to the largest bound-
ing box for all frames. Since we have to encode the
basis vector values and the coefficients rather than the
vertex coordinates, we use two different encoding con-
texts. The first concerns the matrices and the second
the delta vectors. The basis matrix U′

i and the coeffi-
cient matrix C′

i of each cluster Ci are truncated using
a fixed number of bits qu and qc respectively (typically
qu = qc). We first compute the minimum and the max-
imum values (umin,i,umax,i), (cmin,i,cmax,i) of U′

i and C′
i

respectively. Then integer values are straightforwardly
derived according to

uiq(m, j) = bui(m, j)/umax,i−umin,i ·2qu +1/2c
ciq(j, f) = bci(j, f)/cmax,i− cmin,i ·2qc +1/2c

where 1≤ m≤ 3Vi−9 , 1≤ j ≤ L and 1≤ f ≤ F .
The resulting signed integer values of the matrices

are encoded with an adaptive arithmetic coder and sent
with the extreme numbers.

For delta vectors, the coordinates are encoded ac-
cording to the bounding box of each frame. Using a
fixed number of bits q∆, the coordinates of the delta vec-
tors are mapped into integers which are then encoded
separate from PCA details with an arithmetic coder.

We assume that the quantization errors of PCA de-
tails are negligible up to 12 bits quantization. Note that
the total number of bits needed for storing delta vectors
is very small. It ranges between 0.01 and 1 bit per ver-
tex per frame when the quantization ranges between 12
and 16 bits depending on the number of eigenvectors,
the level of quantization, and the number of clusters.

3.4 Rate-Distortion Optimization
In LPCA-based techniques often PCA is performed us-
ing a fixed number of components per cluster, neglect-
ing the fact that whole mesh sequences are often not
rigid and the different parts can have different behavior
(i.e. their motion is not similar). Thus, using a fixed
number of components per cluster may results in an
insufficient number to represent a given cluster at the
desired accuracy while having too many for the repre-
sentation of other clusters.

To improve the PCA based compression and avoid
this overfitting and underfitting, we introduce the Rate-
Distortion Optimization (RDO) which is also called the
bit allocation. The objective is to find the best tradeoff
between the bitrate and the distortion of coordinates of
the vertices.

Given N clusters Ci, that we have to encode sepa-
rately, and a set of eigenvectors I = {l0, l1, ..., lL}. For
each cluster Ci, let (Rl

i ,D
l
i ,) denote the rate-distortion

point for each number l ∈ I, (typically l = 1,,40
components). The rate Rl

i represents the number of bits
required to encode the basis vector values and the co-
efficients. The distortion Dl

i is the root square error be-
tween the original and the reconstructed coordinates of
all vertices in the cluster.

Let Rtarget be the given total bit rate for all clusters.
Then the optimization problem is to find the best num-
ber of components li for the cluster i, (i = 1, ...,N)
that minimize D = ∑N

i=1 Dli
i subject to the constraint

∑N
i=1 Rli

i ≤ Rtarget .
In our coding, we introduce an R-D optimization

which is based on an incremental computation of the
convex hull [WS00]. For simplicity, and since the num-
ber of bits increases with the size of the basis vectors,
we define the rate R as the number of basis vectors
rather than the number of bits. Briefly, we define the
optimization algorithm in the following:

1. For each cluster Ci we compute:

• The number of components li that corre-
sponds to the smallest rate;

• The number of components ki that corre-
sponds to the next RD point on the lower
convex hull;

• The slope λi between the points (Rli
i ,Dli

i) and
(Rki

i ,Dki
i).

2. We compute the total rate Rt = ∑N
i=1 Rli

i

3. As long as (∑N
i=1 Rli

i ≤ Rtarget) is verified, we:

• Select the cluster Sn whose λn is minimal;

• Update Rt

• Modify li by ki;

Journal of WSCG ISSN 1213-6972 103 ISBN 978-80-86943-00-8

Figure 5: Reconstructed chicken. Top raw: Frame 314. Bottom raw: Frame 400. From left to right: Original, optimized
RLPCA, RLPCA, and LPCA performed in world coordinates (10 clusters; 10 components).

• Determine ki that corresponds to the next RD
point on the lower convex hull;

• Compute λn.

3.5 Compression Parameters
The compression parameters define the desired amount
of compression. In our approach, there are three param-
eters that govern the compression ratio:

• The number of basis vectors/rate L: If this num-
ber is fixed for all clusters, then the user defines
it (depending on the desired accuracy). The larger
this number is, the better reconstruction will be (at
the expense of less compression). If the RDO is
used, then we will need only to specify the amount
of compression (rate) or the maximum number of
basis vectors that are to be used to approximate
each cluster as we do in our coding. The num-
ber of vectors in each cluster is then optimally se-
lected such that the total rate is below the given
user-specified rate (or the total number of vectors
is below the given user-specified maximum num-
ber of vectors).

• The number of clusters N: If this number is very
small, then the cluster may contain vertices of dif-
ferent behavior and their local coordinates will
have a large variation over time. However, it is
difficult to find a linear space that efficiently rep-
resents these coordinates using PCA. In the future,
we want to automatize the selection of this num-
ber. Typically, in motion capture based animation
the number of clusters should be equal to the num-
ber of joints.

• The reconstruction error: This error presents the
deviation of the reconstructed positions from the
original one. It is measured using L2-norm or
the metric which we call KGerror [KG04]. More-
over, it controls the compression during the RDO.

This number should increase with decreases in the
number of clusters or the number of eigenvectors.

4 DECOMPRESSION
Figure 3 illustrates the decoding process. After receiv-
ing the sequences of the PCA details and the delta vec-
tors, we decode and undo quantization of delta vectors,
we reconstruct the points of the seed triangles of each
cluster in each frame, then reconstruct the LCFs. In
the second stage, we undo the quantization of all basis
vector values and coefficients, we reconstruct the local
coordinates of all vertices in each cluster, and transform
them back to world coordinates. Finally, we collect all
clusters to reconstruct the sequence of meshes.

5 RESULTS
In order to see the performance of our scheme, RLPCA,
we measured the number of bits per vertex per frame
(bpvf), and as most other recently proposed methods
for animated geometry coding, we used the KGerror
metric to measure the distortion in the reconstruction
animation with regard to the original animation. We
also computed the distortion per frame using the L2
norm of all reconstructed vertex positions relative to
the original positions of each frame. We compare
the compression performance of our algorithm against
AWC [GK04], TLS [PA05], PCA [AM00], KG [KG04]
and CPCA [SSK05].
RLPCA vs. LPCA We want to find the influence of
the segmentation and the local coordinates on the rate
and on the reconstruction of animation. We performed
LPCA in the world coordinate system as well as in the
local coordinate systems for a given numbers of clus-
ters, components and bits of quantization N, L and qc
respectively. Furthermore, we compared LPCA with
the standard PCA.

Figure 6 (a) shows the reconstruction results relative
the original frame using qc = qu = 12 and L = 10 when

Journal of WSCG ISSN 1213-6972 104 ISBN 978-80-86943-00-8

(a) (b) (c)

(d) (e) (f)
Figure 6: Rate distortion curves for the cow (b), dolphin (c), chicken (e) and dance (f) sequences using KGerror. The error plot
for the chicken sequence: (a) using LPCA in the world and the local coordinates and using the RD-optimization (10 clusters,10
components) and (d) using 10, 10 and 20 clusters and 20, 10 and 20 components.

the LPCA is performed in the world coordinates (green)
and in the local coordinates (blue) and when the R-D
optimization is introduced (red) at the same number of
bit per vertex per frame. We can see that the local co-
ordinates are more compressable than the the original
coordinates.

Figure 6 (d) and Figure 6 (f) shows the effect of
the number of clusters and the component on the
frame reconstruction for the chicken animation using
(N,L) ={(20,10); (20,20); (10,10)} and on the rate-
distortion curves for the dance animation using 10, 20
and 30 clusters. In Figure 6 (a), the improvement in the
second curve (blue) is due to the transformation of the
original coordinates into local coordinates which forces
the coordinates of a vertex to cluster around one point
(see Figure 2). This improvement increases (red) when
the optimization were introduced.

Figures 5 shows the reconstructed two frames in the
chicken sequence when the world and the local coordi-
nates are used and when the optimization is introduced
using 10 components and 10 clusters.
Comparison to other coders Figure 6 also illustrates
the comparison to other methods as rate-distortion
curves for the cow (b), dolphin (c) and chicken (e) an-
imations. At first glance, we can see that our approach
achieves a better rate distortion performance than the
standard PCA, LPC and TG for the three models. This
result is obvious since the animation coding based on
static techniques only exploit the spatial coherence and
the linear prediction coding only uses the temporal co-

herence. Furthermore, the standard PCA only approxi-
mates the global linearity and is less effective for non-
linear animation.

For the CPCA and AWC algorithms, we achieve bet-
ter or similar results. Figure 6 (b) shows that for the
cow animation our method is significantly better than
the method of Karni and Gostman and than the CPCA.
And it comes close to AWC. For the dolphin and the
chicken sequences our method performs better than all
the above methods. This improvement is due to the seg-
mentation of the model into meaningful parts (whose
vertices move quit similarly) as well as to the use of
local coordinates rather than world coordinates. On the
other hand, the RLPCA performs well for the models of
large number of vertices in contrast to KG. Therefore,
by combining RLPCA with LPC, we might achieve a
better compression ratio. Figure 6 also demonstrates
that the rate distortion optimization we introduce in our
algorithm (ORLPCA) is important for achieving better
compression performances especially when the number
of vertices is large and the animation is complex.

From the computational viewpoint, PCA is computa-
tional expensive but in combination with LPC [KG04],
it gives a better compression performance, particularly
for a long sequence of just a few number of vertices.
CPCA [SSK05] outperforms both methods since they
explore a robust segmentation which is based on a data
analysis technique but remains expensive. In contrast,
our RLPCA uses a simple clustering and transforma-
tions and achieves a better compression ratio.

Journal of WSCG ISSN 1213-6972 105 ISBN 978-80-86943-00-8

Table 1: Comparison compression and decompression timings with CPCA.

CPCA RLPCA
Models vertices triangles frames bpvf dKG tenc

(sec) tFPS
(sec) bpvf dKG N L tenc

(sec) tdec
(sec)

chicken 3030 5664 400 4.7 0.076 206 214 3.5 0.008 20 20 120 69
2.8 0.139 395 215 2.2 0.043 20 10 115 69
2.8 0.139 395 215 1.5 0.057 10 10 110 47

cow 2904 5804 204 7.4 0.16 75 145 6.8 0.128 30 20 82 46
3.8 0.5 59 218 4.1 0.470 30 20 40 50
2.0 1.47 55 284 2.2 1.220 10 10 70 23

dolphin 6179 12337 101 7.1 0.024 - - 3.9 0.016 20 10 74 40
4.1 0.033 - - 2.1 0.018 20 5 78 32
2.1 0.168 - - 1.9 0.066 10 5 39 25

Timings: Table 1 shows the timings in seconds of the
coding (tenc) and decoding (tdec) processes (without
optimization) for the three animations with a compar-
ison to CPCA (tFPS for display while decoding). We
observe that for the chicken and cow animations, our
coder is much faster and performs better than CPCA.
Our timing results are measured on Pentium 4 with 2.53
GHz and CPCA on AMD Athlon64 XP 3200+.

6 CONCLUSION
We introduced a new compression technique for the an-
imated meshes which is based on LPCA. The mesh ver-
tices are clustered using the motion in the LCF . Then,
the world coordinates of each cluster are transformed
into local coordinates. This step enables the algorithm
to compress an animated mesh efficiently. It exploits
the "local" behavior of the local coordinates. Finally,
an LPCA is performed in each cluster with the rate dis-
tortion optimization. Our approach is simple, fast and
achieves a better performance than other current exist-
ing compression techniques. It is applicable to meshes
and point-based models. It performs well for anima-
tions with a large number of vertices. For very long
sequences, we suspect that the motion of a local coordi-
nates also becomes complex and non-linear. Therefore,
we want to combine our method in the future with LPC
which is good for long sequences or split the sequences
into small clips. Furthermore, we plan to develop an
adaptive segmentation over time and encode the clus-
ters with different quantization levels. The number of
clusters can also be chosen automatically.
Acknowledgements We would like to thank Zachi
Karni and Hector Briceño for providing us the animated
meshes and Mirko Sattler, Igor Guskov and Frédéric
Payan for the results of their methods. The Chicken
sequence is property of Microsoft Inc.

REFERENCES
[AG05] P. Alliez and C. Gotsman. Recent Advances in Compression

of 3D Meshes. Elsevier Science Inc., 2005.

[AM00] Marc Alexa and Wolfgang Müller. Representing animations
by principal components. Comput. Graph. Forum, 19(3), 2000.

[ASS06] R. Amjoun, R. Sondershaus, and W. Straßer. Compression
of complex animated meshes. volume 4035, pages 606–613,
2006. Computer Graphics International 2006 Conference.

[Dee95] M. Deering. Geometry compression. In SIGGRAPH ’95
Conference Proceedings, pages 13–20, 1995.

[GK04] I. Guskov and A. Khodakovsky. Wavelet compression of
parametrically coherent mesh sequences. In Proceedings of the
ACM SIG./Eurog. sympo. on Comput. anim., 2004.

[GS98] S. Gumhold and W. Straßer. Real time compression of tri-
angle mesh connectivity. In SIGGRAPH ’98 Conference Pro-
ceedings, pages 133–140, 1998.

[Hop96] Hugues Hoppe. Progressive meshes. In Proceedings of the
23rd annual conference on Computer graphics and interactive
techniques, pages 99–108. ACM Press, 1996.

[IA02] M. Isenburg and P. Alliez. Compressing polygon mesh ge-
ometry with parallelogram prediction. In IEEE Visualization
’02 Conference Proceedings, pages 141–146, 2002.

[IR03] L. Ibarria and J. Rossignac. Dynapack: space-time compres-
sion of the 3d animations of triangle meshes with fixed connec-
tivity. In ACM SIG./Eurog. Symp. on Comput. Anim., 2003.

[JCS02] Yang J.H., Kim C.S., and Lee S.U. Compression of 3-d
triangle mesh sequences based on vertex-wise motion vector
prediction. Cir. Sys Video, 12(12):1178–1184, December 2002.

[JPK05] C-S Kim J. Peng and C-C.J Kuo. Technologies for 3d mesh
compression : A survey. ELSEVIER Journal of Visual Commu-
nication and Image Representation, 16(6):688–733, 2005.

[KG04] Zachi Karni and Craig Gotsman. Compression of soft-body
animation sequences. Comput.& Graph., 28:25–34, 2004.

[Len99] J. E. Lengyel. Compression of time-dependent geometry.
In Proc. of ACM sympo. on Interactive 3D graphics, 1999.

[MSK+05] K. Muller, A. Smolic, M. Kautzner, P. Eisert, and T. Wie-
gand. Predictive compression of dynamic 3d meshes. In IEEE
International Conference on Image Processing, 2005.

[PA05] F. Payan and M. Antonini. Wavelet-based compression of 3d
mesh sequences. In Proceedings of IEEE ACIDCA-ICMI’2005,
Tozeur, Tunisia, november 2005.

[Ros04] J. Rossignac. Surface simplification and 3D geometry com-
pression. Chapter 54 in Handbook of Discrete and Computa-
tional Geometry 2004.

[SSK05] M. Sattler, R. Sarlette, and R. Klein. Simple and efficient
compression of animation sequences. In ACM SIG./Eurog.
sympo. on Comput. anim., pages 209–217, 2005.

[TG98] C. Touma and C. Gotsman. Triangle mesh compression. In
Graphics Interface’98, pages 26–34, 1998.

[TR98] G. Taubin and J. Rossignac. Geometric compression through
topological surgery. ACM Trans. on Graph., 17(2), 1998.

[WNC87] I. H. Witten, R. M. Neal, and J. G. Cleary. Arithmetic
coding for data compression. Communications of the ACM,
30(6):520–540, 1987.

[WS00] M. Wagner and D. Saupe. Rd-optimization of hierarchical
structured adaptive vector quantization for video coding. In
Proceedings of IEEE on Data Compression, page 576, 2000.

[YKK01] Z. Yan, S. Kumar, and C. C. Jay Kuo. Error-resilient
coding of 3-d graphic models via adaptive mesh segmentation.
IEEE Trans. Circ. Syst. Video Tech., 11(7):860–873, 2001.

[ZO04] Jinghua Zhang and Charles B. Owen. Octree-based ani-
mated geometry compression. In Proceedings of IEEE on Data
Compression, pages 508–517, 2004.

Journal of WSCG ISSN 1213-6972 106 ISBN 978-80-86943-00-8

Computation of tunnels in protein molecules using
Delaunay triangulation

Petr Medek

Faculty of Informatics
Masaryk University

Botanická 68a
602 00 Brno,

Czech Republic

medek@fi.muni.cz

Petr Beneš
Faculty of Informatics
Masaryk University

Botanická 68a
602 00 Brno,

Czech Republic

xbenes2@fi.muni.cz

Jiří Sochor
Faculty of Informatics
Masaryk University

Botanická 68a
602 00 Brno,

Czech Republic

sochor@fi.muni.cz

ABSTRACT
This paper presents a new method of specific cavity analysis in protein molecules. Long-term biochemical
research has the discovery that protein molecule behaviour depends on the existence of cavities (tunnels) leading
from the inside of the molecule to its surface. Previous methods of tunnel computation were based on space
rasterization. Our approach is based on computational geometry and uses Voronoi diagram and Delaunay
triangulation. Our method computes tunnels with better quality in reasonable computational time. The proposed
algorithm was implemented and tested on several real protein molecules and is expected to be used in various
applications in protein modelling and analysis. This is an interesting example of applying computational
geometry principles to practical problems.

Keywords
protein, tunnel, Voronoi diagram, Delaunay triangulation

1. INTRODUCTION
Long-term research into the biochemical
characteristics of protein molecules has the discovery
that protein reactivity is closely related to the
presence of routes leading from the protein surface to
a biochemically relevant cavity inside the protein, an
active site. In the active site chemical reactions
between the protein and some substrate molecule
take place. One of the conditions the substrate
molecule requires to get to the active site is the
presence of an empty space connecting the surface of
the protein molecule with the active site. This empty
space is used by the substrate molecule to reach the
active site without crossing any atom of the protein
and is referred to as a tunnel. In Figure 1, a substrate
molecule can use two different tunnels to get to the
active site.
We emphasise that the geometrical existence of the
tunnel alone is not sufficient to guarantee that a

substrate molecule can access the active site. The
ability of the protein to react with the substrate is
based on many different physical and chemical
factors. Still, a tunnel computed concerning just the
geometrical point of view could provide information
that will help chemists to focus on specific parts of
the protein.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Copyright UNION Agency – Science Press, Plzen, Czech
Republic.

Figure 1. Tunnels in protein, the active site is
accessible by two tunnels.

active site

substrate molecule

Journal of WSCG ISSN 1213-6972 107 ISBN 978-80-86943-00-8

Considering only the geometry of the protein, the
molecule will be simplified to a set of spheres where
each sphere represents one atom. Each of these
spheres is situated in a certain position in 3D space
and has an appropriate Van der Waals radius. At this
stage we will not consider any other chemical
properties of the atoms or the molecule. The
substrate molecule is simplified to one bounding
sphere enclosing all substrate atoms. Due to these
simplifications tunnels always have circular
cross-sections and can be compared with one another
with respect to the diameter of the minimal cross-
section. This value limits the size of substrate
molecules that are able to access the active site.
The computation time is crucial especially when
analysing large sequences consisting of thousands of
‘molecule snapshots’, i.e. changes in positions of
atoms over a time period. In such cases the tunnel
computation has to be performed separately for each
snapshot.

2. RELATED WORK
The existing method of tunnel computation is based
on space discretization and is implemented in the
program CAVER [Pet06]. The space containing the
molecule is regularly sampled and the samples in the
3D raster (cubes) are evaluated by distances from the
nearest atom. The raster is interpreted as a graph with
weights at graph vertices. The search for a tunnel
with the greatest minimal distance is based on the
Dijkstra algorithm.

Another method of protein cavity analysis is based
on α-shapes [Ede94] and is implemented in the
program CASTp [Lia98]. CASTp deals with overall
cavity analysis, including determination of atoms
forming rims of cavities inside the molecule and
other analyses such as volume measurements of
cavities. Cavity analysis is done for all cavities
present (whether accessible from the outside or not)
and does not require any user input. As this
algorithm was designed as a general solution to
cavity analysis it does not deal with tunnels as export
routes and cannot be used for tunnel computation. A
fast and specialised algorithm is required.

A lot of research has been conducted in the area of
Voronoi diagram (VD) and Delaunay triangulation
(DT) modifications. In [Kim04] an algorithm for a
construction of a VD of a set of spheres, referred as
an additively weighted VD, is presented (sometimes
also referred as Euclidean VD of spheres).

In [Gho03] the additively weighted DT is used as a
solution to the problem of network routing. The
algorithm is based on 2D additively weighted DT.
Since the algorithm maintains the additively
weighted DT of sites that dynamically change its

position when users in mobile networks move, it is
more general.

3. PROPOSED SOLUTION
As mentioned above, the protein molecule is
simplified to a set of spheres S. Each sphere s ∈ S is
defined as s (cs,rs), where cs denotes its center point
and rs its radius. When we mention an atom below,
we are referring to the sphere representing this atom.

The function D (x,s) computes the Euclidean distance
of a point x from the surface of a sphere s. If x is
situated inside the sphere s, the result of the function
is negative:

D (x,s) = || x - cs || - rs

For each atom with respective sphere a ∈ S, a
Voronoi cell V (a) is defined as a set of points
satisfying the following condition:

∀x ∈ Rd: x ∈ V (a) ⇔ D (x,a) ≤ D (x,b), ∀a,b ∈ S,
 a ≠ b, d ∈ {2,3}

A Voronoi diagram V (S) is a union of all Voronoi
cells V (u), ∀u ∈ S. Hereafter the border of a
Voronoi cell will be referred to as a Voronoi edge.
This definition is equal to the definition of an
additively weighted Voronoi diagram [Kim04].

In our algorithm we employ duality between a VD
and a DT, one of the most important features of these
structures. For each VD a corresponding DT exists
and vice versa (see Fig. 2).

The minimal distance from the point x to the nearest
sphere (atom) is given by the function r (x):

r (x) = min {D (x,s) | s ∈ S }

Using these functions we can formalise intuitive
notion of a tunnel. A tunnel T leading from a point x
to a point y is defined by a centerline and a tunnel
volume. The centerline is a continuous curve aT
starting in x and ending in y. The tunnel volume is
formed by the union of spheres inserted at each point

Figure 2. Duality between Voronoi diagram
(dashed) and Delaunay Triangulation in 2D

(left) and 3D space (right).

Journal of WSCG ISSN 1213-6972 108 ISBN 978-80-86943-00-8

x ∈ aT with appropriate radius r (x). Formally, T is
defined as

T = U
Tax

xrxs
∈

))(,(

The function n (T) returns the radius of the minimal
sphere of a tunnel T:

n (T) = min {r (x) | x ∈ aT }

The function p (T) returns a set of points on the
tunnel T centerline aT satisfying the condition that
their distance to the nearest atom is n (T):

p (T) = {x | x ∈ aT ∧ r (x) = n (T)}

In most cases p (T) returns just a single point, the
centre of the „narrowest“ passage.

The order relation on the set ST of tunnels with the
centerline leading from x to y is defined by n (T):

T ≤ T ′ ⇔ n (T) ≤ n (T ′), ∀ T, T ′∈ ST

The tunnel T ∈ ST is ideal if for every other tunnel
T ′∈ ST the condition T ≤ IT holds.

Now, we state an important condition that is essential
for our method. This statement is valid for any
additively weighted Voronoi diagram and obviously,
when setting all atom radii to zero, it is also valid for
a Voronoi diagram of a set of points.

Lemma 3.1: Let S be a set of spheres in 3D,
|S | > 1. Consider an ideal tunnel T with the center-
line leading from a point x to a point y. If
x ∉ p (T) ∧ y ∉ p (T) then at least one point from
p (T) (the narrowest passage point) is situated on
some Voronoi edge of Voronoi diagram V (S).

Proof: See Appendix.

Tunnel computation
For better understanding the following concept is
explained in the plane. An extension to three
dimensions is straightforward.

Given V (S) for an input set of points S, the ideal
tunnel can be computed according to the Lemma 3.1.

The “narrowest” point of a Voronoi edge shared by
two atoms u and v is located at the intersection of the
Voronoi edge with the edge connecting u and v. If
such an intersection does not exist, the narrowest
point is located in the Voronoi edge endpoint x with
the smallest r (x). Thus, the narrowest place of every
tunnel must be located either in the Voronoi edge
intersection or in the Voronoi edge endpoint. Note
that knowledge of the shape of all Voronoi edges is
not necessary for the computation of the ideal tunnel
Voronoi edge intersections and endpoints mentioned
above are sufficient.

For computation, it is more convenient to represent
space partition with dual structure of VD, Delaunay
triangulation. DT can be interpreted as a weighted
graph G. Nodes of the graph are formed by triangles
of DT and graph edges are formed by edges shared
by the two neighbouring triangles. The edge weight
is defined as the narrowest point of the
corresponding Voronoi edge (see Fig. 4).

The graph G is used for computation of the ideal
tunnel T leading from the active site A. A possible
utilisation of this graph is described in Section 3.1.2.
The algorithm extension for computation of more
than one tunnel is proposed in Section 3.1.3. The
algorithm described is summarised by the following
pseudocode:

Input: set of atoms M
 active site A

Output: ideal tunnel

DT = delaunayTriangulation(M);
G = convertToGraph(DT);
T = computeTunnel(G,A);
output(T);

Figure 3. Tunnel T with the central line aT

T

x r(x)

y

r(y)

s cs
rs

aT

Journal of WSCG ISSN 1213-6972 109 ISBN 978-80-86943-00-8

3.1.1 Delaunay triangulation computation
The exact computation of an additively weighted VD
and an corresponding DT would be very expensive.
Since the algorithm for tunnels needs to be fast, we
propose several simplifications. We proceed from the
standard DT for a set of points instead and modify it
for a set of spheres. The following simplifications of
the exact solution are possible:
• Conservative simplification – By the definition,

the VD of a set of atoms that have equal radius is
the same as the VD of a set of points. The
simplification could be performed by setting the
radius of all atoms to the radius of the biggest
atom in the molecule. Then the DT of a set of
atom centers could be considered as the valid DT
of the set of atoms. The process of the edge weight
evaluation in the graph G is modified. The weight
of every edge is reduced by an amount
corresponding to the radius of the biggest atom in
the molecule.

• Approximate simplification – Typical protein
molecules usually consist of only a few types of
atoms and their radii do not vary significantly
(from 1.2 to 1.85 Ångström1). If we have the DT
of a set of atom centers and presume that it is a
valid DT for a set of atoms, possible error caused
by this approximation is minimal. The weight of
the edge in G is set to half the minimal distance of
the two surfaces of the atoms forming the edge.

DT could be obtained by several algorithms, e.g. the
lifting algorithm [Bar95] which uses the relation
between the convex hull and the DT. The convex
hull of a set of points in Rd+1 corresponds to the DT
in Rd. The time complexity of the convex hull
computation in R4 is O(n2), where n is the number of
points in the input set. The evaluation of edge

1 1 Å = 10-10 m

weights in the graph G is linear with respect to the
number of nodes in G.

3.1.2 Tunnel computation
 In order to compute the ideal tunnel, we process the
graph G using a modified Dijkstra algorithm. The
function f(x) evaluating each node in G provides
maximization of the minimal weight on the way from
the starting node to processed node. The Dijsktra
algorithm guarantees that the tunnel found for the
given starting point and the graph G is ideal. Time
complexity of Dijkstra algorithm is O(n2), where n is
the number of nodes in G, i.e. number of triangles in
DT.
 The output of our algorithm is one ideal tunnel for a
given active site and therefore it is not necessary to
evaluate every node in G. It is sufficient to perform
the evaluation of nodes until we reach the exterior of
the molecule. In our case, the exterior is determined
by the convex hull of the molecule. In the graph G, a
convex hull can be simply found as a set of nodes
having at least one of its neighbours missing.
Although this simplification does not improve
computational complexity in general, for real
molecules the time of computation is much faster, as
demonstrated in Section 4.

Figure 5. Example of Dijkstra algorithm
progress.

22
22

33

33

22

33

22

88

88
88

22
22

33

33

22

33

22
44

88

33

22

22
22

33

33

22

33

22
44

33

22
33

22
22

33

33

22

33

22
44

33

33
33

22
22

33

33

22

33

22 44

33

33
33

33

44

Figure 4. Example of graph G

DT
edge of G
node of G
narrowest point on edge of G

Journal of WSCG ISSN 1213-6972 110 ISBN 978-80-86943-00-8

The modified Dijkstra algorithm is described by the
following pseudocode; d[v] denotes the actual n (T)
on the centerline of the tunnel T leading from the
starting node s to the node v, previous[v] denotes the
predecessor of v on the centerline of T and w(u,v)
denotes the weight of edge (u,v) in G.

3.1.3 Modification for more tunnels
If two tunnels T1, T2 with the same
n (T1) = n (T2) satisfy the condition for the ideal
tunnel, one of them is selected randomly by the
Dijkstra algorithm. However, if p (T1) ≠ p (T2), it
could be useful to compute both these tunnels. Also
the computation of the next-best tunnels is required
sometimes. Therefore if more than one tunnel is to be
found, we propose the following solution. To exlude
already found tunnels, the graph G is modified after
each particular tunnel computation and the whole
process is repeated. To find new tunnels we may use
various graph modifications which are obvious from
geometrical point of view. However, the chemical
relevance of these modifications is not known yet.
We propose the following modifications:
• Set to zero weight of all edges of G with the

minimal weight along the computed tunnel.

• Set to zero weight of all edges of G along the
computed tunnel from the surface to the edge with
the minimal weight furthest from the surface.

• Set to zero weight of edges in the close
neighbourhood of edges with the minimal weight.

We use constraints C to determine the number of
computed tunnels. The process of tunnel computation
is repeated until C is not satisfied. As an example, for
compution of all tunnels with minimal width higher
than 1.2 Å, C would be a condition “n(T) > 1.2”.

Complexity
The time complexity of DT computation is quadratic
with respect to the number of atoms. The number of
nodes in G is linear to the number of atoms. The time
complexity of the Dijkstra algorithm is also quadratic
with respect to the number of nodes in G. Therefore
the overall time complexity is O(n2), where n is the
number of atoms

4. RESULTS

Implementation
The algorithm was implemented in Java. The
implementation uses the standard DT of a set of
points in 3D and extends it for a +set of spheres.
Both conservative and approximate simplification
were implemented. The output of our program is a
set of spheres approximating the computed tunnel. A
sphere is inserted into the center of each node and to
the narrowest point on each edge through which the
tunnel leads. Radii of these spheres are computed
during the transformation phase of the DT to the
graph G. For better accuracy of the approximate
method we check possible collisions of these spheres
with atoms in their close neighbourhood. If the
collision test is positive we decrease the radius of the
appropriate tunnel sphere so that the collision does
not occur.
The output set of spheres is used for a simple tunnel
visualization (see Fig. 6 and 7).

computeTunnel

Input: undirected weighted graph G
 starting node s

Output: sequence of tunnel nodes

for each node n in G
 d[n] = -∞;
 previous[n] = null;

d[s] = ∞;
u = s;
while (!u.onBorder())
 u = getUnprocessedMaximum(G);
 for each edge (u,v) outgoing
 from u
 if (d[v] < max(d[v],w(u,v))
 d[v] = max(d[v],w(u,v);
 previous[v] = u;

while (u != s)
 output(u);
 u = previous[u];

Extension for more tunnels

Input: set of atoms M
 active site A
 constraints C

Output: computed tunnels

DT = delaunayTriangulation(M);
G = convertToGraph(DT);
do

{

 T = computeTunnel(G,A);
 G = modifyGraph(T,G);
 output(T);

} while (C)

Journal of WSCG ISSN 1213-6972 111 ISBN 978-80-86943-00-8

Practical results
The output of both compared methods, CAVER and
our method, is a set of spheres approximating the
computed tunnel. The CAVER program was tested
with sampling densities 0.8, 0.4 and 0.15 Ångström.
The maximal error of the sampling method is
dependent on sampling density.
We tested both algorithms on real protein molecules
DhaA (consisted of 2358 atoms) and LinB (2479
atoms). The tests were performed on a computer with
P4 3.0GHz CPU and 1GB RAM. Active sites were
determined inside chemically significant cavities
inside the protein molecule.
In Table 1, comparison between the two algorithms
is done considering a real width of the narrowest
tunnel radius. This value can be achieved in the
following way. For each center cs of sphere s in the
sampled tunnel, the value r (s) is determined. If
rs > r (s) then rs is changed to r (s). Therefore the
tunnel found does not intersect any other atom and
the value n (T) of the computed tunnel T could never
be higher than n (IT) of the actual ideal tunnel IT.
A solution obtained by using an approximate
simplification cannot guarantee that the narrowest
place is determined by one of the sampled tunnel
spheres. It is possible that error can arise on the
tunnel centerline between two neighbouring spheres
in the sampled tunnel. Therefore, the tunnel
centerline is sampled densely to minimise the
probability of such errors arising.
It is not possible to set the sampling density in the
program CAVER densely enough due to the high
system requirements. Despite that we consider
CAVER results to be accurate enough.
 As shown in Table 1, when testing on two real
molecules, the solution obtained by the approximate
simplification is more accurate than the conservative
simplification. In comparison with the program
CAVER, the approximate simplification is

significantly more accurate. On the DhaA molecule
even the conservative simplification provides better
results than CAVER.
Furthermore, if we compare the computation time
shown in Table 2, the ratio of accuracy to
computation time obtained by both our methods is
much better. The computation of tunnels on the LinB
molecule took CAVER 34914 seconds to be more
accurate than the conservative simplification
(computed in 1.031 seconds) of our algorithm.
The comparison of computation time of the whole
Dijkstra algorithm and the reduced Dijkstra
algorithm is shown in Table 3. These results imply
that stopping Dijkstra algorithm on the Convex hull
brings a significant decrease in computation time of
the Dijkstra algorithm.

5. CONCLUSION
In this paper we have described a novel method of
tunnel computation in protein molecules. We
demonstrated two possible simplifications of the
proposed algorithm, which speed up the computation
process without notable loss of accuracy. The
conservative simplification gives worse but still
reasonably precise results and is faster due to its
simplicity. The approximate simplification computes
wider tunnels at the cost of possible presence of an
error in the result. In comparison with previous
solution, both our methods have much better ratio of
speed to accuracy.

There are several avenues possible for the further
research in the future. We want to implement the

CAVER using grid size DT method Minimal radius
(Ångström) 0.8Å 0.4Å 0.15Å Conservative Approximate

DhaA 1.05571 1.29359 1.4153 1.4207468 1.4772751

LinB 0.647456 0.674731 0.785306 0.7510569 0.8693304

Table 1. Accuracy comparison.

CAVER using grid size DT method Time of computation
(seconds) 0.8Å 0.4Å 0.15Å Conservative Approximate

DhaA 3.782 108.64 37152.91 0.984 1.312

LinB 3.391 100.89 34913.98 1.031 1.406

Table 2. Time of computation.

Time
(seconds) Full Dijkstra Reduced Dijkstra

DhaA 2.407 0.031

LinB 2.891 0.047

Table 3. Comparison of Dijkstra algorithm
computation.

Journal of WSCG ISSN 1213-6972 112 ISBN 978-80-86943-00-8

exact solution using additively weighted DT in 3D to
confirm our assumption that the accuracy
improvement is not worth of the speed degradation.
Utilization of more sophisticated methods of DT
computation could significantly improve the speed of
the algorithm, e.g. we could perform some space
partitioning and compute only a part of the graph G
on demand of Dijkstra algorithm.

Volume maximization of the tunnel instead of
maximization of the narrowest cross-section could be
biochemically significant. Fast analysis of large
snapshot sequences sampling molecule in time is also
demanded. Algorithm output could be also processed
with other techniques, e.g. haptical devices could
explore the tunnel surface for other biochemical
properties.

6. ACKNOWLEDGEMENTS
This work was supported by The Ministry of
Education of The Czech Republic, Contract No.
LC06008 and by The Grant Agency of The Czech
Republic, Contract No. 201/07/0927.

7. REFERENCES
[Bar95] Barber, C.B., Dobkin, D.P., and Huhdanpaa,

H. The Quickhull algorithm for convex hulls.

ACM Transactions on Mathematical Software,
22(4), pp.469-483, 1996.

[Ede94] Edelsbrunner, H., and Mucke, E. P. Three-
Dimensional Alpha Shapes. ACM Transactions
on Graphics, 13(1), pp43-72, 1994.

[Gho03] Ghosh, R.K., Gupta, G., and Rao, S.V. A
routing Algorithm for Multi-Hop Mobile Ad Hoc
Network Using Additively Weighted Delaunay
Triangulation. CIT, 2003.

[Kim04] Kim, D.S., Youngsong, C., Kim, D. Edge-
tracing algorithm for Euclidean Voronoi diagram
of 3D Spheres, Proc. of the 16th Canadian
Conference on Computational Geometry, pp.
176-179, 2004.

[Lia98] Liang, J., Edelsbrunner, H., and Woodward,
C. Anatomy of protein pockets and cavities:
Measurement of binding site geometry and
implications for ligand design. Protein Science, 7,
pp.1884-1897, 1998.

[Pet06] Petřek, M., Otyepka, M., Banáš, P.,
Košinová P., Koča, J., and Damborský J.
CAVER: a new tool to explore routes from
protein clefts, pockets and cavities. BMC
Bioinformatics, 2006.

[Pre85] Preparata, F.P., and Shamos, M.I.
Computational Geometry: An introduction.
Springer-Verlag, 1985.

Figure 6. Ideal tunnel in DhaA molecule Figure 7. Tunnel centerline (denoted by the line)

Journal of WSCG ISSN 1213-6972 113 ISBN 978-80-86943-00-8

APPENDIX

Lemma 3.1: Let S be a set of spheres in 3D,
|S | > 1. Consider an ideal tunnel T with the center-
line leading from a point x to a point y. If
x ∉ p (T) ∧ y ∉ p (T), then at least one point from
p (T) (the narrowest passage point) is situated on
some Voronoi edge of Voronoi diagram V (S).

Proof: Consider a tunel T with the centerline
leading from the point x to the point y satisfying
x ∉ p (T) ∧ y ∉ p (T). Let the set p (T) contain
only one point pT. If p (T) contains more than one
point, we perform the construction demonstrated in
this proof for each element of p (T).

Suppose that pT is not situated on any Voronoi edge
of V (S) and T is ideal (for each tunnels T ′ leading
from x to y, the condition T ≤ T ′ holds). If pT is not
situated on any Voronoi edge of V (S), then pT is
situated inside one of the Voronoi cells
V (u). This implies D (pT,u) < D (pT,v) for each
sphere v ∈ S, v ≠ u.

The point px denotes the intersection of the border
of V (u) with the part of aT, that lies between x and
pT. If more than one intersection exists, we select
the intersection closest to pT. Similarly the point py
denotes the closest intersection of the border of
V (u) with the part of aT lying between pT and y.
If x lies inside V (u), let px be the point x. If
y ∈ V (u), then py = y. The part of aT between points
px and py is denoted a′T. The curve a′T is continuous
and all points of a′T lie inside V (u),
∀v ∈ a′T ⇒ v ∈ V (u).

For each point w ∈ a′T we create a half-line with
the starting point in cu passing through w. w′ denote
the intersection of this half-line with the border of

V (u). Note that for each w, w ≠ px ∧ w ≠ py, the
condition r (w) < r (w′) holds. The set of all points
w′ forms a continuous curve leading from px to py.
We denote this curve a″T. Since we assume that T is
ideal, for each point w ∈ a′T, w ≠ pT the condition
r (w) > r (pT) holds, therefore for each point
w′ ∈ a″T the condition r (w′) > r (pT) is satisfied as
well.

We modify the centerline of T by replacing a′T with
a″T. The modified tunnel is denoted by T ′. For each
point w ∈ aT ′ the condition r (w) > r (pT) holds.
However, this implies n (T ′) > n (T), contradicting
our assumption that T is ideal.

Figure 8. Proof illustration.

u

py

w

V(S)

px

x

y

V(u)

aT

a�T

v

w�

a��T

Journal of WSCG ISSN 1213-6972 114 ISBN 978-80-86943-00-8

Annotating Images through Adaptation: An
Integrated Text Authoring and Illustration Framework

Timo Götzelmann, Marcel Götze, Kamran Ali, Knut Hartmann, Thomas Strothotte
Department of Simulation and Graphics

Otto-von-Guericke University of Magdeburg
Universitätsplatz 2, D-39106 Magdeburg / Germany

{timo, marcel, kamran, knut, tstr}@isg.cs.uni-magdeburg.de

ABSTRACT
This paper presents concepts to support authors illustrating their texts. Our approach incorporates content- and
feature-based retrieval techniques in multimedia databases containing 2D images and 3D models. Moreover, we
provide tools (i) to adapt the retrieval results to contextual requirements and (ii) to ease their integration into target
documents. For 3D models the adaptation comprises aspects of the image composition (i. e., the selection of an
appropriate view and the spatial arrangement of visual elements) and the selection of appropriate parameters for
the rendering process. In addition, secondary elements (e. g., textual annotations or associated visualizations)
are smoothly integrated into adapted 2D or 3D illustrations. These secondary elements reveal details about
the semantic content of illustrations and author’s communicative intentions. They can ease the retrieval, reuse,
and adaptation of illustrations in multimedia databases and are explicitly stored in conjunction with the adapted
illustrations.
Moreover, we developed a novel technique to support the mental reconstruction of complex spatial configurations
by shape icons. With this illustration technique, shape properties of salient objects can be conveyed using abstract-
shaped models. We present retrieval techniques to determine appropriate 3D models to be displayed for shape
icons. These shape icons along with the other secondary elements are smoothly integrated into the illustration that
can be interactively explored by the user.

Keywords
Text-Authoring, Annotation, 3D Graphics, Interaction

1 Introduction
Authors are often confronted with the challenging task
to find appropriate images to illustrate their texts. Even
if multimedia databases contain ready-made illustra-
tions, the (i) retrieval and (ii) adaptation of illustrations
to contextual requirements is expensive and time con-
suming. Our approach integrates multimedia retrieval
techniques within text authoring tools. By selecting
text segments, authors can directly define queries for
information retrieval systems. Subsequently, the orig-
inal documents are enhanced with user-selected illus-

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

WSCG’2007, January 29-February 1, 2007
Plzen, Czech Republic.
Copyright UNION Agency–Science Press

trations as well as with automatically generated figure
captions and references to these figures.
Human illustrators carefully adjust illustrations to the
communicative function of the embedding document.
This comprises (i) an appropriateimage composition
and (ii) an appropriatelayout of secondary elements
[28] or annotation layout. A well-balanced image
composition guarantees that graphical objects that are
referenced within the text are also visible in the illus-
tration and that their spatial configuration is visualized
effectively. The layout of secondary elements includes
the selection of graphical objects to be annotated, their
content, and their spatial arrangement.
However, illustrations created with a particular goal in
mind can rarely be used in contexts different from the
original. Therefore, it is often essential to adapt the
given illustrations according to new communicative
functions and to other external requirements imposed
by the layout of parent document. A successful adap-
tation comprises the selection of appropriateviews
which present characteristic visual features of salient
visual objects (image composition) and an appropriate
layout of secondary elements.

Journal of WSCG ISSN 1213-6972 115 ISBN 978-80-86943-00-8

Figure 1: Left: Illustration of the bony labyrinth, an organ of the human ear [11].Right: An altered view to clarify the shape the shape of the
annotated object [26].

Layout of Secondary Elements.Textual annotations
can establish co-referential relations between textual
and visual elements. Therefore, the layout of an-
notations provides semantic information — detailed
descriptions of the content of illustrations. Moreover,
it also reflects pragmatic aspects and indication for
their communicative function. An explicit represen-
tation of annotations both facilitates content-based re-
trieval techniques and allows an adaptation to differ-
ent contextual requirements. In this work, we pro-
pose to bridge thesemantic gap of current multimedia
retrieval systems by enhancing computer generated
images with a formal specification of the layout of
annotations.
Image Composition. For some application domains,
multimedia databases may also contain computer gen-
erated images (e. g., charts, flow diagrams, renditions
of surface or volumetric 3D models). Beside standard
image processing techniques for 2D illustrations with
a restricted potential to adapt the image composition,
our visualization component is enhanced to support
the adaptation of 3D model renditions to contextual
requirements. Human illustrators can interactively se-
lect appropriate views and specify textual annotations
for visual objects while adaptable real-time algorithms
determine annotation layout automatically.
Shape Icons. Regarding the image composition as-
pect in illustration systems, human illustrators can se-
lect only a single point of view to visualize graphi-
cal models. But depictions from a single view point
neither support the learners to reconstruct mentally
the spatial configuration nor they convey characteristic
features of all relevant visual objects. In medical ed-
ucation, for example, students have to understand the
correct form of objects and have to learn the spatial
configuration of their characteristic features. There-
fore, anatomic textbooks often contain illustrations of
a single object from several viewpoints or illustrators
manipulate the spatial configuration in order to present

characteristic visual features of the most relevant ob-
jects.
We analyzed document variants and found several ex-
amples where human illustrators integrated multiple
perspectives into a single depiction. Figure 1 presents
a correct and a manipulated perspective: The left illus-
tration presents the anatomically correct spatial shape
of the lateral semicircular canal. Here it is rather
difficult to recognize that the canal is shaped like a
hollow ring. By rotating the axis of canal in the right
illustration, shape recognition becomes easier. How-
ever, both illustrations should be presented together in
order to convey the correct meaning of the subject.
In order to overcome the limitations of a single visual
presentation we developed the concept ofshape icons.
Our idea was inspired by the observation, that even
textual description can convey information about the
shape or the form of visual objects. In some cases,
the object’s name itself refers to visual properties or
compares the object’s shape with well known refer-
ence objects (hippocampus–seahorse, cochlea–snail,
etc.). Therefore, we implemented a novel tool which
suggests shape icons for the most relevant objects in
the current interaction context. In order to clarify the
three-dimensional form without altering the real spa-
tial configurations, illustrators, instructors, or learners
can select an appropriate icon which is then displayed
in a textual annotation. We employ shape similarity
measures to determine the most relevant one within a
small set of visual reference objects.
This paper is organized as follows: Sec. 2 reviews the
related work. The architecture of our experimental
application is presented in Sec. 3. Sec. 4 describes
several application scenarios of our framework. Then
the layout of the textual and visual annotations (Sec. 5)
and the determination of shape icons (Sec. 6) are ex-
plained. Finally, Sec. 7 summarizes our contributions
and Sec. 8 discusses some directions of future work.

Journal of WSCG ISSN 1213-6972 116 ISBN 978-80-86943-00-8

Figure 2: The SearchIllustrator [12].

2 Related Work
This section aims at giving a short overview of tech-
niques to retrieve 2D illustrations or 3D models from
multimedia databases. Additionally, a brief survey of
methods to adapt the rendition of 3D models according
to communicative goals, and layout scheme of sec-
ondary elements are presented.
Image Retrieval Techniques.Due to the availability
of comprehensive multimedia databases and content-
based retrieval techniques, the text illustration process
has shifted from content creation to search with re-
spect to communicative goals. The strategies of ex-
perienced practitioners as well as their advantages and
disadvantages have been described by the journalists
Markkula and Sormunen [21]. They report that jour-
nalists employ a keyword-based search in huge image
databases. Since these keywords might not match
exactly the manually created image descriptions, they
are very often afraid of missing an appropriate image
and therefore tend to create queries that produce many
results. The process of browsing through the results,
the manual insertion of the search results into the text
may become very time consuming and takes a big
part of the effort required for creating an illustration.
To ease this burden, our system automatically inserts
illustrations into the text and generates initial figure
captions on the basis of the query (see Fig. 2).
The automatic retrieval of multimedia content (such as
images or 3D models) is a relatively young and highly
competitive research area, where descriptions of the
image’s content are either extracted from the data itself
(e. g., color histograms or distributions in 2D, shape
characteristics in 2D and 3D) or from contextual infor-
mation and manual annotations (metadata). Retrieval
techniques which extract features from the data do
not require manual annotations; however, they do not
support content-based queries (the so-calledsemantic
gap).

Manually created descriptions of the image’s content
are often incomplete, inconsistent, and language de-
pendent. Moreover, the pure amount of images to be
annotated raises severe problems for image retrieval
systems. Therefor good search engines incorporate
collaborative or social tagging approaches [29, 30] to
consistently annotate the semantic content of a huge
amount images which can be found on the WWW.
Liebermann and Liu present an interesting approach
that shows how image retrieval can benefit from the
analysis of semantical relations between concepts. The
authors present a system that analyzes annotations in
images and uses world semantics to make image re-
trieval more robust [20]. Another approach relies on
statistical analysis of relevance feedback [19]. It uses
a post processing step to improve the retrieval perfor-
mance in a way that more semantically-related images
are returned.
3D Retrieval Techniques.The search for 3D models
is based on different similarity measures. It employs
spatial (shape) distributions of vertices in 3D models
[22], symmetry axis [17] or skeleton graphs [5], ap-
proximations of complex shapes with sets of simple
geometric objects [27], or transformations of 3D mod-
els into frequency representations [18]. These ap-
proaches can be refined by iterative user feedback mech-
anisms [9]. Some engines offer a web interface and
present their results in a browser window. Moreover,
the Princeton 3D model search engine also allows users
to sketch the shape of the desired objects or to search
for text linked with 3D models [10].
Interactive Illustration Techniques. Computer gen-
erated renditions of 3D models can automatically be
adapted to emphasize the most salient objects in a
document to be illustrated [15]. Due to (partial) oc-
clusions, a single illustration often does not suffice
to depict all salient visual objects. The illustrative
browser [25] restricts the number of salient objects to
those contained in the current displayed text segment

Journal of WSCG ISSN 1213-6972 117 ISBN 978-80-86943-00-8

Authoring Tool

Visual Composition
Multimedia
Databases

Annotated
3D-Models

Annotated
Images

Text
Editor

Retrieval and
selection

Adaptation

Image Tool

Annotation
Layout

Annotation
Editor

3D Visualization

Annotation
Layout

Annotation
Editor

Adaptation

Shape
Similarity

Shape
Icons

Semantic
annotation

Semantic
annotation

Semantic
annotation

Figure 3: System overview.

while non-photorealistic rendering techniques can also
present occluded objects. Moreover, learners can in-
teract with the visualization and with the textual part
of the document. Users can change the view of graph-
ical objects in the illustration and the textual part is
scrolled accordingly to show the matching explana-
tions and vice versa. However, this is only possible
in an interactive environment.
Layout Algorithms. The research on the layout of
annotations was pioneered by the cartographic com-
munity [16]. There exist a wide variety of research
prototypes to integrate annotations into interactive in-
formation systems such as dynamic maps [23] and
medical and technical illustrations [1, 13, 6]. Recently,
the term view management was introduced in Aug-
mented and Virtual Reality for a more general, but
related problem: the smooth integration of additional
2D information (images, texts, annotations) into the
view plane [3, 2].

3 Architecture
Our approach extends the SearchIllustrator concept
[12] that employs information retrieval techniques on
multimedia databases or web search engines to inter-
actively illustrate texts (cf. Fig. 2). The search can
be performed in two ways. First, the user can inter-
actively select keywords that control a search engine
for static images and 3D models. Second, the system
analyzes the text and performs a background search
during the writing process. After the creation of the
text is finished the system presents a collection of
possible images or 3D models for illustration. User

selected images are not adjusted to contextual require-
ments, whereas the parameters for viewing direction
and the rendering style are adjustable. The 3D model
is then used to create different photorealistic, non-
photorealistic, and hybrid renditions, depending on the
users needs and the communicative goal.
Within theauthoring tool (see Fig. 3), illustrators can
directly access the results of a multimedia retrieval
system and select appropriate images or 3D models.
Subsequently, an interactive3D visualization system
allows to adapt the viewing direction and the rendering
style to contextual requirements. Our implementation
extends Götze’s [12] original framework with a flexi-
ble real-time annotation system. In anannotation edi-
tor, illustrators can specify textual annotations for vi-
sual objects and adjust their placement. An automated
annotation layout system determines a frame-coherent
layout during user interactions which considers and
retains manual specifications of annotations.
The shape similarity module assists users to deter-
mine shape icons for relevant 3D objects. The system
suggests a ranked list of candidate 3D objects, while
the user selects an appropriate model and adjusts the
viewing direction. Subsequently, small projections of
these 3D models (shape icons) are integrated into the
layout.
The link between the 2D and 3D visualization system
highlights the fact that our approach extends computer
generated renditions with explicit specifications of the
rendering parameters and the annotation layout, so
that illustrators or readers may access the underlying
3D visualization through computer generated images
contained in interactive documents.

Journal of WSCG ISSN 1213-6972 118 ISBN 978-80-86943-00-8

Figure 4: Interactive annotation of 3D models.

4 Scenarios
This section describes 3 different application scenarios
of our approach by referring to the several modules of
the architecture. In each of the scenarios the starting
point is a text to be illustrated in thetext editor. In
first scenario (cf. Sec. 4.1), system looks for appro-
priate 2D images inmultimedia database which are
then integrated into the visualization. In the second
scenario (cf. Sec .4.2), the system adapts the rele-
vant 3D model to contextual requirements of the text
and stores thesemantical annotations explicitly as text
in the resulting illustration. The last scenario (cf.
Sec. 4.3) insertsshape icons in the visualization in
order to avoid ambiguity in spatial details.

4.1 Adequate Illustration
Let’s suppose, a user wants to illustrate a text of a doc-
ument with an adequate image. He/she marks some of
the terms used in the text and submits the query to the
retrieval module. The module displays some searched
illustrations, one of which can be chosen by the user
and integrated into the text via a mouse click. Here,
no adaptation of the illustration is performed by the
system.

4.2 Adapted Illustration
The second scenario assumes that there is a user who
wants to illustrate a text in a specific context. To
search for an appropriate illustration, he/she marks the
relevant terms in the text editor. The retrieval module
offers several different search results. The user selects
one of the 3D models that can be used to roughly
illustrate the text. When the view and the annotations
of the visualization do not optimally correspond with
the context described in the text, the user utilizes the
3D visualization module to interactively choose an ap-
propriate view of the 3D model and adapts the annota-
tions to the text’s contextual requirements. Finally, the
adapted 3D model is integrated into the text editor and
saved for later use. Since semantical annotations de-
scribe the content of illustrations, our approach stores
annotations explicitly in a textual fashion, hence, the
retrieval system can use them for future searches to
regain and re-use them.

4.3 Illustration with Shape Icons
In this scenario, a user needs a special illustration
related to a very specific context. Therefore, it is re-
quired to adapt the illustration according to the corre-
sponding text into the text browser. Within our system,

Journal of WSCG ISSN 1213-6972 119 ISBN 978-80-86943-00-8

Figure 5: Left: A suggested annotation layout.Right: Integration of manual layout constraints to meet external layout restrictions.

the user can change the annotations and the view of a
3D model retrieved by the search module. However,
it might not always be possible to find a view which
shows the spatial extents of all important 3D compo-
nents in an unambiguous way. To solve that prob-
lem the user involves the shape similarity module to
retrieve shape icons which help to disambiguate the
spatial shape of the objects.

5 Annotation Layout
The adaptation of retrieved visual material to new con-
textual requirements comprises their (re)composition
and the enhancement with additional information. The
determination of an appropriate viewing direction for
a 3D model or the selection of a display window for
a 2D illustration involves semantic, pragmatic, and
aesthetic considerations which should be done by a
human expert (see Blanz’s [4] psychological exper-
iments to determine canonical views and Polonsky’s
[24] review of algorithms to determine “good” views
of three-dimensional models.). In contrast, there are
good heuristics for a functional and aesthetic layout of
annotation [16, 8, 14]. Therefore, we developed tools
which support authors to adjust the visual composition
for 2D illustrations as well as for computer generated
renditions of 3D models and to add additional infor-
mation to visual elements or alter their content (see
Fig. 4). An automated layout system determines the
placement of all annotations and considers constraints
posed by the illustrator.
The automatic layout of annotations considers the spa-
tial configuration on projection in real-time. We in-
corporate a potential field approach on color-coded
projections [13]. The novel contributions of this paper
are anannotation editor and the integration of manual
constraints into the automaticannotation layout (see
Fig. 4 and 5). Illustrators can define annotations by
selecting arbitrary positions on the image (2D) or on
the surface of the 3D models. Moreover, their content
can be altered by selecting the desired visual object
or its annotation. Finally, the layout of the target
document often imposes restrictions on the maximal

size of an embedded illustration, which heavily influ-
ences the layout of annotations. In order to allow the
user to correct unaesthetic placements, manual layout
specifications are considered in the layout algorithms
(see Fig. 5).

6 Determination of Shape Icons
In order to support the mental reconstruction of com-
plex spatial configurations, instructors and learners can
add images of similar 3D objects. Our system employs
shape similarities to suggest an appropriate object as
a shape icon from a predefined set of 3D reference
objects. Moreover, the object itself is included in this
list, as it might be partially occluded or depicted from
a non-canonical view. Finally, the texts presented in
annotation can be used to for queries for image or
3D model search engines. The three most similar ref-
erence objects and the object itself are displayed. After
choosing a shape icon, it is accordingly displayed next
to the textual annotation (see Fig. 6).
We integrated Chen’s 3D retrieval engine [7] because
one could specify a corpus of 3D reference objects.
Of course, it is possible to use other search engines
instead.
The sequence of determining spatially similar objects
is as follows: In a pre-computation step, shape de-

Figure 6: An annotated ear with several shape icons to disam-
biguate the spatial shape of specific objects.

Journal of WSCG ISSN 1213-6972 120 ISBN 978-80-86943-00-8

Figure 7: Preprocessing step.

scriptors for each object in the database of reference
objects are determined (see Fig. 7). If the author is se-
lecting a specific object of the 3D model and requests a
shape icon, accordingly a new shape descriptor for this
object is determined, too. Subsequently, the system
computes the similarity of the selected objects shape
descriptor with each of the pre-computed shape de-
scriptors of the reference objects in the database (see
Fig. 8).
Additionally, the textual annotations associated with
objects are used for keyword-searching. Next, the
search results are ranked and the candidates are pre-
sented according to their score.

Figure 8: Shape matching step.

By selecting one of the candidates, the author can
adopt it as a shape icon. Finally, the annotation layout
is recomputed.
To render a shape icon from 3D objects, the set of
reference 3D objects also contains specifications of
canonical views. Another approach is to align two
canonical directions (front and top) between the se-
lected and the reference 3D object, and to adjust the
view of the shape icon to the current viewing direction.
To determine the appropriate strategies, however, user
tests are required.

7 Conclusion
In this paper, we developed a novel concept to support
the interactive illustration of texts with content-based
search strategies in multimedia databases. The main
contributions are: (i) We proposed a new kind of inter-
active documents by retaining the rendering parame-
ters for computer-generated projections so that read-
ers can directly access 3D visualizations of complex
spatial configurations. (ii) The definition of textual
annotations for visual objects and their appealing and
frame-coherent presentation in interactive 3D visual-
izations and 2D illustrations is a central element of the
adaptation of predefined visual materials to contextual
requirements. Our approach considers the annotation
layout as an inherent description of the semantic and
pragmatic content of illustrations. Hence, their ex-
plicit representation eases content-based retrieval tech-
niques and the reuse and adaptation of images. (iii) We
introduced the concept of shape icons to clarify rendi-
tions of complex spatial shapes. Appropriate geomet-
ric reference objects are determined by a combination
of shape and keyword-based 3D retrieval techniques
and are interactively selected by instructors or learners
in order to ease their mental reconstruction. (iv) We
implemented an experimental application which offers
all basic functionalities.

8 Future Work
Since this framework is designed in a modular fash-
ion, it is possible to integrate additional modules to
it which aid the illustrator to emphasize several parts
of the illustrations. To ensure the visibility of all im-
portant parts of an 3D object, human illustrators often
use visual techniques like transparency (ghosting) and
cutaways. Thus, we are currently investigating a set of
those techniques.
Though, the discussions with anatomists revealed that
shape icons could improve medical training, they have
to be evaluated. Thus, we plan a user study to evaluate
our system. Some tests could compare the effectivity
of unchanged illustrations found in the WWW with
those which were adapted via our system. Another
test could reveal the time efficiency of our integrated

Journal of WSCG ISSN 1213-6972 121 ISBN 978-80-86943-00-8

approach compared with a manual search and adapta-
tion of appropriate illustrations.

References
[1] K. Ali, K. Hartmann, and T. Strothotte. Label

Layout for Interactive 3D Illustrations.Journal
of the WSCG, 13:1–8, 2005.

[2] R. Azuma and C. Furmanski. Evaluating Label
Placement for Augmented Reality View Manage-
ment. InIEEE and ACM Int. Symp. on Mixed and
Augmented Reality, pages 66–75, 2003.

[3] B. Bell, S. Feiner, and T. Höllerer. View Manage-
ment for Virtual and Augmented Reality. InSymp.
on User Interface Software and Technology, pages
101–110, 2001.

[4] V. Blanz, M. J. Tarr, and H. H. Bülthoff. What
Object Attributes Determine Canonical Views?
Perception, 28:575–599, 1999.

[5] A. Brennecke and T. Isenberg. 3D Shape Match-
ing Using Skeleton Graphs. InSimulation und
Visualisierung, pages 299–310, 2004.

[6] S. Bruckner and E. Gröller. VolumeShop: An
Interactive System for Direct Volume Illustrations.
In IEEE Visualization, pages 671–678, 2005.

[7] D.-Y. Chen, X.-P. Tian, Y.-T. Shen, and M. Ouhy-
oung. On Visual Similarity Based 3D Model
Retrieval.Computer Graphics Forum, 22(3):223–
232, 2003.

[8] S. Edmondson, J. Christensen, J. Marks, and
S. Shieber. A General Cartographic Labeling
Algorithm. Cartographica, 33(4):13–23, 1997.

[9] M. Elad, A. Tal, and S. Ar. Content based
Retrieval of VRML Objects — An Iterative and
Interactive Approach. InEG Workshop in Multi-
media, pages 107–118, 2001.

[10] T. Funkhouser, P. Min, M. Kazhdan, J. Chen,
A. Halderman, D. Dobkin, and D. Jacobs. A
Search Engine for 3D Models.ACM Transactions
on Graphics, 22(1):83–105, 2003.

[11] H. Gray. Anatomy of the Human Body. Lea &
Febiger, Philadelphia, 20th edition, 1918.

[12] M. Götze, P. Neumann, and T. Isenberg. User-
Supported Interactive Illustration of Text. In
Simulation und Visualisierung, pages 195–206,
2005.

[13] T. Götzelmann, K. Hartmann, and T. Strothotte.
Agents-Based Annotation of Interactive 3D Visu-
alizations. In6th Int. Symp. on Smart Graphics,
pages 24–35, 2006.

[14] K. Hartmann, T. Götzelmann, K. Ali, and
T. Strothotte. Metrics for Functional and Aesthetic
Label Layouts. In5th Int. Symp. on Smart
Graphics, pages 115–126, 2005.

[15] K. Hartmann and T. Strothotte. A Spreading
Activation Approach to Text Illustration. In2nd
Int. Symp. on Smart Graphics, pages 39–46, 2002.

[16] E. Imhof. Positioning Names on Maps.The
American Cartographer, 2(2):128–144, 1975.

[17] M. Kazhdan, B. Chazelle, D. Dobkin,
T. Funkhouser, and S. Rusinkiewicz. A
Reflective Symmetry Descriptor for 3D Models.
Algorithmica, 38(2):201–225, 2003.

[18] M. Kazhdan, T. Funkhouser, and
S. Rusinkiewicz. Rotation Invariant Spherical
Harmonic Representation of 3D Shape
Descriptors. In Symposium on Geometry
Processing, 2003.

[19] M. Li, Z. Chen, and H. Zhang. Statistical
Correlation Analysis in Image Retrieval.Pattern
Recognition, pages 2687–2693, 2002.

[20] H. Lieberman and H. Liu. Adaptive Linking
Between Text and Photos using Common Sense
Reasoning. In2nd Int. Conf. on Adaptive Hyper-
media and Adaptive Web-Based Systems, pages 2–
11, 2002.

[21] M. Markkula and E. Sormunen. Searching for
Photos — Journalists’ Practices in Pictorial IR.
In The Challenge of Image Retrieval, A Workshop
and Symposium on Image Retrieval, 1998.

[22] R. Osada, T. Funkhouser, B. Chazelle, and
D. Dobkin. Shape Distributions.ACM Transac-
tions on Graphics, 21(4):807–832, 2002.

[23] I. Petzold, G. Gröger, and L. Plümer. Fast Screen
Map Labeling — Data Structures and Algorithms.
In 21st Int. Cartographic Conf., 2003.

[24] O. Polonsky, G. Patané, S. Biasotti, C. Gotsman,
and M. Spagnuolo. What’s in an Image?The
Visual Computer, 21(8–10):840–847, 2005.

[25] S. Schlechtweg and T. Strothotte. Illustrative
Browsing: A New Method of Browsing in Long
On-line Texts. InInt. Conf. on Computer Hu-
man Interaction (INTERACT-99), pages 466–473,
1999.

[26] J. Sobotta, R. Putz, and R. Pabst, editors.
Sobotta: Atlas of Human Anatomy. Lippincott
Williams & Wilkins, Baltimure, 13. edition, 2001.

[27] M. Suzuki. A Dynamic Programming Approach
to Search Similar Portions of 3D Models.The
World Scientific Engineering Academy and Soci-
ety Transaction on Systems, 3(1):125–132, 2004.

[28] E. R. Tufte. Visual Explanations: Images and
Quantitatives, Evidence and Narrative. Graphics
Press, Cheshire, Connecticut, 1997.

[29] L. von Ahn and L. Dabbish. Labeling Images
with a Computer Game. InSIGCHI Conf. on
Human Factors in Computing Systems, pages
319–326, 2004.

[30] L. von Ahn, R. Liu, and M. Blum. Peekaboom: A
Game for Locating Objects in Images. InSIGCHI
Conf. on Human Factors in Computing Systems,
pages 55–64, 2006.

Journal of WSCG ISSN 1213-6972 122 ISBN 978-80-86943-00-8

Instant Animated Grass

Ralf Habel Michael Wimmer Stefan Jeschke
Institute of Computer Graphics and Algorithms

Vienna University of Technology, Austria
{habel,wimmer,jeschke}@cg.tuwien.ac.at

ABSTRACT
This paper introduces a technique for rendering animated grass in real time. The technique uses front-to-back
compositing of implicitly defined grass slices in a fragment shader and therefore significantly reduces the overhead
associated with common vegetation rendering systems. We also introduce a texture-based animation scheme that
combines global wind movements with local turbulences. Since the technique is confined to a fragment shader, it
can be easily integrated into any rendering system and used as a material in existing scenes.

Keywords
Real-time Rendering, Natural Phenomena, Natural Scene Rendering, GPU Programming

1. INTRODUCTION
Interactive rendering of vegetation in natural scenes
plays an important role in virtual reality and computer
games where grass is an essential part of most natu-
ral scenes. Unfortunately, grass is also very complex:
modeling each individual blade of grass would require
a huge amount of geometry, making it impossible to
render in real time. Common acceleration techniques
represent grass using billboards [Pel04]. However,
even these simplified billboards lead to massive over-
draw in realistically modeled scenes. Furthermore,
placing grass into a scene using geometry requires a
significant storage and modeling effort.
In this paper, we present a new method to render ani-
mated grass in real time that exhibits all important vi-
sual characteristics of grass, namely parallax and oc-
clusion effects when the viewpoint moves, as well as
animation due to wind. It is efficient to render and
easy to incorporate into existing rendering systems.
The main target are video games with a first person
viewpoint where grass is mostly seen at grazing an-
gles. Grass is represented using implicitly defined tex-
tured billboards perpendicular to the terrain geometry
which are ray traced in a fragment shader and is there-
fore suited for short and dense grass such as lawns

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted with-
out fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redis-
tribute to lists, requires prior specific permission and/or a
fee.
Copyright UNION Agency – Science Press, Plzen, Czech
Republic.

or meadows. While the billboards could also be de-
fined using conventional geometry, the advantage of
an implicit definition is that no extra geometry has to
be generated, only the terrain geometry and its asso-
ciated tangent space is required as input. This makes
it easy to apply the grass to different scenes and the
output speed merely depends on the number of pix-
els covered by grass rather than on the density of the
grass or the extent of the terrain. Standard lighting
techniques such as dynamic lighting and shadowing,
including light maps or precomputed radiance transfer
can be used without modification. Furthermore, we
animate grass using a texture based approach that in-
corporates both low-frequency phenomena like gusts
of wind and high-frequency phenomena like small tur-
bulences, leading to a very realistic appearance of the
rendered grass.

Figure 1: A terrain textured with animated grass with
moderate grass density and height.

Journal of WSCG ISSN 1213-6972 123 ISBN 978-80-86943-00-8

2. RELATED WORK
In order to display complex volumetric effects such
as fur and short hair, Kajiya and Kay [KK89] intro-
duced volumetric textures, called “texels”. In this con-
text, texels are representations of a three-dimensional
material by a cubic reference volume that is mapped
onto a surface repeatedly. A texel itself is a three-
dimensional array approximating the visual proper-
ties of a micro-surface. They were created to solve
the problem of spatial aliasing of ray-traced com-
plex geometries. Rendering a texel involves front-
to-back compositing along a ray, which is also used
in our method. An extension and application to nat-
ural scenes of volumetric textures was presented by
Neyret [Ney98]. The typical real-time implementa-
tion of texels uses stacks of polygons, mapped with
semi-transparent textures [BH02] [Len00] [LPFH01]
[MN98] . However, slices that are parallel to a terrain
geometry are not optimal for viewing positions typical
for walkthroughs, with objectionable artifacts at graz-
ing angles.
The most common way to represent grass (also used
in many current games) are billboards mapped with a
texture of several grass blades [Pel04]. The billboard
vertices are usually animated analytically. However,
a massive amount of polygons is required to densely
cover a terrain, and analytical animation looks very
uniform.
Perbet and Cani [PC01] combine different grass repre-
sentations at different distances to render and animate
prairies in real time. In the nearest level of detail, grass
blades are modeled individually, which makes it diffi-
cult to combine various types of grass and flowers.
The proposed algorithm is closely related to real-time
relief mapping [POaLDC05] [OP05] [WWT+03]. In
contrast to those methods, which are based on ray trac-
ing a height field within a shell on the surface of an
object, the presented method ray traces a regular grid.

3. RENDERING GRASS
Motivation
We model grass as a collection of textured billboards,
and arrange them in a regular grid.
Typically, a grass texture is fully transparent between
the individual grass blades and fully opaque within the
blades. However, partial opacity arises at the edges of
the grass blades if the grass texture is a filtered version
of a higher resolution texture, or if it has been gener-
ated using an anti-aliased renderer in the first place.
Therefore, the colors and opacities of billboards over-
lapping in screen space need to be correctly compos-
ited. Just as in volume rendering, this can be done ei-
ther in back-to-front or front-to-back fashion [LL94].
Back-to-front compositing corresponds to standard
transparency alpha blending used when rendering the

billboards as geometry. However, back-to-front com-
positing can be very inefficient because all slices have
to be traversed in order to get a correct result. Further-
more, if the billboards intersect each other, a consistent
back-to-front order does not exist. The popular alter-
native of using alpha testing instead of alpha blending
leads to noticeable aliasing artifacts especially at the
edges of the grass blades.
Front-to-back compositing, on the other hand, is typ-
ically used with ray tracing and allows for early ray
termination when the accumulated opacity is suffi-
ciently high. We exploit this fact for grass render-
ing in the following way: Instead of rendering the
textured grass billboards using polygons, we define
them implicitly on a “carrier polygon” and ray trace
these “virtual billboards”’ in the fragment shader using
front-to-back compositing (also known as the “over”-
operator [PD84]). This allows exiting the fragment
shader when the opacity reaches a user-defined thresh-
old. Furthermore, intersecting billboards are handled
automatically, always giving correct compositing re-
sults. We have found that the illusion of grass can be
perfectly maintained even when doing a small, fixed
number of iterations, which is more amenable to cur-
rent graphics hardware.
The setup of the ray tracing step is very similar to re-
lief mapping [POaLDC05], where a height map, de-
fined in a shell carried by polygons is ray traced in the
fragment shader. As with relief mapping, the regular
grid of grass billboards therefore seem to reside inside
the carrier polygon (see Figure 2).

Figure 2: A quad patch (wireframe overlay) rendered
with fully opaque textures. The grid structure is gen-
erated in the fragment shader.

The most significant advantage of rendering grass in
the fragment shader may be the ease of modeling and

Journal of WSCG ISSN 1213-6972 124 ISBN 978-80-86943-00-8

integration into existing rendering systems. Grass can
be defined as a material and does not require any other
change in the scene definition (whereas in polygonal
rendering, each grass billboard has to be placed either
by hand or automatically). Furthermore, we will show
how to animate the ray traced grass in high quality.

Grass Ray Tracer
This section describes the grass ray tracer in more de-
tail. A basic grass patch consists of the ground texture
and a texture containing one subtexture for each vir-
tual billboard (or slice) in the patch. We currently use
the same set of billboard textures for both axes of the
regular grid. For current graphics hardware, we allow
the raytacing loop to exit before full opacity has been
reached. The remaining opacity can be filled using
a constant color or an additional, fully opaque grass
slice (Figure 4). The fragment shader casts rays into
a shell defined by the carrier polygon at the top, and
a virtual ground polygon at the bottom that is offset
by a user-defined distance along the negative tangent-
space w axes at the vertices (i.e., the inverted normal
vectors).

Figure 3: A ray is cast from the viewing point through
grass slices.

Grass can be applied to any mesh in a scene that has a
tangent space (u,v,w) defined. A basic grass patch is
tiled onto the whole mesh. Note that this leads to sim-
ilar restrictions as with relief mapping, where silhou-
ettes are difficult to define. Additionally, analogous
to relief mapping, the viewpoint cannot move into the
grass.
The fragment shader takes as input the interpolated
tangent space vectors, the view vector ~v in tangent
space (interpolated from ~p−~s at each vertex ~p and
viewpoint ~s), and the interpolated texture coordinates
(which give the ray entry point ~e see Figure 3). The
user also has to provide the parameters du,v for the dis-
tance between the slices in tangent space and the depth
of the ground plane h. The shader executes the follow-
ing steps:

1. Calculate for both u and v a texture offset to select
the initial grass slices.

Figure 4: A grass data set consisting of grass blades
(left), a ground texture (right) and a fully opaque grass
slice (bottom). Note that as in any texture packing
method, a one-texel border needs to be observed be-
tween grass slices.

2. Adjust this offset depending on the sign of the
view vector so the same slice is seen from both
sides.

3. Calculate the positions pu,v of the first planes to
be ray traced in both u and v directions according
to du,v using a floor() operator.

4. Enter the raytacing loop.

The inner ray tracing loop consists of the following
steps:

1. Calculate the intersections with the next slice in u
and v direction. Since the slices are axis aligned,
the ray-plane intersection

~x =~e+~v ·
~np · (~p−~e)

~np ·~v
, (1)

where~np is the normal vector and ~p is an arbitrary
point on the plane, simplifies to

~x =~e+~v ·
pu,v,w− eu,v,w

vu,v,w
, (2)

depending on which axis is used.

2. Choose the closer intersection point and incre-
ment (or decrement, depending on the sign of v)
the corresponding slice by du,v.

3. Test intersection point against the virtual ground
polygon. If the intersection is outside the shell,
intersect the ray with the ground polygon using
equation 2.

4. Composit the current color ~c with the color of
the slice ~ci (with associated alpha values α and
αi) using the standard “over” blending function,

Journal of WSCG ISSN 1213-6972 125 ISBN 978-80-86943-00-8

which assumes that colors are premultiplied with
their corresponding opacity values:

~c = ~c+(1−α) ·~ci

α = α +(1−α) ·αi (3)

After the raytracing loop, the remaining transparency
is filled with a texture lookup from the fully opaque
grass slice or the average color of the grass data set. A
single grass patch rendered with the data set of Figure
4 using 16 slices for both u and v axes can be seen
in Figure 5. We have found that a very low number (4
was used in the images shown) of ray casting iterations
is sufficient for high image quality. This helps to keep
the number of required texture reads low.

Figure 5: A quad patch rendered with the data set of
Figure 4. The grid structure is apparent at perpendicu-
lar angles but vanishes at more grazing angles.

Especially for higher grass, if the grass patch is ex-
pected to be viewed at perpendicular angles, the grid
structure becomes apparent. This can be mostly
avoided by adding a horizontal grass slice (in the mid-
dle of the shell) which is ray cast just like the vertical
slices (Figure 6).

Visibility Interactions
If the grass is to interact with the rest of the scene,
visibility with scene objects has to be resolved. Other-
wise, the objects will be clipped against the top of the
grass (Figure 7). The correct solution would be to ren-
der the opaque objects first and generate an offscreen
buffer with the corresponding depth information (for
example using the multiple render target functionality
found in current graphics hardware). When rendering
the grass, the depth value at which to terminate a ray
can be read from this buffer.
However, this method requires a non-trivial modifica-
tion of the rendering pipeline, and therefore we opted
for a simpler solution. Instead of testing the ray against
the current depth buffer, we generate a depth value di-
rectly in the fragment shader by calculating the depth

Figure 6: A quad patch with the same data set as in
Figure 5 but with an additional horizontal plane at half
the ground depth. The grid structure is not dominant
even at perpendicular angles.

Figure 7: A grass patch with (left) and without (right)
correct visibility.

when a threshold opacity has been reached. Depend-
ing on the hardware used, it may prove to be effi-
cient to terminate the ray casting loop through an early
out if the threshold opacity is reached. The fragment
shader then outputs a depth value determined from the
slice distance. This does not require any modifica-
tion of the rendering pipeline and gives correct occlu-
sion for the fully opaque parts of grass blades. The
semi-transparent parts of grass blades are not handled
exactly, but the introduced errors are unnoticeable in
practice.

4. ANIMATING GRASS
The perceived realism of rendered grass depends
greatly on whether it is animated or not. Previous
methods to animate grass relied on analytic functions
(usually combinations of sines and random perturba-
tions) applied to billboard vertices, which results in
fairly simple grass blade movement. A realistic simu-
lation of grass movement has to take two components
into account. On the one hand, gusts of wind cause
relatively large areas of grass to bend in the same di-

Journal of WSCG ISSN 1213-6972 126 ISBN 978-80-86943-00-8

rection. On the other hand, high frequency wind turbu-
lences near the ground cause smaller, but more random
movements of grass blades.
In this paper we propose a texture-based animation
scheme for grass billboards. Instead of animating the
billboard vertices, we distort the texture lookups of the
grass billboard horizontally in u or v direction, depend-
ing on the billboard orientation. This offset is looked
up in a separate noise map that covers the whole mesh
and not only an individual grass patch. The offset is
scaled with the height above the ground plane of the
grass so that at the bottom of the grass billboards stay
fixed. The noise map is translated each frame to define
the overall wind direction. Although this is a shear
operation, with sufficiently small pertubations the im-
pression of moving grass can be maintained. Note
that this animation technique works both for standard
polygonal billboards as well as for our raytraced vir-
tual billboards.
The advantage of texture-based animation is that any
procedural or hand-crafted texture can be used, while
the animation over the whole mesh will always remain
consistent. The noise texture map used in this paper is
a combination of two Perlin noise functions [Per85].
A low-frequency noise function with higher ampli-
tudes simulates gusts of wind, and a high-frequency
noise map with lower amplitudes introduces more er-
ratic movements to the grass blades.

5. RESULTS
The proposed method was implemented on a 3.2 GHz
Pentium 4 and a GeForce 7900 GT, using DirectX
HLSL Shader Model 3.0 and the OGRE [OGR] open
source graphics engine. To generate grass slices, the
commercial 3D software Maya and its PaintFX fea-
tures were used (Figure 4). The accompanying video
shows a scene with 8× 8 grass patches, where each
patch contains 16 slices in u and v direction (Figure
1) and a second, denser and shorter grass data set with
32× 32 slices in u and v (Figure 8). The grass is an-
imated using the noise map described in the previous
section, and visibility with shown polygonal objects is
resolved correctly.
The performance of the algorithm depends on the
number of pixels covered and on the ray-casting it-
eration depth. The camera path shown in the video,
rendered at a resolution of 1024× 768 and an itera-
tion depth of 4, results in an average frame rate of 140
frames per second.
For comparison, we generated a simple scene with
grass billboards represented by hand-placed billboard
polygons using standard alpha blending. With 32× 2
slices per grass patch and 8 × 8 patches, an aver-
age frame rate of 90 frames per second can be ob-
tained. Compared to the billboard implementation,

our method incorporates correct alpha blending, tex-
ture based animation and does not require the geome-
try to be modeled by hand. The much higher perfor-
mance of our method can be explained by the reduced
overdraw and the fact that current hardware is fill-rate
optimized.
A HLSL implementation of the grass shader and the
textures used in this paper can be found at [Hab].

Figure 8: A terrain textured with short, dense grass.

6. CONCLUSION AND FUTURE
WORK

This paper has introduced a new method to render ani-
mated grass in real time. Instead of rendering polygo-
nal billboards, the technique uses front-to-back com-
positing of implicitly defined grass slices in a frag-
ment shader and therefore significantly reduces the
overhead associated with rendering dense vegetation
scenes. One of the main advantages of the method
is its ease of integration: as all operations are refined
to a single fragment shader, grass can simply be in-
corporated as a material into any existing scene and
renderer that supports hardware shading, thus avoiding
the tedious modeling effort and storage costs of geo-
metric grass billboards. Furthermore, we have shown a
texture-based animation technique that combines con-
sistent global wind motion with small, high-frequency
perturbation, leading to a much more natural impres-
sion than previous analytic methods.
The performance of the shader is independent of the
density of the grass, so a massive amount of slices can
be rendered. Standard filtering techniques and levels
of detail can be used with the proposed method. We
are currently investigating methods to display silhou-
ettes of grass by adapting higher order surface approx-
imations to the presented algorithm and ways to move
the camera into the grass consistently. Furthermore, it
should be easy to break up the regularity of the grass
patches using Wang tiling [CSHD03]. Finally, we are

Journal of WSCG ISSN 1213-6972 127 ISBN 978-80-86943-00-8

investigating ways to incorporate advanced lighting
techniques like self shadowing to even further increase
realism.

7. ACKNOWLEDGEMENTS
This research was funded by the Austrian Science
Fund (FWF) under contract no. P17261-N04. The au-
thors would like to thank Oliver Mattausch for very
helpful discussions and comments.

REFERENCES
[BH02] Brook Bakay and Wolfgang Heidrich. Real-

time animated grass. In Proceedings of Euro-
graphics (short paper), 2002.

[CSHD03] Michael F. Cohen, Jonathan Shade, Stefan
Hiller, and Oliver Deussen. Wang tiles for im-
age and texture generation. ACM Transactions
on Graphics, 22(3):287–294, 2003.

[Hab] www.cg.tuwien.ac.at/research/publications/
2007/Habel_2007_IAG/.

[KK89] James T. Kajiya and Timothy L. Kay. Render-
ing fur with three dimensional textures. In SIG-
GRAPH ’89: Proceedings of the 16th annual
conference on Computer graphics and inter-
active techniques, pages 271–280, New York,
NY, USA, 1989. ACM Press.

[Len00] Jerome Edward Lengyel. Real-time hair. In
Proceedings of the Eurographics Workshop on
Rendering Techniques 2000, pages 243–256,
London, UK, 2000. Springer-Verlag.

[LL94] Philippe Lacroute and Marc Levoy. Fast vol-
ume rendering using a shear-warp factoriza-
tion of the viewing transformation. In SIG-
GRAPH ’94: Proceedings of the 21st annual
conference on Computer graphics and inter-
active techniques, pages 451–458, New York,
NY, USA, 1994. ACM Press.

[LPFH01] Jerome E. Lengyel, Emil Praun, Adam Finkel-
stein, and Hugues Hoppe. Real-time fur over
arbitrary surfaces. In 2001 ACM Symposium
on Interactive 3D Graphics, pages 227–232,
March 2001.

[MN98] Alexandre Meyer and Fabrice Neyret. Inter-
active volumetric textures. In George Dret-
takis and Nelson Max, editors, Eurograph-
ics Rendering Workshop 1998, pages 157–168,
New York City, NY, July 1998. Eurographics,
Springer Wien. ISBN 3-211-83213-0.

[Ney98] Fabrice Neyret. Modeling, animating, and ren-
dering complex scenes using volumetric tex-
tures. IEEE Transactions on Visualization and
Computer Graphics, 4(1):55–70, 1998.

[OGR] OGRE Graphics Engine
www.ogre3d.org.

[OP05] Manuel M. Oliveira and Fabio Policarpo.
An efficient representation for surface details.
UFRGS Technical Report RP-351, 2005.

[PC01] Frank Perbet and Maric-Paule Cani. Animat-
ing prairies in real-time. In SI3D ’01: Pro-
ceedings of the 2001 symposium on Interactive
3D graphics, pages 103–110, New York, NY,
USA, 2001. ACM Press.

[PD84] Thomas Porter and Tom Duff. Composit-
ing digital images. In SIGGRAPH ’84: Pro-
ceedings of the 11th annual conference on
Computer graphics and interactive techniques,
pages 253–259, New York, NY, USA, 1984.
ACM Press.

[Pel04] Kurt Pelzer. GPUGems: Programming Tech-
niques, Tips, and Tricks for Real-Time Graph-
ics, chapter 7 Rendering Countless Blades
of Waving Grass, pages 107–121. Addison-
Wesley, 2004.

[Per85] Ken Perlin. An image synthesizer. In SIG-
GRAPH ’85: Proceedings of the 12th annual
conference on Computer graphics and inter-
active techniques, pages 287–296, New York,
NY, USA, 1985. ACM Press.

[POaLDC05] Fábio Policarpo, Manuel M. Oliveira, and Jo
ao L. D. Comba. Real-time relief mapping
on arbitrary polygonal surfaces. ACM Trans.
Graph., 24(3):935–935, 2005.

[WWT+03] Lifeng Wang, Xi Wang, Xin Tong, Stephen
Lin, Shimin Hu, Baining Guo, and Heung-
Yeung Shum. View-dependent displacement
mapping. ACM Trans. Graph., 22(3):334–339,
2003.

Journal of WSCG ISSN 1213-6972 128 ISBN 978-80-86943-00-8

Journal of WSCG ISSN 1213-6972 129 ISBN 978-80-86943-00-8

Journal of WSCG ISSN 1213-6972 130 ISBN 978-80-86943-00-8

Journal of WSCG ISSN 1213-6972 131 ISBN 978-80-86943-00-8

Journal of WSCG ISSN 1213-6972 132 ISBN 978-80-86943-00-8

Journal of WSCG ISSN 1213-6972 133 ISBN 978-80-86943-00-8

Journal of WSCG ISSN 1213-6972 134 ISBN 978-80-86943-00-8

Recognizing human motion using eigensequences

Andrea Bottino
Politecnico di Torino

Dipartimento di Automatica e
Informatica

Corso Duca degli Abruzzi, 24
 10129 Torino Italy

andrea.bottino@polito.it

Matteo De Simone
Politecnico di Torino

Dipartimento di Automatica e
Informatica

Corso Duca degli Abruzzi, 24
 10129 Torino Italy

matteo.desimone@polito.it

Aldo Laurentini
Politecnico di Torino

Dipartimento di Automatica e
Informatica

Corso Duca degli Abruzzi, 24
 10129 Torino Italy

aldo.laurentini@polito.it

ABSTRACT
This paper presents a novel method for motion recognition. The approach is based on 3D motion data. The
captured motion is divided into sequences, which are sets of contiguous postures over time. Each sequence is
then classified into one of the recognizable action classes by means of a PCA based method. The proposed
approach is able to perform automatic recognition of movements containing more than one class of action. The
advantages of this technique are that it can be easily extended to recognize many action classes and, most of all,
that the recognition process is real-time. In order to fully understand the capabilities of the proposed method, the
approach has been implemented and tested in a virtual environment. Several experimental results are also
provided and discussed.

Keywords
Motion recognition, real time recognition, PCA, model-based motion capture.

1. INTRODUCTION
The recognition of human movements is an

important topic in computer vision and has many
promising applications in entertainment, human
computer interaction, automatic video indexing
[Nam97], video surveillance and intrusion detection
[Har00]. An important requirement is speed.
Especially for interactive applications, real-time
recognition rates are needed. In applications like
computer games or human computer interactions, the
user should not perceive any noticeable delay
between the action performed and the system
response.

This paper presents a novel technique for
recognizing human motion in real time. The
movement of a performer is first captured in 3D by
means of a model-based technique. The basic idea of
our approach is the following: a movement is a curve
in the (normalized) model parameter space, and these
curves are characteristic of the type of action
performed. Comparing the whole curves for

recognizing actions does not seem to be a good idea,
for instance because the same action can have
different lengths, but we can extract small segments
of curves and use them for comparison. In our idea
these segments, called sequences, are still
characteristics of the kind of action performed, as we
will demonstrate in the paper. Using sequences
allows for an “on line” recognition, necessary in
several applications, since we do not need to acquire
and process the whole motion to classify it.
Exploiting Principal Component Analysis (PCA), a
reduced dimensionality model of the sequences can
be used to recognize several basic actions, like
walking, running or waiting.

The contribution of this work is a system that,
after a proper training, is capable of recognizing
many different action classes in real time.
Furthermore, the approach can be easily extended to
deal with other motion classes. The proposed method
exploits 3D motion data, since 2D techniques often
impose constraints on the characteristics of the
motion to be analysed and of the available data. For
instance, in several approaches the performer’s
motion must be frontal or parallel to the image plane
([Yac99], [Rah05], [Dav01], [Cao04]), which are too
limiting for applications like smart surveillance
systems or sports analysis.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. The extraction of 3D motion data and their

classification are actually two independent processes,
and this work focuses on motion recognition only.

Copyright UNION Agency – Science Press, Plzen, Czech
Republic.

Journal of WSCG ISSN 1213-6972 135 ISBN 978-80-86943-00-8

Extracting 3D motion data is a complex task.
However, several real-time non-intrusive motion
capture techniques, such as [The03] or [Hig03], are
available and can be coupled with our motion
classifier.

This paper is aimed at demonstrating the
capabilities of the proposed approach. Since, in
principle, the recognition process is independent on
how motion data have been acquired, we initially
tested the approach with motion data acquired with
an optical capture system. However, for several
applications, non-intrusive capture techniques must
be used. Therefore, we also experimented the
proposed approach with a non-intrusive tracker in a
virtual environment in order to understand how the
reconstruction errors introduced by those methods
affect the classification process. The preliminary
results are promising, demonstrating a good
capability of separating the analyzed movements.
The contents of the paper are the following. In
section 2 we outline the contents of this work.
Section 3 describes the motion recognition approach
and the experimental results are shown in section 4.

Related works
PCA is a popular technique in pattern recognition.

Eigenspace analysis and PCA methods have been
successfully applied to several computer vision
problems, like face recognition, background
modelling, object detection and tracking ([Del01]).
Several approaches to motion recognition use PCA
on various 2D or 2½D motion data extracted from
monocular sequences ([Yac99], [Per02], [Ben02]) or
directly from video sequences ([Rah05]). In order to
recognize segmented 2D motion trajectories, the use
of a reduced PCA space has been coupled in several
approaches to other techniques, like Hidden Markov
Models ([Bas05]) or neural networks ([Hyu05]).
However, in our knowledge, this is the first work that
deals with PCA classification of 3D motion data.
In literature, state-space and template matching are
the most popular approaches to human motion
classification. In state-space approaches ([Sun02],
[Kel05], [Ime03], [Gal01]), the set of features
extracted from the incoming images, for instance
2D/3D postures or optical flow data are represented
in a suitable manner to define different states
connected by transition probabilities. A motion
sequence can be thought as a tour between different
states. Given the state sequence for an incoming
motion, activities recognition is achieved modeling
each activity as a state diagram and matching the
incoming sequence with the most probable model.
On the contrary, template-matching techniques
compare the extracted features with pre-stored
patterns for recognition. Those techniques can
exploit several clues, like Motion History Images

([Dav01], [Bab03]), Gabor features ([Nak01]) and
contours ([Rit99]). In both cases, the performances
of these algorithms are strictly related to the type and
quality of the extracted features used. A review of
the literature on the field can be found in [Agg99].

2. SURVEY OF THE APPROACH
Our approach to motion recognition consists in

analysing the 3D motion data of a performer and
identifying the actions he performs. Therefore, in
order of principle, the approach is absolutely
independent on the way motion data are obtained. As
we will show, the recognition process can be
performed in few milliseconds. When coupled with a
real-time motion capture system, all the tracking-
recognition chain can be performed in real-time.

Figure 1 outlines our recognition framework. The
motion curves in the parameter space are split into
sequences, which are segments of fixed length. The
PCA based representations of the training sequences
for the action classes to be recognized (right) are
compared for recognition with the same
representation of the sequences of the incoming
movement (left).

Figure 1. Outline of the recognition process

Before describing in details the proposed method,

let us give some definitions. The attitude of the
human body is referred to as a posture. A motion is a
sequence of contiguous postures over time. An
action is a specific type of motion, for instance
walking, running or sitting. The aim of our approach
is to automatically segment a motion, classifying the
various actions it contains.

Figure 2: the human body model and its skeleton

Journal of WSCG ISSN 1213-6972 136 ISBN 978-80-86943-00-8

To represent and reconstruct the motion of a
human performer, we use a human body model that
is defined by an articulated structure whose skeleton
has 23 segments and whose surface is described by a
triangular mesh (see Figure 2). Skeleton segments
are organized into a tree whose root is located in the
pelvis. The model has 29 degrees of freedom, 26 to
define the rotation of the segments and 3 for the
(x,y,z) position of the pelvis.

In order to deal with 3D data coming from
different performers, we have to perform spatial
normalization. Motion data can be made almost
independent from performer’s characteristics and
from motion orientation with respect to a global
reference system considering only angular data. In
particular, all information about model’s measures
are discarded, the skeleton’s root is translated into
the origin of the reference system and the model is
rotated in order to make the pelvis segment
coincident with the z axis of the world coordinate
systems, heading towards the x axis. Therefore, the
dimension of the posture vector can be reduced to 26.
We did not perform any temporal normalization for
two reasons. First, in our opinion, the speed of a
gesture provides a strong clue to detect its class of
movement. For instance, speed is necessary to tell a
slap from a caress, being the main distinctive
parameter between the two actions. Second, temporal
normalization would require the acquisition of the
whole motion, preventing real time recognition.
However, the PCA representation of the data,
described in the following, introduces a sort of
temporal normalization.

Figure 3: a motion is divided into three sequences x1, x2
and x3. Each sequence contains n frames, and the interval
between the beginnings of two consecutive sequences is t
frames

Every movement can be represented into the

reduced posture space as a curve, or motion curve.
But how can we use motion curves for recognition?
Our approach consists in splitting a complex
movement into a set of “atomic” motions. We define
as sequence a set of n consecutive frames, the
starting frames of two sequences being at a distance
of t frames (see Figure 3). Each sequence is defined
by a unique vector containing the model parameters

of its composing postures. A sequence represents the
atomic quantity of motion that we want to recognize.
In the posture space, a sequence represents a segment
of a motion curve. Our idea, which will be
demonstrated in the next section, is that these
segments are characteristic of the type of action
performed, that is sequences belonging to a walk are
different from sequences belonging to a run. In this
way it is possible to create classes of sequences that
can be labelled as belonging to a specific action
class. When a movement has to be recognized, we
can extract its composing sequences and classify
each of them, obtaining an indication of the actual
action performed. The choice of proper values for t
and n has been a fundamental part of our tests, and it
will be discussed in section 4.

The motion recognition process is based on the
principal component analysis. All sequences are
represented by vectors of the same size. PCA can be
applied to decompose the original sequences into a
set of characteristic feature data, called
eigensequences, which can be seen as the principal
components of the original sequences.
Eigensequences form the orthogonal basis of a linear
subspace, called the sequence space. Therefore we
can recognize an input sequence projecting it on the
sequence space and comparing its position with those
of known samples. If we see eigenfaces as a set of
"standardized face ingredients", the eigensequences
can be thought as being a set of standardized motion
ingredients.

The advantages of the proposed approach are the
following:

• the set of recognizable action classes can be
increased at will, as soon as training motions
for the desired action classes are available

• short detail movements can be easily
recognized

• changes of the actions performed by the
subject can be immediately identified, which
is necessary for some applications like real-
time video surveillance

• PCA allows reducing greatly the data
dimension, providing for their real-time
processing

3. RECOGNIZING MOTION

Let a sequence be composed of n normalized pose
vectors and represented by a vector x. Let Z be the
number of action classes to recognize. For each
action class, we use a set of training motions and
each one of them is split into its composing
sequences. Let {xi | i=1, …, S} be the complete set of

Journal of WSCG ISSN 1213-6972 137 ISBN 978-80-86943-00-8

training sequences. The average sequence for this set
is defined as:

∑ =
=

S

i ix xS
1

1μ

The covariance matrix of the set is given by:
t

x AAC ⋅=
where

)](),...,[(1 xSx xxA μμ −−=
is the matrix containing the differences between

the training sequences and the mean sequence. The
basis vectors of the training sequence space are the
orthogonal eigenvectors of Cx.

The dimension of a sequence can be reduced
expressing its components in terms of the
eigensequences e1,..., ek that are the eigenvectors
corresponding to the largest k eigenvalues of Cx.
These eigensequences form a reduced linear
subspace, that we will call the sequence space.
Therefore, each training sequence xj can be expressed
in the sequence space as a characteristic vector
gj=[gj1,…, gjk], that can be obtained as:

)(],...,[1 xjkj xeeg μ−⋅=

In order to minimize the error introduced
projecting the original vector on the sequence space,
the value of k corresponds to the value for which the
ratio of the eigenvalue sum is above a predefined
threshold ε, as follows:

])(|[min
11

ελλ >= ∑∑ ==

n

i i
r

i ir rk

In the recognition phase, each motion is divided
into sequences; an incoming sequence x is projected
onto the sequence space, obtaining its characteristic
vector g. Therefore, each motion gives rise to a set of
points in the eigenspace.

For comparison, we use the so-called point-set
representation, describing a motion class by the set of
vectors projected from all its training sequences. The
distance dj to each training sample in sequence space
is defined as:

kjgd jj ,...,1
2

=−= g

The action class of the training sequence at
minimal distance gives the action class of x. It is
worth noting that the distance in frame of the
beginnings of two inputs sequences can be different
from the one used to extract the training sequences.
As a matter of fact, in all our tests, the input
sequences have a distance of one frame. This allows
a per-frame classification of the input motion.

The training motion sequences used have been
acquired with an optical motion capture system and
are part of Motek’s StockMovestm library ([Motek]).
In order to test our approach we selected several
animations corresponding to seven action classes:
walk, run, wait, jump, slide, rowing and squat. For
each class, we picked out a subset of the available
animations to extract the training sequences. The

animations have been chosen in order to provide the
widest variability possible for the specific action. For
instance, normal and lame walks, runs at different
speed, normal jumps and jumps with turns, and so
on. Some frames extracted from a running motion are
shown in Figure 4.

Figure 4. A running motion

An indication of the fact that the sequences are
characteristic of the type of action performed can be
seen in Figure 5, where the eigenspace representation
of the training sequences is shown. For the sake of
visibility, only the three eigensequences
corresponding to the three largest eigenvalues are
used to create the graphical representation. As it can
be seen, sequences corresponding to the same action
class cluster in the eigenspace representation, and the
different action classes are considerably separated.

Figure 5. Eigenspace representation of the training

sequences

4. EXPERIMENTAL RESULTS
Several experiments have been carried out in

order to study the behaviour of the proposed
approach with respect to the different parameters
involved. These parameters are:

Journal of WSCG ISSN 1213-6972 138 ISBN 978-80-86943-00-8

• The number n of frames composing a
sequence

• The distance t in frames between two
consecutive sequences in a training
motion

• The value of the threshold ε used to
select the k eigensequences defining the
sequence space

• The number S of training sequences
• The representative motions used to

extract the training sequences for each
action class

The experimental work has been divided in two
phases.

In the first phase the approach has been tested
directly on the available motion capture data
obtained from Motek in order to investigate the
precision of the classification process for several
motions and several arrangements of the parameters.

In the second phase we used a non-intrusive
motion capture approach in a virtual environment. In
this case, the motion data are used to animate a
dummy. Its motion is reconstructed using the non-
intrusive motion capture technique described in
[Bot01]. The aim of this second phase is to
understand how the reconstruction error introduced
by a non-intrusive capture method affects the
classification process. It should be outlined,
however, that the proposed approach to motion
recognition is independent on how motion data are
acquired, that is with optical or magnetic tracking or
any other motion capture method, until they are
presented to the classifier in the desired format.

Figure 6. The motion capture technique

The motion capture technique used is depicted in
Figure 6. In short, several images of the performer,
taken with calibrated cameras, are used (Figure 6(a)).
On each image plane, the silhouette of the performer
is extracted, and it is back-projected in 3D from the
view center the corresponding camera. The obtained
viewing cones are intersected, and the resulting
volume is represented as the set of voxels containing
its surface (Figure 6(b)). The model is then fitted in
3D to the reconstructed surface by minimizing a
suitable distance function between the surface of the
model and the set of voxel centers (Figure 6(c)). It

should be noted that the motion capture technique
used is not real-time. However, more complex
reconstruction techniques fulfilling this requirement,
such as [The03] or [Hig03], can be used.

In the two phases we used both animations from
Motek’s StockMovestm library, different from the
ones containing the training sequences, and motion-
captured sessions, still provided by Motek, where the
actors perform motions containing different kinds of
actions. Those sequences have been pre-labelled at
hand in order to compare the classifier’s results with
ground truth data. The frame rate of all the motion-
captured data is 30 frames/sec.

Despite the value of the parameter t used to
separate training sequences, the distance between
sequences extracted from the incoming motions is
always one frame. This allows having an
instantaneous classification of the current motion.
We also consider only the instantaneous
classification of a single sequence, while other
approaches considering the classification of
contiguous sequences, that is performing some kind
of filtering on the output data, are not taken into
account in this work.

The performances of the different tests are
measured using the true/false recognition rates,
defined as the ratio of correctly/incorrectly classified
input sequences to the total number of incoming
samples. In the following tables, the results presented
can be read in the following way. The first column is
the test-set reference name, the second is the
dimension n of the used sequences, the third is the
distance t in frames between two training sequences,
the fourth the number of training sequences S, the
fifth the value of ε used to select the k
eigensequences defining the sequence space, the
sixth the cataloguing average time in milliseconds
and the last two columns the true and false
recognition rates.

The aim of the first battery of tests, whose results
are summarized in Figure 7, is to understand how the
sequence dimension affects the recognition rate. As it
can be seen, varying the dimension of n from 5 to 20,
the recognition rates are essentially equal. However,
a smaller value is preferable, since it allows detecting
the changes of the performed actions in a shorter
time. We found the value of 5 being the best but also
a limit to the sequence dimension, since for fewer
values the recognition rates decrease significantly, as
can be seen in Figure 7, where we have 59% of
correct recognitions for 3 poses sequences. Finally,
we have run our experiments in order to check the
use of PCA on single poses, and the recognition falls
below 54%, demonstrating that PCA based single
posture recognition is not effective.

The table in Figure 8 outlines the variation of the
recognition rates as function of the distance t in

Journal of WSCG ISSN 1213-6972 139 ISBN 978-80-86943-00-8

frames between two consecutive training sequences.
Also in this case, the results are almost constant and
varying t does not significantly affect the quality of
the reconstruction. Moreover, increasing the value of
t reduces the number of available training sequences
S and, consequently, the mean cataloguing time of
the input sequences.

Apparently, this intuition is contradicted by the
results detailed in Figure 9, where the recognition
rates as function of the number S of training
sequences are shown. It can be seen that recognition
rates are decreasing when a lower number of training
sequences are used. This somewhat contradictory
behaviour can be explained by the following
consideration. In the tests of Figure 8 the number of
training motions for each action class is the same for
all the experiments, while in Figure 9 the training
sequences are reduced by discarding some of the
selected training motions. The result is that the
training sequences are less representative of the
variability of the single action class, and the
recognition rate decreases.

A predictable result is the improvements of the
recognition rates determined by the parameter
ε (Figure 10). Increasing its value, the classifier uses
a greater number of eigensequences, the data are
represented with higher accuracy in the sequence
space and the recognition error is reduced.

The confusion matrix (Figure 11) shows the
relationship between the ground-truth labelled data
and the results of our classifier. Each row represents
the probability of a sequence belonging to an action
class to be classified into the available action classes.
The diagonal of this matrix, therefore, shows the
correct classification probabilities.

Summarizing the results obtained in the first
phase of the experimental work, we have that:

• the recognition rate is substantially
unaffected by the number of postures
composing a sequence; this allows
choosing a smaller value of n, providing
for faster recognition of action changes

• PCA recognition applied to single
postures is not effective

• reducing the number of training
sequences, keeping constant the number
of training motions used to create them,
does not affect substantially the
recognition rate; this allows to increase
the value of t, that is to have a reduced
number of sequences which are more
spaced on the motion curves in the
parameter spaces, reducing also the
recognition time

• provided the same values for n and t, the
recognition rates increases when the
classifier uses a larger set of training

motions for each action class; as a matter
of fact, increasing the number of training
motions allows to describe a wider
variability for the specific action

In order to test the reliability of the classification
results when input data are affected by reconstruction
noise, the motions used to create the table in Figure 8
have been used to animate a dummy in a virtual
environment. The motion data to be classified have
been captured with the non-intrusive motion capture
system previously described. In Figure 12, for each
test set, the recognition rates using directly the
motion data are compared with the recognition rates
of the captured data. In all the cases, the best
performances are obtained with the direct data.
However, the loss of quality is lower than 1% in all
the cases, showing that the recognition rates are
relatively unaffected by the reconstruction error
introduced by the non-intrusive MC system.

Finally, we ran several experiments on motion
data of an actor performing several actions in the
same motion (Figure 13). The motions have been
labelled at hand in order to provide ground-truth data
for the experiments. As it can be seen, recognition
rates are somewhat lower than the previous
experiments. This is primarily due to the inter-action
frames, which were difficult to classify even for a
human observer and are somewhat confusing the
classifier.
Concerning computational times, we ran our
experiments on a 2.5GHz PC with 1 GByte of RAM.
Constructing the sequence space can be done off-line
as a pre-processing stage and takes between 3 and 6
seconds, depending on the number of training
sequences. The mean classification time is always
below 11 ms, which means that the classification can
be performed in real-time. The complexity of the
recognition process is O(Sn), where S is the number
of training sequences and n is the sequence
dimension.

5. CONCLUSIONS
This paper introduces a new approach to motion

recognition. The 3D motion of a performer is first
captured and then divided into sequences, each one
representing a small segment of the curve describing
the motion in a normalized posture space.

The motion recognition process is based on the
principal component analysis. PCA can be applied to
decompose the original sequences into a set of
characteristic feature data, called eigensequences,
which can be seen as the principal components of the
original sequences. Given the eigensequences, every
training sequence can be represented as a vector of
weights; the weights are obtained by projecting the
sequences into the sequence space. When an input
sequence has to be identified, its vector of weights

Journal of WSCG ISSN 1213-6972 140 ISBN 978-80-86943-00-8

also represents it. Identification is done by locating
the training sequence whose weights are the closest
to the weights of the incoming sequence.

The approach has been tested in a virtual
environment in order to understand the capabilities of
the method, and the influences of the various
parameters on the recognition rate. Results of the
recognition process in a controlled environment have
been presented, showing encouraging recognition
rates (about 89% in the best configurations). The
ability of achieving real-time classification has also
been demonstrated, since the recognition time is
always lower than 11 ms.
One interesting research line could be to test the
system in a real environment. Another research line
involves the vector comparison method, which can
influence the system’s performance dramatically. For
example, PCA algorithms can use either the angle or
the Euclidean distance between two projection
vectors, the Euclidean distance can be weighted or
unweighted, or we can use non-Euclidean metrics.
Also LDA algorithms, which have often showed
promising results, will be tested. Finally, we are
planning to experiment different clustering
techniques, like kernel PCA [Smo98], to see if
recognition rates can be improved.

6. REFERENCES
[Agg99] J.K. Aggarwal and Q. Cai: Human motion

analysis: a review, CVIU, vol. 73(3), pp 428-440,
1999

[Bab03] R.V. Babu, K.R. Ramakrishnan:
Compressed domain human motion recognition
using motion history information, Proc. ICIP
2003, vol. 3, pp 321-324

[Bas05] F. Bashir, W. Qu, A. Khokhar and D.
Schonfeld: HMM-based motion recognition
system using segmented PCA, Proc. ICIP, 2005

[Ben02] C. BenAbdelkader, R. Cutler and L. Davis:
Motion-based recognition of people in eigengait
space, Proc. 5th IEEE Conf. on Automatic Face
and Gesture Recognition, pp. 267, 2002

[Bot01] A. Bottino, A. Laurentini: A Silhouette-
based technique for the Reconstruction of Human
Movement. CVIU, Vol. 83, No. 1, pp.79-95,
2001

[Cao04] D. Cao, O. Masoud, N. Papanikolopoulos:
Online Motion Classification using Support
Vector Machines. Proc. Int. Conf on Robotics
and Automation, 2004

[Dav01] J.W. Davis: Hierarchical motion history
images for recognizing human motion. Proc.
IEEE Workshop on Detection and Recognition of
Events in Video, 2001, pp.39-46

[Del01] F. De la Torre, M. Black: Robust principal
component analysis for computer vision,

Proceedings Int. Conf. on Computer Vision,
ICCV 2001, Vancouver, BC, Vol. I, pp. 362-369.

[Gal01] A. Galata, N. Johnson and D. Hogg:
Learning variable.lenght markov models of
behaviour, Computer Vision and Image
Processing, Vol. 81, no. 3, pp. 398-413, 2001

[Har00] I. Haritaoglu, D. Harwood, and L. S. Davis:
W4: real time surveillance of people and their
activities. IEEE Trans. PAMI, Vol. 22, No. 8, pp.
809-830, 2000.

[Hig03] J.Higgins, D. Molloy: Model Based
Approach to Non-Intrusive Human Motion
Capture, ISSC 2003, Limerick, July 1-2

[Hyu05] H. Yu, G. Sung, W. Song and X. Li: Human
motion recognition based on neural network,
Proc. IEEE Int. Conf. on Communications,
Circuits and Systems, pp. 979-982, 2005

[Ime03] N. Imennov, S.L. Dockstader and M.
Tekalp: A robust Bayesian network for
articulated motion classification, Proc. ICIP 2003.
Vol. 3, Pp. 305-308

[Kel05] V. Kellokumpu, M. Pietikäinen and J.
Heikkilä: Human Activity Recognition Using
Sequences of Postures, Proc. IAPR Conference
on Machine Vision Applications (MVA 2005),
Tsukuba Science City, Japan, 570-573

[Motek] Motek StockMovestm GENERIC,
accessible at www.e-
motek.com/entertainment/stockmoves/

[Nam97] J. Nam and A. Tewfik: Motion based video
indexing using multi-resolution analysis. Proc.
SPIE, vol 3309, pp. 688-696, 1997

[Nak01] H. Nakano, Y. Yoshida: Classifying human
body motions using gabor features, Proc.
International Conference on Image Processing,
2001, vol. 2, pp. 351 - 354

[Per02] J. Pers, S. Kovacic: Multi-scale recognition
in squash match, Proc. ERK 2002, Portorož,
Slovenija, pp. 295-298

[Rah05] M.M. Rahman, S. Ishikawa: Human motion
recognition using an eigenspace, Pattern
Recognition Letters 26 (2005) 687–697

[Rit99] J. Rittscher, A. Blake: Classification of
human body motion, Proc. 7th IEEE International
Conference on Computer Vision, 1999, pp:634 –
639

[Sun02] X. Sun, C. Chen and B.S. Manjunath:
Probabilistic motion parameter models for human
activity recognition, Proc. ICPR, 2002. Vol. 1,
pp. 443 - 446

[Smo98] A.J. Smola, B. Schölkopf, K. Müller: The
Connection between Regularization Operators
and Support Vector Kernels, Neural Networks,
vol. 11(4), 1998, pp. 637-649

[The03] C. Theobalt, J. Carranza, M. Magnor, H.P.
Seidel: A Parallel Framework for Silhouette-
based Human Motion Capture, in Proc. of Vision,

Journal of WSCG ISSN 1213-6972 141 ISBN 978-80-86943-00-8

Modeling and Visualization, p.207-214, Munich,
Germany, 2003

[Yac99] Y. Yacoob, M.J. Black: Parametrized
modelling and recognition of activities, CVIU.
73(2), pp. 232-247, 1999

Sequence
frames (n)

Training
step time

(t)

Training
sequences

(S)

Eigenvector
threshold
(epsilon)

catalogation
time average true % false %

exp50-x1-f1 1 1 / 30 sec 893 0,99 7,72 msec 53,98% 46,02%
exp50-x1-f3 3 1 / 30 sec 865 0,99 7,64 msec 58,15% 41,85%
exp50-x1-f5 5 1 / 30 sec 798 0,99 8,72 msec 88,41% 11,59%
exp50-x1-f10 10 1 / 30 sec 728 0,99 8,05 msec 87,42% 12,58%
exp50-x1-f15 15 1 / 30 sec 658 0,99 7,52 msec 87,30% 12,70%
exp50-x1-f20 20 1 / 30 sec 588 0,99 7,03 msec 87,56% 12,44%

Figure 7. Recognition rates vs. number of frames of a sequence

Sequence
frames (n)

Training
step time

(t)

Training
sequences

(S)

Eigenvector
threshold
(epsilon)

catalogation
time average true % false %

exp50-x1-f5 5 1 / 30 sec 798 0,99 8,72 msec 88,41% 11,59%
exp50-x2-f5 5 2 / 30 sec 399 0,99 4,20 msec 89,01% 10,99%
exp50-x3-f5 5 3 / 30 sec 272 0,99 2,88 msec 88,23% 11,77%
exp50-x4-f5 5 4 / 30 sec 204 0,99 2,12 msec 89,67% 10,33%

Figure 8. Recognition rates vs. distance between sequences

Sequence
frames (n)

Training
step time

(t)

Training
sequences

(S)

Eigenvector
threshold
(epsilon)

catalogation
time average true % false %

exp50-x1-f5-50p 5 1 / 30 sec 399 0,99 4,28 msec 77,24% 22,76%
exp50-x1-f5-75p 5 1 / 30 sec 603 0,99 6,28 msec 88,11% 11,89%
exp50-x1-f5-90p 5 1 / 30 sec 725 0,99 7,68 msec 87,93% 12,07%
exp50-x1-f5 5 1 / 30 sec 798 0,99 8,72 msec 88,41% 11,59%

Figure 9. Recognition rates vs. number of training sequences

Sequence
frames (n)

Training
step time

(t)

Training
sequences

(S)

Eigenvector
threshold
(epsilon)

catalogation
time average true % false %

exp50-x1-f5-e80 5 1 / 30 sec 798 0,8 7,56 msec 76,64% 23,36%
exp50-x1-f5-e90 5 1 / 30 sec 798 0,9 7,48 msec 84,47% 15,53%
exp50-x1-f5-e99 5 1 / 30 sec 798 0,99 8,72 msec 88,41% 11,59%

Figure 10. Recognition rates vs. ε
Out

In Run Wait Walk Rowing Slips Squat Jumps
Run 96,37% 0,00% 0,00% 0,00% 0,00% 1,21% 2,42%
Wait 0,00% 100,00% 0,00% 0,00% 0,00% 0,00% 0,00%
Walk 0,00% 0,00% 75,00% 0,00% 0,00% 0,00% 25,00%

Rowing 0,00% 0,00% 0,00% 100,00% 0,00% 0,00% 0,00%
Slips 0,00% 0,00% 0,27% 14,52% 81,64% 2,19% 1,37%
Squat 0,00% 0,00% 0,00% 2,03% 2,54% 95,43% 0,00%
Jumps 0,54% 0,00% 0,00% 0,00% 0,00% 27,72% 71,74%

Figure 11. Confusion matrix

true % false % true % false %
exp50-x1-f5 88,41% 11,59% 88,11% 11,89%
exp50-x2-f5 88,11% 11,89% 88,89% 11,11%
exp50-x3-f5 88,23% 11,77% 87,63% 12,37%
exp50-x4-f5 89,67% 10,33% 89,31% 10,69%

direct data reconstructed data

Figure 12. Direct data vs. reconstructed data

Sequence
frames (n)

Training
step time (t)

Training
sequences

(S)

Eigenvector
threshold
(epsilon)

catalogation
time average true % false %

long1-x1-f5 5 1 / 30 sec 393 0,99 6,08 msec 79,41% 20,59%
long1-x1-f10 10 1 / 30 sec 353 0,99 5,97 msec 76,47% 23,53%
long1-x1-f15 15 1 / 30 sec 313 0,99 5,89 msec 75,59% 24,41%
long1-x1-f20 20 1 / 30 sec 273 0,99 5,83 msec 76,18% 23,82%
long2-x1-f5 5 1 / 30 sec 798 0,99 10,76 msec 82,65% 17,35%
long2-x1-f10 10 1 / 30 sec 728 0,99 10,76 msec 80,59% 19,41%
long2-x1-f15 15 1 / 30 sec 658 0,99 9,61 msec 79,41% 20,59%
long2-x1-f20 20 1 / 30 sec 588 0,99 9,61 msec 80,00% 20,00%

Figure 13. Reconstruction of complex sequences

Journal of WSCG ISSN 1213-6972 142 ISBN 978-80-86943-00-8

A scale invariant detector based on local energy
model for matching images

Cosmin Ancuti and Philippe Bekaert

Hasselt University - Expertise Centre for Digital Media
 and transnationale Universiteit Limburg - School of Information Technology

 Wetenschapspark 2, 3590 Diepenbeek, Belgium
 {cosmin.ancuti, philippe.bekaert}@uhasselt.be

ABSTRACT

Finding correspondent feature points represents a challenge for many decades and has involved a lot of
preoccupation in computer vision. In this paper we introduce a new method for matching images. Our detection
algorithm is based on the local energy model, a concept that emulates human vision system. For true scale
invariance we extend this detector using automatic scale selection principle. Thus, at every scale level we
identify points where Fourier components of the image are maximally in phase and then we extract only feature
points that maximize a normalized derivatives function through scale space. To find correspondent points a new
method based on the Normalized Sum of Squared Differences (NSSD) is introduced. NSSD is a classical
matching measure but is limited to only the small baseline case. Our descriptor is adapted to characteristic scale
and also is rotation invariant. Finally, experimental results demonstrate that our algorithm is reliable for
significant modification of scale, rotation and variation of image illumination.

Keywords: feature, local energy, phase congruency, detector, invariant, scale space, descriptor.

1. INTRODUCTION
Analyzing a scene, as human beings, our view is
focused more on certain points. Human vision is a
selective process and some points attract more
attention than the others. In computer vision these
points are referred as interest or feature points.
Many applications like stereo matching, motion
tracking, 3D reconstruction and camera calibration
rely on the correct feature detection and their results
are influenced directly by the accuracy of this
operation. Until now a wide variety of image feature
detectors have been developed being addressed under
different names: corner, interest point, keypoint, 2D
feature, junction. In general all these terms describe
points that have significant change of the signal in at
least two directions.
Apparently, the most representative basic detector

was introduced by Harris [Har88a]. This detector use
an autocorrelation matrix and Gaussian kernel to
weight derivatives inside a considered window.
Despite of its well known potency Harris detector
has a series of disadvantages. One important
drawback of the Harris detector is its variation to
image contrast (aperture of the camera). When the
sequence of images is large and the illumination
conditions vary, setting up the threshold can be very
difficult. Another problem of this operator is caused
by the Gaussian smoothing which represents an
important part of its mechanism. Blurring operation
that, mainly performed to eliminate image noise, can
easily corrupt useful locations and therefore some
potential feature points are completely lost.
As was shown in [Kov03a] a trustworthy alternative
for intensity based detectors is the local energy
model. This important class of detectors, introduced
firstly in [Mor87a], is inspired by the human
neurophysiological mechanism and filters merely
points with considerable phase congruency of image
Fourier components. In other words, extracted key
points are only those points where important
congruency of the phase signal occurs.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Copyright UNION Agency – Science Press, Plzen, Czech
Republic.

Journal of WSCG ISSN 1213-6972 143 ISBN 978-80-86943-00-8

Even though the reported results were incentive, this
detector fails for important modification of image
scale.
The principal contribution of this paper is a new
scale invariant detector based on the local energy
model. Invariance property of detectors is essential in
computer vision applications like images matching.
For a correct matching an important number of
detected feature points should be classified in inliers.
Robust fitting methods, such as RANSAC or Least
Median of Squares, perform poorly when the percent
of inliers falls much below 50%.
In our approach, using results of [Koe84a] and
[Lin98a] ,we explore images at large range of scales
applying Gaussian smoothing that was proved to be
the only optimal kernel for multi scale representation.
To validate our detector, the classical image
matching application is considered. In order to
identify correspondences from images, every feature
point should be represented in a convenient way.
The second contribution of this paper is represented
by the new matching method based on the
Normalized Sum of Squared Differences (NSSD)
which was used in general only as a matching
measure for the small baseline case. For our problem,
where important rotation and scale modification alter
images, classical NSSD fails. We extended NSSD to
scale space using characteristic scale properties. For
rotation invariance a dominant orientation is assigned
to every keypoint after a gradient orientation
histogram is computed in its neighborhood.
Experimental results demonstrate that this new
algorithm is reliable for matching images with
significant modification of scale, rotation and
variation of image illumination.

Related work: In the last decades a lot of research
effort was focused to find more optimal detectors.
One of the oldest detectors was proposed in
[Bea78a]. His detector uses the Hessian matrix
computed with Gaussian filter. Moravec [Mor77a]
was the first one who used the intensity of the signal
in processing the feature points and his detector is
based on the autocorrelation function which
measures the difference between a considered
window and its shifted value in several directions.
[Tom91a] was focused on tracking, considering that
interest points are determined only by those points
that has a significant magnitude of eigenvalues of the
autocorrelation matrix. More recently in [Smi97a]
was developed SUSAN detector that thresholds
pixels in the neighborhood and computes ratio of
areas.

As was presented before, important work was
directed to emulate human vision mechanism for
detecting special points in images. The local energy
model was pioneered [Mor87a],[Mor88b],[Ven90a],
[Rob97a],[Kov03a] and represents a reliable
technique based on how physical stimuli are
perceived by human minds. But all these operators
can be seen as basic detectors and are not invariant to
scale space.
Scale invariance was intensively studied by
Lindeberg [Lin99b]. His automatic scale detection
principle forms the base for the majority scale
invariant detectors. Feature points are found
searching for maxima in 3D scale space of
normalized derivatives. Lindeberg used normalized
Laplacian of Gaussian for blob detection. Lowe
[Low04a] based his detection on multi resolution
approach constructing a pyramidal 3D space using
DoG where features are determined in local extrema.
More recently [Mik04b] introduced the Harris
Laplacian operator which has been proven to have
excellent results. As its name disclosed, this operator
is based on Harris detector used for 2D localization
of features and then using the multi scale
representation for extraction scale invariant feature
points.
The new detector introduced in this paper is based
also on the automatic scale selection principle but the
main difference consists in using local energy model
to find keypoints in scale space images.
Descriptors, seen also as filters, received a lot of
attention in computer vision. A large variety of
descriptors have been introduced till now. In
[Ran99a] filters were compared in the context of
texture classification. More recently local descriptor
performances were analyzed in [Mik03a]. But the
best known one was introduced in [Low04a]. In the
last years a lot of work was directed to improve SIFT
descriptor. For our problem we adapt NSSD to scale
space and in order to have rotation invariance we use
a similar approach like in [Thu96a] and [Low04a],
assigning a prominent orientation to every keypoint.
Overview. This paper is organized as follows. In
Sections 2 and 3 we briefly review local energy
model and scale space theory. Implementation of our
scale invariant detector is presented in Section 4.
Section 5 shows how we use NSSD for filtering
feature points and finally experimental results and
conclusions are given in Section 6 and 7.

2. LOCAL ENERGY MODEL
Local energy model was introduced in by Morrone
[Mor87a]. His operator searched points where
maximal phase congruency is reached and observed
that these locations present a kind of “order”. A

Journal of WSCG ISSN 1213-6972 144 ISBN 978-80-86943-00-8

common method for computing local energy is to
convolve image with a quadrature pair of filters in
the spatial domain. The quadrature pair of filters is
composed of one even and one odd-symmetric filter
that have zero mean and identical norms and are
orthogonal. A general expression of local energy is:

)()()(22 xOxOxyLocalEnerg oddeven +=

Where Oeven and Oodd are the image convolved with
an even-symmetric filter and with an odd-symmetric
filter for a considered point, respectively.
Extension of local energy expression for images is
almost straightforward. It necessitates a separate
computation for two different directions. Finally, the
results are combined in order to express 2D local
energy. Following previous steps, points with
significant locally maximal variation in at least one
orientation are identified. To detect reliably image
feature points computation of oriented energy is
necessary. This can be imagined as a total energy
which takes into consideration several values of local
energy computed in different direction:

 ∑
=

+=
n

i
evenioddi xOxOxyTotalEnerg

1

2
,

2
,)()()(

Using this expression the results are satisfactory but
due to the fact that local energy is a dimensional
quantity that depends on the image contrast, setting
of the threshold to find the proportion of the energy
that corresponds to a feature can become a difficult
task.
An alternative is to substitute local energy expression
by the phase congruency information of the signal.
The proportionality between phase congruency and
local energy of a signal was proven in [Ven90a].
Therefore, a local maximum of local energy
corresponds to a local maximum of phase
congruency:

∑
=

n
n xA
xExPC

)(
|)(|)(

where E is the energy and An represents the
amplitude of the nth Fourier component. In contrast
with local energy, phase congruency is a
dimensionless measure that has values between 0 and
1. The lower is the computed value of the phase
congruency for a selected point, the higher is the
potential of that location to be treated as an interest
point. In consequence, points with values of phase
congruency close to 1 are classified as ordinary
points and points with values of phase congruency
close to 0 are filtered as keypoints.
Recently in [Kov03a] was introduced an improved
extension of equation (3) that provides better

localization of features and also reduces the
sensitivity to noise. Our approach of identifying
feature points in every image scale is inspired by his
expression:

∑
∑

+

−−
=

n
n

n
nnn

xA

TxxxAxW
xPC

ε

φφ

)(

]|)]))(sin(|)()(cos()[(
)(

W(x) is a frequency weight factor (as significant as
many frequency congruency are recorded), ε
represents a small constant that avoids division by
zero andφ is the phase angle.

Figure 1. a. initial image b. minimum moment
c. maximum moment.
Only the energy values that exceed threshold T, the
estimated noise influence, are counted in the final
result. In practice the computation of local frequency
values is not performed with Fourier transformation
but is preferred to be used banks of Gabor wavelets
tuned to different spatial frequency. To extract
feature points the covariance matrix of phase
congruency is computed. Next, performing the
singular value decomposition the eigenvalues are
extracted. When both of the eigenvalues are larger
than a threshold, a point is classified as a keypoint.
The eigenvalues of the covariance matrix
corresponds to the minimum and maximum moments
computed using the classical moment analysis
equation. Interest points are considered only if the
magnitude of the minimum moment is larger.
Expressing local energy in this way has also an
attractive characteristic: from the same expression
can be extracted feature points and edges, embedded

a.

(1)

(2)

(4)

b.

c.

(3)

Journal of WSCG ISSN 1213-6972 145 ISBN 978-80-86943-00-8

by the eigenvalues of the phase congruency
covariance matrix (see Fig.1).

3. SCALE SPACE
The concept of scale space was introduced in
[Lin98a]. Real world objects appear in different ways
depending of the selected observation scale. Scale
space representation is defined as a solution to the
diffusion equation which is equivalent with the
convolution of the signal with Gaussian kernel:

),(),,(),,(yxIyxGyxL ∗= σσ

The symbol * represents the convolution operator for
x and y directions and G(x,y,σ) is the Gaussian kernel
with σ standard deviation. In the previous work of
[Koe84a] [Bab86a] [Lin99b] was proved that under a
variety of reasonable assumptions Gaussian is the
unique kernel for generating a scale-space. This
uniqueness of the Gaussian kernel is emphasized also
by the neurophysiologic studies in [You87a] that
have shown that mammalian retina and visual cortex
present sensitive fields of which the response can be
properly modeled by Gaussian derivatives up to
order four.
Different levels of resolution of scale space are
obtained by convolving the initial image with
Gaussian kernels that has different values of the
standard deviation. Features are extracted by
applying combinations of derivative functions at
different scales. A similar method is to use a
pyramidal representation of space, where the 3D
space is composed by a set of successively smoothed
and sub-sampled representation of the original
image. This can be performed using difference of
Gaussian (DoG) which is a close approximation of
Laplacian of Gaussian (LoG). The main difference
between these methods is the first one (after
smoothing operations) maintains the same number of
grid points at all scale levels, while the second one
reduces the number of grid points at every next level
by subsampling.
One important feature of the spatial derivatives is
their amplitude values in general decrease with scale.
This can be intuitively understood because the
smoothing operation can only decrease the value of
the processed signal. This behavior is known as the
non-enhancement property of local extrema, which
states that values of local maxima cannot increase
and respective values of local minima cannot
decrease. Therefore, the amplitude values of the
signals always decrease with scale. In order to
maintain the scale invariance derivative functions are
normalized with respect to scale:

)()(),(),()()()(xIGxLxD m
m

m
m

m ∗== σσσσσ

where L(m) and G(m) represent the mth order derivative
of the blurred image level L and Gaussian kernel G.
Automatic scale selection principle is built on the
relation between images at different resolution levels.
Its applicability is extremely important due to the fact
that in general, images contain sharp and diffuse
features and is almost impossible to identify all kinds
of features at the same scale level. Lindeberg
[Lin98a] postulates that in absence of other evidence,
the selected scale (characteristic scale) is the scale
where a function of some combination of normalized
derivatives attains a local maximum. The idea behind
characteristic scale is borrowed from physics and
estimates the characteristic length of corresponding
image structures. The characteristic scale is
independent of the image scale and the ratio between
selected scales of two extrema that represent the
same image feature is the same as the ratio between
image scales.

(5)

4. INVARIANT SCALE DETECTOR
Even if the local energy model based detector proved
good results it is not scale invariant. For ratio scales
larger than 1.5 this detector cannot be reliable
anymore in application like feature matching or
object recognition where repeatability rate should be
greater than 50%. In order to achieve scale
invariance in this paper images are represented at
different scales. Our detector is based on the local
energy model extended to scale space using the
automatic scale selection principle. Combining these
two concepts, features are searched in 3D space
created by the local energy computed at every
resolution level.
The scale space is constructed by successively
blurring initial images with a Gaussian kernel with a
standard deviation that increase exponentially. After
scale space is built our detection algorithm consists
of two main steps.
First, using expression (4) at each scale level,
locations where the energy has a local maximum are
identified and eigenvalues of the phase congruency
covariance matrix are computed. As was presented in
Section 2, keypoints are localized where the
magnitude of the minimum moment is larger. To
extract interest points a non maximal suppression of
the minimum moment is performed. Due to the fact
that standard non maximal suppression can cluster
features a better solution is to use adaptive non
maxima suppression [Bro05a] which has the
advantage to distribute more uniformly detected
points.
In the second stage every candidate feature point is
verified. Based to the automatic scale selection
principle the normalized derivatives are computed at (6)

Journal of WSCG ISSN 1213-6972 146 ISBN 978-80-86943-00-8

every scale level and the keypoints are identified
only in the locations where a maximum over scales is
attained. In order to identify which normalized
derivative expressions give best results, we have
analyzed several combinations of derivatives.
Theoretically can be used derivatives till the 4th
order. In our experiments we analyzed only the
derivative till 2nd order (see Fig. 2).

Figure 2. Derivative of Gaussian kernels.
Similar with results reported in [Mik04b] our detector
gave best results for Laplacian of Gaussian (LoG)
expression which has previously been used for blob
feature extraction in [Lin98a] and approximated as
DoG in [Low04a] to detect keypoints. To conclude,
our detection algorithm can be resumed in three main
steps:
1. For a given image, successive levels of resolution

are computed. Each k resolution level Ik of image
is obtained by smoothing the original image with a
Gaussian kernel with a standard deviation (σ)
increasing monotonically over the scales (σk= σ0

k).
The ratio of sigma between successive scales is
considered to be in the range (1.1 to 1.4). Our
experimental results were obtained considering a
value of the standard deviation of 1.15 with 15
levels of the scale space and σ0=1.25.

2. Each level is searched for locations that attain a
local maximum. Adaptive non maxima suppression
of minimum moment of the phase congruency
correlation matrix is used for filtering the feature
points.

3. Iteratively every candidate point is verified and are
withhold only those points that reach a local
maximum of the normalized LoG over the scale
space.

5. THE NSSD BASED MATCHING
Feature matching problem is a classical problem in
computer vision. Even if this task is straightforward
for humans, machines still have problems when

substantially change of viewing conditions like scale,
rotation, variation of illumination degrade the initial
information. A correct matching between images
corresponds to a reliable extraction of the epipolar
geometry, one of the basic steps in 3D
reconstruction. A sufficient amount of
correspondences between detected keypoints is
necessary but still does not need to be perfect since
robust estimation algorithms of the geometric
transformation between images such RANdom
SAmple Consensus will reject eventually
mismatches.

In this paper, to identify correspondent detected
feature points a new matching method is introduced
which can be seen as an extension of the Sum of
Squared Differences Normalized (NSSD). This is a
classical measure to determine putative
correspondences for small baseline images. For our
case we introduce an improved version of this
measure. Considering two images I1 and I2 and the
correlation windows W1 and W2 of dimension
(2r+1)x(2r+1) centered on two points p1 and p2 the
NSSD expression is:

∑∑∑∑

∑∑

− −− −

− −

−−

⎥⎦
⎤

⎢⎣
⎡ −−−

=
r

r

r

r

r

r

r

r

r

r

r

r

WWWW

WWWW
ppNSSD

2
_

22
2

_

11

2_

22

_

11

21

)()(

)()(
),(

with and represent the means of the selected
windows.

_

1W
_

2W

We adapt NSSD expression to scale space using the
characteristic scale extracted from every detected
feature point. Thus, the size of windows W1 and W2
should be proportional with the characteristic scale of
considered points, having dimensions
(2r1+1)x(2r1+1) and (2r2+1)x(2r2+1) respectively;
where the radiuses r1 and r2 should be proportional
with the characteristic scales s1 and s2 and also with
image dimension(e.g. 1.5% of image size). Without
losing generality presuming that r1<r2 for computing
NSSD we need to interpolate values of W2 to
dimension of the window W1. As is expected, correct
results are obtained only if the ratio of image scales
and the ratio between characteristic scales of
considered feature points are approximately equal.
The next step is to solve the rotation problem. This
part of our approach is inspired by [Thu96a] and was
also used with success in [Low04a]. In order to
determine a prominent orientation for every keypoint
the gradient magnitude and orientation is
precomputed at every level of scale using pixel
differences. Let δx and δy be the finite differences
across x and y directions for a considered pixel.

yx
LLb xy ∂∂

∂
=

2

.
2.

2

x
La xx ∂

∂
=L

 2

2

2

2

.
y

L
x

LLd xxyy ∂
∂

∂
∂

=

(7)

yyxx LLoG. Lc +=

Journal of WSCG ISSN 1213-6972 147 ISBN 978-80-86943-00-8

Figure 3. Orientation computed using pixels
differences; a. initial image with selected window;
b. magnitude image; c. pixel orientation for
considered window; d. image with dominant
orientation.
The magnitude m and orientation φ can be calculated
using the following expressions:

 22),(),(),(yxyxyxm yx δδ +=

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

),(
),(

arctan),(
yx
yx

yx
x

y

δ
δ

ϕ

The gradient orientation histogram is computed in
the neighborhood of every keypoint (see Fig. 3). In
our experiments, the histogram is composed by 36
bins with every bin covering a 10 degree range of
orientations.
The number of bins represents a tradeoff between
computation time and accuracy of the final results.
The contribution of each neighbor pixel is weighed
by the gradient magnitude and a Gaussian window
with σ that is 1.5 times of the respective
characteristic scale. Dominant orientation of
keypoints is determined by the highest peak of the
histogram.
In summary, extracted feature points are described
by their centered window proportional with their
characteristic scale and rotated according to the
computed dominant orientation.

6. RESULTS AND DISCUSSION
Evaluation of our detector is done using the
repeatability criterion that was introduced in [Sch00a].
This criterion takes into account locations as well as
detected scales of points. The score of repeatability
for a pair of images represents the ratio between the
number of point-to-point correspondences and the

minimum number of points detected in images. Note
that only points located in the scene part visible in
both of the images are considered. To measure the
repeatability rate a unique relation between points
from two images has to be known. In this paper we
limit the analysis only to planar scenes. Supposing
that x1 and x2 represent the projected points of a 3D
space point the relation between them is given by the
homography expression:

 a.

c. d.

b.

 1122 xHx = (10)
Whether the homography matrix is known the
criterion identifies corresponding points if the error
of the relative locations is less than 1.5 pixels and the
error in the image surface covered by the
neighborhoods is less than 40%.
We compare our detector with some representative
scale invariant detectors and also with standard local
energy detector. Our detector gives very good results
(see Fig.4) having a better repeatability value than
DoG(SIFT) operator and similar values like Harris
Laplacian detector. Due to the fact that a reliable
detector should have a repeatability score greater
than 50% our operator can be considered creditable
approximately till a scale ratio of 3. As expected
basic local energy detector is not invariant to scale
and thus it can not be used in applications where
important variation of scale occurs.

(8)

(9)

Figure 4. Comparative repeatability scores for
considered detectors.
We validate our method by considering the feature
matching application is considered in the following.
Therefore, several images and obtained results are
shown in the next figures.
The first pair of images presented in this paper is
taken from INRIA data base. Beside of the scale and
rotation (see Fig. 5) a small view angle difference
altered images. For this example 53 corresponding
feature points were found using our algorithm. Even
if visually more points seem to be correct assigned,
after applying RANSAC, only 32 correct
corresponding features remain.

Journal of WSCG ISSN 1213-6972 148 ISBN 978-80-86943-00-8

Figure 5. a. initial corresponding points ;
b. correspondences after applying RANSAC.

 REFERENCES

Next, another set of images with obtained results is
illustrated (see Fig. 6). These images were processed
synthetically having a scale ratio of 2 and different
levels of contrast. As can be observed even if the
image foreground contains structures that are
repeated (tables, chairs and umbrellas),
corresponding feature points are correct identified.
For the first pair (+30 units difference of contrast
level) 54 correspondent points are identified. If the

contrast is increased (+50 units difference of contrast
level) 31 matches are filtered in the final.

a.

b.

During our experiments the new detector combined
with extended NSSD based matching method gave
very promising results when important modification
of scale, rotation and illumination affect images.
Neither the less important, our method gives correct
results if small affine transformation between images
is presented.

7. CONCLUSIONS
In this paper a new algorithm for matching images
was presented. Our detection of invariant feature
points is based on local energy model extended to
scale space. Because both of the used principles are
based on human neurophysiological mechanism we
deem that our detector filters information in a similar
way as human vision system perceives reality. The
invariance to the scale of our detector was
demonstrated by means of the image matching
application where correspondences were filtered
using NSSD measure adapted to scale and rotation
invariant.
Experimental results prove that local energy model
can be extended to scale space and based on
registered repeatability score our detector can be
used in applications where important scale ratio
between images occurs.
In future work increasing computation efficiency and
more precise feature point localization represent
important challenges. Also, extension of our detector
in context of the affine transformation will be
considered.

ACKNOWLEDGEMENTS
The authors acknowledge financial support on a
structural basis from the ERDF (European Regional
Development Fund) and the Flemish Government
and the Flemish Interdisciplinary institute for
BroadBand Technology(IBBT). The first author also
acknowledges financial support by a research grant
from the Hasselt university research fund.

[Bab86a] Babaud J., Witkin A.P., Baudin M., and Duda
R.O. Uniqueness of the Gaussian kernel for scale-space
ltering. IEEE Trans. Pattern Analysis and Machine
Intelligence, 8(1): pp. 26-33, 1986.
[Bea78a] Beaudet P.R. Rotationally invariant image
operators, Proc. Fourth Int. Joint Conf. on Pattern
Recognition, Tokyo, pp. 579-583, 1978.
[Bro05a] Brown, M., Szeliski, R. and Winder, S. Multi-
Image Matching using Multi-Scale Oriented Patches.
International Conference on Computer Vision and Pattern
Recognition, pp. 510-517, 2005.

Journal of WSCG ISSN 1213-6972 149 ISBN 978-80-86943-00-8

Figure 6. Pair of images with scale ratio of 2 and different levels of contrast(a. +30 units difference of
contrast level; b. +50 units difference of contrast level).

a. b.

[Har88a] Harris, C.G. and Stephens, M. A combined
corner and edge detector, Proc 4th Alvey Vision Conf.,
Manchester, pp.189-192 ,1988.
[Koe84a] Koenderink, J.J. The structure of images.
Biological Cybernetics, 50: pp. 363-396, 1984.
[Kov03a] Kovesi, P. Phase congruency detects corners and
edges. In DICTA, Sydney, December: pp. 309-318, 2003.
[Lin98a] Lindeberg, T. Feature Detection with Automatic
Scale Selection. Int’l J. Computer Vision, vol. 30, no. 2,
pp. 79-116, 1998.
[Lin99b] Lindeberg, T. Methods for automatic selection.
Handbook on Computer Vision and Applications, volume
2, Academic Press, Boston , pp. 239-274, 1999.
[Low04a] Lowe, D. Distinctive Image Features from
Scale-Invariant Keypoints. Int’l J. Computer Vision, vol. 2,
no. 60, pp. 91-110, 2004.
[Mik03a] Mikolajczyk, K. and Schmid, C. A Performance
Evaluation of Local Descriptors. Proc. Conf. Computer
Vision and Pattern Recognition, pp. 257-264, 2003.
[Mik04b] Mikolajczyk, K. and Schmid, C. Scale and
Affine Invariant Interest Point Detectors. Int’l J. Computer
Vision, vol. 1, no. 60, pp. 63-86, 2004.
[Mor77a] Moravec, H.P. Towards automatic visual
obstacle avoidance, Proc. 5th Int. Joint Conf. Artif. Intell.,
Cambridge, MA, USA, pp. 584 , 1977.
[Mor87a] Morrone, M.C. and Owens, R.A. Feature
detection from local energy. Pattern Recognition Letters, 6:
pp. 303–313, 1987.

[Mor88b] Morrone, M.C. and Burr, D.C. Feature detection
in human vision: A phase-dependent energy model. Proc.
R. Soc. Lond. B, 235: pp. 221–245, 1988.
[Ran99a] Randen, T. and Husoy, J.H. Filtering for Texture
Classification: A Comparative Study. IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 21, no. 4, pp. 291-
310, Apr. 1999.
[Rob97a] Robbins, B. and Owens, R. 2-D feature detection
via local energy. Image and Vision Computing, 15(5): pp.
353–368, May 1997.
[Sch00a] Schmid, C., Mohr, R., and Bauckhage, C.
Evaluation of interest point detectors. International Journal
of Computer Vision, 37(2): pp. 151–172, 2000.
[Smi97a] Smith, S.M. and Brady, J.M. SUSAN - A new
approach to low level image processing. International
Journal of Computer Vision, 23 (1): pp. 45-78, 1997.
[Thu96a] Thurnhofer S. ,Mitra S.. Edge-enhanced image
zooming. Optical Engineering, 35(7): pp.1862–1870, 1996.
[Tom91a] Tomasi, C. and Kanade, T. Detection and
tracking of point features. Technical report CMU-CS-91-
132, Carnegie Mellon University, 1991.
[Ven90a] Venkatesh, S. and Owens, R. On the
classification of image features. Pattern Recognition
Letters, 11: pp. 339–349, 1990.
[You87a] Young, R.A. The Gaussian derivative model for
spatial vision: I. Retinal mechanisms. Spatial Vision, 2: pp.
273-293, 1987.

Journal of WSCG ISSN 1213-6972 150 ISBN 978-80-86943-00-8

Painterly Rendering Framework from Composition

Chi Chu
Department of Computer Science
National Chiao Tung University
1001 Ta Hsueh Rd., Hsinchu,

Taiwan 300, R.O.C

maktub.cs94g@nctu.edu.tw

 Zen-Chung Shih
Department of Computer Science
National Chiao Tung University
1001 Ta Hsueh Rd., Hsinchu,

Taiwan 300, R.O.C

zcshih@cs.nctu.edu.tw

ABSTRACT
Painterly rendering has recently drawn considerable attention from graphics researchers. However, the state of
the art is neither systematic nor evaluative. This work presents a novel painterly rendering framework. The
painting process is decomposed into three stages to satisfy the needs of developers and users of painterly
rendering algorithms and programs. The framework comprises three systems, namely primitive mapping,
rendering and mark systems, and is inspired by John Willats’ perceptual decomposition of the painting process
presented by [Wil97]. Moreover, the rendering system is further decomposed into four independent modules,
namely initial point, path, cross-section and color. The independence of each module makes new styles easy to
generate by combining existing styles, or constructing complex styles from simple styles. The proposed
framework shows the power of painterly rendering algorithm, which can not only imitate existing styles, but also
generate new styles. Furthermore, parameters in rendering systems are specified hierarchically. Users only need
to specify the user parameters, which are then automatically converted into system parameters during rendering.
This approach is crucial to facilitating the use of the program by end-users.

Keywords
painterly rendering, non-photorealistic rendering, hierarchical composition

1. INTRODUCTION
Painterly rendering is of priority concern in non-
photorealistic rendering. The process takes an
ordinary image (probably captured by a digital
camera) as the input, and generates another image,
representing a particular painting style, as its output.
Although this problem has been addressed for
several years, the state-of-art is far from the original
aim. First, the algorithms are hard-wired to their
objective painting styles, and therefore are able to
generate only a few particular styles, but are neither
systematic nor evaluative. Thus, these algorithms
cannot be easily integrated to generate desired new
styles. Although painting involves creation, but the
current algorithms can not achieve this function,
these algorithms generate various painting styles by
changing the parameters. However, the parameters
are related to their implementation, rather than to the

painting style. Therefore, present systems are not
intuitive for end users. This work develops a general
framework for painterly rendering to alleviate these
limitations.

The proposed framework is inspired by the book
“Art and Representation” by John Willats [Wil97].
Willats divided the painting process into two systems,
the drawing and the denotation systems. Fr´edo
Durand [Dur02] recently extended Willats’
framework into four sub-systems, namely the spatial,
primitive, attribute and mark systems.

The proposed framework resembles that of Durand’s
work, except that the spatial system replaced by
perspective projection (projection in photograph).
The mark system is similar to that of Durand’s. His
primitive system and attribute systems are combined
into the proposed primitive system, along with the
rendering system, because assigning visual properties
to a picture primitive is different from depicting it.
The rendering system manages depicting a picture
primitive. Moreover, primitive mapping does not
simply choose from different primitives, but also
concerns the mapping of attributes in primitives. For
instance, an impressionist prefers high-tone pure
colors (for example: yellow, green, orange), so a

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Copyright UNION Agency – Science Press, Plzen, Czech
Republic.

Journal of WSCG ISSN 1213-6972 151 ISBN 978-80-86943-00-8

primitive mapping system can map an ordinary color
in the primitive to a high-tone pure color.

Thus, the whole framework comprises three
components, namely primitive mapping, rendering
and mark systems. The primitive mapping system
relates to the mapping among various scene
primitives. The rendering system synthesizes
different painterly styles based on various scene
primitives. The mark system depicts the actual
physical implementation of strokes generated by the
rendering system.

The rendering system is further decomposed it into
four independent modules, determining stroke initial
point, path, color and cross-section, to introduce
creation. The independence of each module makes a
new style easy to generate by combining existing
styles or constructing complex style from simple
styles. This novel system shows the power of the
painterly rendering algorithm, which can not only
imitate existing styles, but also generating new styles.

The parameters in rendering system can be classified
hierarchically as user parameters, system-dependent
parameters and system-independent parameters. The
user only needs to specify the user parameters, which
are automatically converted into system parameters
in rendering. We believe that this parameter
classification is crucial to ensure that end-users can
easily run the program. Figure 1 illustrates the flow
of the proposed framework.

2. Related works
Painterly rendering algorithms have been studied for
several years [Chi06, Col02, Goo02, Hae90, Hay04,
Her98, Her03, Lit97, Mei96, Ols05, Sch05]. Haeberli
[Hae90] provides a paradigm for painterly rendering,
in which a painting is synthesized by an ordered
collection of brush strokes, each having its own color,
shape, size and orientation. Various painting effects
can be created by adapting these strokes. Many
painterly rendering algorithms follow this paradigm
and are designed to be automatic. However, these
algorithms are hard-wired to their codes, so do not
provide much variation on possible painting styles,
and cannot be used by artists to guide the
synthesizing process. On the contrary, the proposed
framework involves artist’s creation by module
composition.

Artificial intelligence is applied to painterly
rendering algorithm in [Col02, Sch05]. However,
because of the weak power of current computer
artificial intelligence, these algorithms do not differ
from automatic algorithms much. Besides, it is not
intuitive for user to design salience map [Sch05] or
agent behavior [Col02] because they are relative to
the underlying algorithm rather than artist’s view.

Figure 1. The flow of proposed framework.

Semi-interactive and interactive algorithm [Chi06,
Goo02, Hae90, Hal02, Ols05, Kal02] are those in
which an artist can become involved in the process of
synthesis. Interaction can be achieved by simply
modifying parameters or mimic artist’s painting
process [Gra04, Hal02, Kal02].

Halper [Hal02] present user a way to design
nonphotorealistic images based on series of
elementary operations. These elementary operations
include scene modifiers, stroke modifiers and image
modifiers. By linking these operations, image of
novel styles can be synthesized. Halper’s elementary
operations are similar to the independent modules in
rendering system of the proposed framework.
However, the independent module is more
fundamental because it is only a partial style rather
than a complete style represented by Halper’s
elementary operation.

Stéphane [Gra04] presented a programmable
interface for non-photorealistic line drawing, in
which the topology of a view map of lines is
extracted from a three-dimensional polygon mesh.
Three user definable modules, namely selecting,
chaining and splitting, are then applied. Each module
refines the lines, which are then drawn on the final
image. This framework is very flexible to synthesize
different line drawing styles. The primitive mapping

Journal of WSCG ISSN 1213-6972 152 ISBN 978-80-86943-00-8

system of the proposed framework is similar to
Stéphane’s framework.

3. Overview
The proposed framework comprises three main
stages (Fig. 1): Image Processing Front End (IPFE),
Creative Style Selection (CSS) and Synthesizer Back
End (SBE). Each stage corresponds to painters’
actual painting process: determine what to paint
(IPFE), choose the painting style (CSS) and paint
(SBE). The first two stages (IPFE and CSS) involve
user interaction. The third stage (SBE) is automatic.

3.1 Image processing front end stage
As mentioned before, a painterly rendering algorithm
has many inputs, which have to be unified to
construct a framework, since the image itself (as a set
of pixels) is not intuitive for end-users or artistic who
want to give guidelines to a particular painterly
rendering algorithm. A unified input is also needed
to combine different algorithms.

The input of the proposed framework, Raw PR Input
in Fig. 1, comprises a hierarchy of objects and
primitives. Objects are a high-level concept, namely
what the end user wants to paint. The object
hierarchy denotes the way that painters view the
scene. For instance, a scene comprises a chair and an
apple, and the chair comprises four legs. Besides,
object relationship in the hierarchy provides
rendering system with necessary information, for
example, the “ImpMonet” rendering function in
Section 5.3. A primitive is a low-level concept that is
involved in the painting process, and denotes the
painter’s perception of a single object. For instance, a
painter may perceive a region with red color from the
apple.

The Image Processing Front End stage converts an
input image into a hierarchy of objects and primitives.
The interaction stage of IPFE stage requires a user to
use image segmentation tools to segment areas in an
input image of interest. Any commercial tool can be
used to finish this task. Figure 2 illustrate an example
of an object hierarchy.

3.2 Creative style selection stage
The Creation Style Selection (CSS) stage helps a user
to determine the painting style, and consists of two
parts: modification and selection of primitives, and
choosing the style for each selected primitive. These
two parts correspond respectively to the primitive
mapping and rendering systems [Dur02], and are
discussed in detail in Sections 4 and 5 respectively.

Figure 2. A hierarchy of objects and the
corresponding primitives: one base object and five
first layer sub-objects. Primitives are two-
dimensional images represented by masking images.

3.3 Synthesizer back end stage
The system paints automatically once the CSS stage
is finished. The mark system in the Synthesizer Back
End stage performs the painting process. The
proposed framework currently supports oil painting.
Section 6 discusses this part in detail.

4. Primitive system
A primitive system helps users to select the object to
be painted and the modification that should be
applied before painting. The modification is required
for two reasons. First, humans represent scene
objects in their own way, similar to the salience map
in previous approaches. Second, different artists
interpret scene objects differently. For instance, Van
Gogh would draw twisted contour lines, while
Renoir preferred draw smooth contour lines. This
modification must be separated from rendering
functions, since it simplifies the design of rendering
functions, and makes the whole painting process easy
to understand.

A primitive has two fundamental properties, namely
shape and color. Shape is represented as a two-
dimensional mask, and color is represented as a two-
dimensional color buffer in which pixels adopt the
RGB color model. Additionally, the concept of
extendedness [Wil97] is employed to represent
human perceptions of object shape.

4.1 Extendedness
Willat [Wil97] employed the concept of
extendedness to describe human perceptions of shape.
The extendedness specifies the relative extensions of
primitive in different directions of space. This work
extends Willat’s extendedness concept to synthesize
the quick drawing effect of Impressionism (Section
5.4). The extendedness in the proposed framework is
defined as a list of spans, each with a starting
direction, ending direction and intensity. These spans
are obtained by first threshold the length from pixel
position to object center and then merge pixels with
similar length. Extendedness is used in the

Journal of WSCG ISSN 1213-6972 153 ISBN 978-80-86943-00-8

framework to generate a “shape direction” for each
point in primitive. The shape direction is then used to
derive stroke direction in a rendering system.

4.2 Elementary operators
Four selection operators are available, namely
selection, merging, subtraction and sorting. The
selection operator takes a primitive as input, and
decides whether to select it based on the information
included in the primitive. For instance, selection may
depend on the importance value or type of an object
where the primitive belongs. Users can implement
their own selection operators based on complex
functions. Several built-in selection operators are
available, including selection by object importance,
object id and object type.

The merge operator takes two primitives as input and
the merged result as output. Users can customize the
layering behavior by merging insignificant primitives.
For instance, far primitives can be merged together,
and near or important primitives should be treated
separately. The built-in merge operator is
implemented using set union, in which the shape
mask and color buffer of primitive are considered as
sets.

The subtraction operator can be employed in
rendering functions. The built-in subtraction operator
is implemented by set subtraction, in which the shape
mask and color buffer of primitive are considered as
sets.

The order of primitive drawing strongly influences
the result. The sorting operator is provided to
determine the order of primitives, and results in a
partial order of primitives in which primitives of the
same anti-chain are in the same painting layer.
Trivial build-in sorting operator is not available,
since this operation involves creativity, and depends
entirely on the user.

5. Rendering system
The rendering system comprises a set of rendering
functions, each taking a mapped primitive as input
and generating stroke definitions. A stroke definition
includes the path, cross-section at each control points,
initial bristle attributes and physical-effect
parameters. All these parameters are required in the
mark system. The rendering function can also access
global information, i.e. the input and Canvas object
used in mark system. The generation of stroke
definition comprises several steps. Stroke definitions
generated from each step are fed into the mark
system, whose results affect the next stroke
definition generation step.

5.1 Module composition
Most current painterly rendering algorithms are black
boxes that generate all stroke definitions. These
algorithms are hard to modify or combine, so cannot
be employed to create a new style. This problem is
solved herein using module composition. The basic
idea is that although artist’s creation can not be
realized by computer algorithm, common
fundamental painting techniques do exist among
these artists and these techniques can be achieved by
computer. Thus, partial styles are developed instead
of complete styles. Users can apply their creation to
the painting synthesizing process.

The rendering function is divided into four modules.
Each module is responsible for generating one kind
of stroke definitions, namely stroke initial point,
stroke path, stroke color and stroke cross-section.
The stroke initial point module determines the
distribution of strokes, and consists of a set of points
representing the initial point of the path of each
stroke. The stroke path module creates a path from a
given initial point, and consists of a set of control
points for each stroke definition. The stroke color
module determines the color of the stroke. The stroke
cross-section module determines the stroke cross-
section of the stroke path, and consists of a set of
cross-section definitions corresponding to each
control point. Figure 3 illustrates these four modules.

(a) (b) (c)

(d) (e)

Figure 3: Rendering modules and a basic style. (a)
stroke initial points; (b) stroke path formed by
control points (red dots); (c) stroke with cross-

sections and color defined; (d) first layer of painting
by applying four modules sequentially; (e) a basic

style resulting from three layers.

To combine different rendering functions, these four
modules are made independent to each other. A new
style is created by simply choosing these four
modules from existing rendering functions and
combining them. This novel approach shows the
power of the proposed painterly rendering algorithm,

Journal of WSCG ISSN 1213-6972 154 ISBN 978-80-86943-00-8

which can not only imitate existing styles, but also
generate new styles. Existing rendering functions are
also easy to modify. Modification can be applied on
individual modules without affecting the other
modules.

5.2 Parameter hierarchy
Most painterly rendering algorithms adopt
parameters to control the variation of styles.
However, they derived parameters are typically
derived from the algorithm designing stage, making
them unintuitive for end-users. The proposed
algorithm solves this problem by providing a
hierarchical representation of parameters.
Conceptually, users who are unfamiliar with the
algorithm can simply specify high-level parameters,
which are automatically converted to low-level
parameters.

The parameters are classified into four levels, namely
the style, user, system-dependent and system-
independent parameters. The lowest level is system-
dependent parameters. Only these parameters are
adopted in the rendering process. Parameters in all
other levels are converted to the lowest level.
System-dependent parameters are parameters that
depend on the rendering target, for instance, the
“surrounding color” in “ImpMonet” rendering
function in Section 5.3. System-dependent
parameters can be determined by rendering function
or specified by user.

User and style parameters are high-level parameters.
User parameters have to be determined by users due
to algorithm’s limitations. Style parameters are
summaries system parameters. Different style
parameters in the same rendering function represent
minor variations of the same style. Figure 4
illustrates the concept of parameter hierarchy.

Several painting styles were implemented to show
the effeteness of our framework. The following sub-
sections discuss these styles in detail.

5.3 Style one: impressionism, Monet
The Monet rendering function was used to synthesize
a series of paintings by a series of paintings by
Monet during 1899~1901. The subjects in these
paintings are buildings, rivers and skies immersed in
the morning mist. To depict the mist, all objects are
painted casually and burred. However, the painting
style for each subject (building, river and sky) is
slightly different.

To synthesize these effects, three rendering functions
were implemented to synthesize the building, river
and sky. First, the “ImpBuilding” rendering function
would automatically find the two most distinct base

colors representing the surrounding color (obtained
from the “surrounding” object, i.e. the sky) and the
object’s instinct color (i.e. the diffuse color). These
two colors are blended to form the stroke color. The
direction of the stroke path is modified to follow the
shape of the object. The initial point is seeded
randomly to mimic casual painting effects. Figure 4
illustrates some results of this function.

Figure 4: Parameter hierarchy of rendering function
“Impressionist Building (ImpBuilding)”: Four style

parameters: “default”, “more impression”, “long
stroke” and “clear”; User parameters are empty; Two
system dependent parameter: surrounding color and

building color; Nineteen system independent
parameters.

After the “ImpBuilding” rendering function is
designed, the other two rendering functions,
“ImpWater” and “ImpSky”, were implemented as
extensions of “ImpBuilding”. Because of the
separation of modules and the concept of inheritance,
the similarities of these three styles could be
preserved, thus focusing only on the difference. For
instance, the “ImpSky” rendering function uses three
base colors: the surrounding color, the object’s
instinct color and the sun color. Thus, the “ImpSky”
was obtained by modifying the color module of
“ImpBuilding”.

Journal of WSCG ISSN 1213-6972 155 ISBN 978-80-86943-00-8

5.4 Style two: impressionism, quick draw
The quick draw rendering function was used to
synthesize the quick drawing effect of Impressionist
paintings. The following objective must be achieved
to synthesize this effect. First, the number of strokes
representing the foreground object should be
minimized. These strokes should reveal the shape of
the object. The color distribution of the foreground
object should be much less noticeable than its shape
during synthesis. Second, neither the shape nor the
color of the background objects should be noticeable
during synthesis.

To attain the first aim, the stroke path did not follow
the normal direction of image gradient. The blending
“shape direction” and normal direction of image
gradient were used instead. The shape direction was
obtained from primitive extendedness, as explained
in Section 4.1. Additionally, the stencil buffer of
canvas was employed to avoid overlapped strokes.
To attain the second aim, the color buffer of the
primitive in the background object was blurred by
blending each pixel’s color value with the mean
color of the entire color buffer. Figure 6 illustrates
some results of this function.

5.6 Other styles
Pen-and-ink styles including half-toning, stippling
and mosaics [Str02] also have been developed. By
combining modules in pen-and-ink style with
modules in painterly rendering style, novel styles can
be synthesized. Corresponding results are displayed
in Figure 7.

6. Mark system
The list of stroke definitions generated by the
rendering system is fed into the mark system that
draws these strokes on canvas. The physical
implementation of stroke definition depends strongly
on the target painting media. For instance, the water
color mark system obviously should differ from oil
painting mark system a lot.

The proposed mark system has three components, a
brush model, a bristle canvas interaction system and
a random system. The brush model includes objects
such as pigment, canvas, stroke paths and stroke
cross sections (round and flat). In the bristle canvas
interaction system, the bristle location is determined
by the stroke path and stroke cross section. Each
bristle contains pigment, which is placed on canvas.
The interaction between bristle and canvas occurs on
every contact along the stroke path. This mark
system is extended from Way‘s [Way01] stroke
model.

7. Results
Results, including the individual styles and the
compositions of styles, are now presented in
Figure.5~7. The framework is implemented in C++
language on a laptop with a Pentium 1.5G CPU and
512 MB RAM. Running time ranges from thirty
seconds to twenty minutes. Full size images and
additional results are contained in the supplementary
files.

8. Conclusion and future work
This work has presented a flexible painterly
rendering framework. A developer can extend this
framework by customizing its components, enabling
different painterly algorithms to be placed within it.
The division of this framework is also based on the
actual process of painters, which means that the
generated results can be evaluated esthetically.
Several painting styles were synthesized to indicate
the effectiveness of the proposed framework. Several
results are presented in each style, requiring
extension or modification of each component of this
framework. The extension and modification
processes are clear and intuitive.

Future work will attempt to improve the proposed
framework in the following ways. A spatial system
will be added to the framework. Such a system is
especially important in oriental painting styles. We
will attempt to discover how to establish a
complicated projection system in painting processes.
The mark system will also be improved. Only simple
effects of oil painting have been synthesized so far.
Further synthesis experiments will be performed in
the near future.

9. REFERENCES
[Bom91] Bomford, D., J. Leighton, J. Kirby, and A.

Roy, Art in the Making Impressionism, Yale
University Press, New Haven, CT, USA, 1991.

[Chi06] Chi, M.T. and T.Y. Lee, “Stylized and
Abstract Painterly Rendering System Using a
Multiscale Segmented Sphere Hierarchy”, In
IEEE Transactions on Visualization and
Computer Graphics, Volume 12, Issue 1, IEEE
Computer Society, Los Alamitos, CA, USA,
2006, pp. 61-72.

[Col02] Collomosse, J.P. and P.M. Hall, “Painterly
Rendering using Image Salience”, In Proceedings
of the 20th Eurographics UK Conference (June
2002, Leicester, UK), IEEE Computer Society,
Los Alamitos, CA, USA, 2002, pp. 122-128.

[Dur02] Durand, F., “An invitation to discuss
computer depiction”, In Proceedings of the 2nd
international symposium on Non-photorealistic
animation and rendering (June 3-5, 2002,

Journal of WSCG ISSN 1213-6972 156 ISBN 978-80-86943-00-8

Annecy, France), ACM Press, New York, USA,
2002, pp. 111-124.

[Goo02] Gooch, B., G. Coombe, and P. Shirley,
“Artistic Vision: Painterly Rendering Using
Computer Vision Techniques”, In Proceedings of
the 2nd international symposium on Non-
photorealistic animation and rendering (June 3-5,
2002, Annecy, France), ACM Press, New York,
USA, 2002, pp. 83-90.

[Gra04] Grabli, S., E. Turquin, F. Durand, and F.X.
Sillion, “Programmable Style for NPR Line
Drawing”, In Rendering Techniques 2004:
Eurographics Symposium on Rendering (June
21-23, 2004, Norrköping, Sweden), Eurographics
Association, Switzerland, 2004, pp. 33-44.

[Hae90] Haeberli, P., “Paint by numbers: abstract
image representations”, In Proc. 17th Intl.
Conference on Computer Graphics and
Interactive Techniques (ACM SIGGRAPH),
Volume 4, ACM Press, New York, USA, 1990,
pp. 207-214.

[Hal02] Halper, N., S. Schlechtweg, and T.
Strothotte, “Creating Non-Photorealistic Images
the Designer's Way”, In Proceedings of the 2nd
international symposium on Non-photorealistic
animation and rendering (June 3-5, 2002,
Annecy, France), ACM Press, New York, USA,
2002, pp. 97-104.

[Hay04] Hays, J. and I. Essa, “Image and Video
Based Painterly Animation”, In Proc. 3rd ACM
Symposium on Non-Photorealistic Animation
and Rendering (June 7-9, 2004, Annecy, France),
ACM Press, New York, USA, 2004, pp. 113-120.

[Her98] Hertzmann, A., “Painterly Rendering with
Curved Brush Strokes of Multiple Sizes”, In Proc.
25th Intl. Conference on Computer Graphics and
Interactive Techniques (ACM SIGGRAPH),
ACM Press, New York, USA, 1998, pp. 453-460.

[Her03] Hertzmann, A., “A Survey of Stroke-Based
Rendering”, In IEEE Computer Graphics &
Applications, Special Issue on Non-
Photorealistic Rendering, Vol. 23, No. 4, IEEE
Computer Society, Los Alamitos, CA, USA,
2003, pp. 70-81.

[Kal02] Kalnins, R.D., L. Markosian, B.J. Meier,
M.A. Kowalski, J.C. Lee, P.L. Davidson, M.
Webb, J.F. Hughes, and A. Finkelstein,
“WYSIWYG NPR: Drawing Strokes Directly on
3D Models”, In Proc. 29th Intl. Conference on
Computer Graphics and Interactive Techniques
(ACM SIGGRAPH), ACM Press, New York,
USA, 2002, pp. 755-762.

[Lit97] Litwinowicz, P., “Processing Images and
Video for An Impressionist Effect”, In Proc.24th
Intl. Conference on Computer Graphics and
Interactive Techniques (ACM SIGGRAPH),
ACM Press, New York, USA, 1997, pp. 407-414.

[Mei96] Meier, B.J., “Painterly Rendering for
Animation”, In Proc. 23th Intl. Conference on
Computer Graphics and Interactive Techniques
(ACM SIGGRAPH), ACM Press, New York,
USA, 1996, pp. 447-484.

[Ols05] Olsen, S.V., B.A. Maxwell, and B. Gooch,
“Interactive Vector Fields for Painterly
Rendering”, In Proceedings of Graphics Interface
2005 (May 9-11, Victoria, Canada), volume 112
of ACM International Conference Proceeding
Series, Canadian Human-Computer
Communications Society, A K Peters, LTD.,
2005, pp. 241-247.

[Sch05] Schlechtweg, S., T. Germer, and T.
Strothotte, “RenderBots--Multi-Agent Systems
for Direct Image Generation”, In Computer
Graphics Forum, Volumn 24, number 2,
Eurographics Association, Switzerland, 2005, pp.
137-148.

[Str02] Strothotte, T. and S. Schlechtweg, Non-
photorealistic Computer Graphics: Modeling,
Rendering, and Animation, Morgan Kaufmann,
San Fransisco, CA, USA, 2002

[Wil97] Willats, J., Art and Representation,
Princeton University Press, Princeton, NJ, USA,
1997.

[Way01] Way, D.L. and Shih Z.C., “The Synthesis
of Rock Textures in Chinese Landscape
Painting”, In Computer Graphics Forum, Volumn
20, number 3, Eurographics Association,
Switzerland, 2001, pp. 123-131.

Journal of WSCG ISSN 1213-6972 157 ISBN 978-80-86943-00-8

Figure 5: Synthesized painting of one NCTU scene using

Impressionism Monet style set

Figure 6: Synthesized painting using impressionism quick

draw style.

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 7: Synthesized paintings by combining modules from painterly rendering style and pen-and-ink style. (a)
Painterly style. (b) Half-toning with line using color module of painterly style. (c) Stippling using color module

of painterly style. (d) Mosaics using color module of painterly style. (e) Painterly style using cross-section
module of half-toning with line. (f) Painterly style using cross-section module of stippling. (g) and (h) Half-

toning with line using path module of painterly style.

Journal of WSCG ISSN 1213-6972 158 ISBN 978-80-86943-00-8

	!WSCG2007_Journal_Proceedings_Numbered.pdf
	B07-full.pdf
	Introduction
	Related Work
	Architecture
	Scenarios
	Adequate Illustration
	Adapted Illustration
	Illustration with Shape Icons

	Annotation Layout
	Determination of Shape Icons
	Conclusion
	Future Work

	G59-full.pdf
	1. INTRODUCTION
	Related works

	2. SURVEY OF THE APPROACH
	3. RECOGNIZING MOTION
	4. EXPERIMENTAL RESULTS
	5. CONCLUSIONS
	6. REFERENCES

	H61-full.pdf
	1. INTRODUCTION
	2. LOCAL ENERGY MODEL
	3. SCALE SPACE
	4. INVARIANT SCALE DETECTOR
	5. THE NSSD BASED MATCHING
	6. RESULTS AND DISCUSSION
	7. CONCLUSIONS

	A47-full.pdf
	1. INTRODUCTION
	2. Related works
	3. Overview
	3.1 Image processing front end stage
	3.2 Creative style selection stage
	3.3 Synthesizer back end stage
	4. Primitive system
	4.1 Extendedness
	4.2 Elementary operators

	5. Rendering system
	5.1 Module composition
	5.2 Parameter hierarchy
	5.3 Style one: impressionism, Monet
	5.4 Style two: impressionism, quick draw
	5.6 Other styles

	6. Mark system
	7. Results
	8. Conclusion and future work
	9. REFERENCES

