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FOREWORD 

This book contains the proceedings of WSCG’2007, the 15th  International Conference in 
Central Europe on Computer Graphics, Visualization and Computer Vision 2007. The 
Winter School of Computer Graphics started in 1992 with about 20 participants from the 
former Czechoslovakia. It has become an important conference attended by the 
international Computer Graphics community. 

Submissions to WSCG’2007 came from numerous countries on different continents. From 
these submissions, 186 papers have been sent to reviewers. Each paper was reviewed by 
at least three experts selected among the members of the large International Program 
Committee. 61 papers have been accepted to be presented at WSCG’07, representing a 
33% acceptance ratio. The best 20 of these papers have been selected to be published in 
a special issue of the Journal of WSCG and will be available through the conference 
Digital Library at http://wscg.zcu.cz/DL/wscg_DL.htm. 

Furthermore, the published papers are listed on the major international scientific indexes 
such as Thomson ISI. 

WSCG’2007 features three key-note lectures: 

·       Shape Comparison, Simplification, and Compression by J. Rossignac from 
Georgia Tech, USA 

·       Intuitive Editing of Surface Meshes by M. Alexa from T.U. Berlin, Germany� 

·       3D Video and Free Viewpoint Video – Technologies, Applications and MPEG 
Standards, by A. Smolic, from the Heinrich-Hertz-Institut, Germany 

Finally, we would like to express our thanks to all the authors who submitted technical 
papers to WSCG’2007, and to the reviewers whose work and dedication made it possible 
to put together a very exciting program of high technical quality. 

 

 

The Program Co-Chairs 

Jarek Rossignac, Georgia Institute of Technology, Atlanta, USA 

Vaclav Skala, University of West Bohemia, Plzen, Czech Republic, Plzen 
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ABSTRACT

We present a technique for efficient management of large textures and its real-time application to geometric models. The
proposed technique is inspired by the clipmap [12] idea, that caches in video memory a subset of the texture mipmap pyramid.
Based on this concept, we define some structures and a different management allowing its implementation on a personal
computer without specific graphics hardware. Finally, we present the results of the application in a terrain visualization system,
using several simultaneous textures with a detail up to 0.25 meters per texel, covering a 60,000 km2 area.

Keywords
Terrain visualization, multiresolution visualization, large data set visualization, level-of-detail techniques, texture
mapping, clipmap, mipmap, texture caching.

1 INTRODUCTION
Applying textures to digital terrain models is the classi-
cal solution to simulate the missing geometry details.
When we want to apply a large amount of texture to the
terrain surface, the storage problem arises. Although
both the system memory and the video memory are ex-
tremely fast, there is limited storage capacity. Therefore
the use of a paging technique that allows an efficient
management of the texture data in order to visualize the
terrain with a very high quality is essential.

In contrast to the abundance of terrain geometry ma-
nagement algorithms, there is little work focused on
handling the texture. Moreover, most of the systems
allowing the visualization of digital terrain models es-
tablish a strong dependency between both geometry and
texture data bases.

Usually, texture tiles are bound to the geometry with
a pre-established mapping. This makes it difficult to
modify or to replace the geometry or texture data in a
transparent way, without rebuilding the database.

One of the best and most used approaches that al-
lows the handling of big textures is the clipmap [12].
This technique separates the handling of the texture
and the geometry, allowing independence between both
databases. The main problem of this technique is the
requirement of specific hardware.

We propose a new technique that allows the handling
of a large amount of texture without any requirement
of specific hardware. Only OpenGL or Direct3D fixed
function pipeline is required to implement this tech-
nique. It uses a two level cache composed of a texture
stack stored in the video memory as the first level and
a set of buffers stored in RAM as the second level. The
contents of both levels are updated depending on cam-
era movement.

This technique is inspired by the clipmap idea. It is
also based on the caching in video memory of a huge
mipmap pyramid [13]. Nevertheless, its structure, the
management of the video memory and the way the tex-
ture is applied are different, which allows its implemen-
tation in a personal computer using a graphics API like
OpenGL [11].

Our texturing technique provides the following ad-
vantages:

• It can be implemented using an API like OpenGL
without special necessities in the graphics hard-
ware.

• It keeps the independence between geometry and
texture databases.
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• Texture coordinates can be computed in the GPU
(although it is not necessary), avoiding their trans-
ference to the graphics system. This allows modi-
fication of the geometry in real time, while keeping
the right texture mapping without recomputing the
texture coordinates.

• Texture aliasing is avoided using trilinear filtering
hardware capabilities.

• It allows the visualization of high resolution textures
with the possibility of including higher resolution in-
sets.

• It allows the use of several independent large tex-
tures which can be combined to show different in-
formation types simultaneously on the terrain.

2 PREVIOUS WORK
Historically, the strategies for the terrain texturing prob-
lem have been based on paging systems. With these
kind of techniques it’s usual to solve the high texture
volume problem applying high resolution information
to the terrain regions closer to the camera, and less de-
tail to those which are further away. Thus we only need
to store in video memory the higher resolution data for
a small portion of the terrain. Moreover, due to the
perspective, the further we are from a terrain area, the
fewer pixels used on the screen, and therefore, the fewer
texels needed for accurate representation.

Rabinovich [9] proposed in his visualization system
the use of a single texture covering the whole terrain,
with hardware mipmap. This technique has scalabil-
ity drawbacks, as the maximum texture size allowed by
graphics hardware is very limited, and greatly exceeded
by the resolution needed to represent large terrain sur-
faces with an acceptable visual quality.

A solution to the previous limitation is the
clipmap [12], which caches a subset of a mipmap pyra-
mid. Terrain is mapped at every point with the finest
available level of detail. As the camera moves, the sys-
tem updates the pyramid cache with the information
corresponding to the new area. The clipmap, neverthe-
less, needs special hardware for its implementation.

Another solution is MPGrid [6], that uses several
pyramids instead of only one. Each pyramid is a
mipmap that should fit completely in memory. If the
geometry is not aligned with the texture pyramids, it is
necessary to either clip the triangles in real-time or to
use a special hardware.

Döllner [5] proposes to store a tree containing a set
of texture patches that belong to one texture pyramid.
Each texture patch is bound to a geometry patch of an-
other multiresolution model, which must cover it com-
pletely. This introduces a dependency that forces the
adaptation of texture quality to the loaded geometry
level and vice versa.

Blow [2] developed a similar system, in which the
tree is a quadtree. For every triangle, the more adequate
texture is sought in the quadtree. To achieve efficiency
in this algorithm in spite of doing the above mentioned
computation once for every triangle, he introduces cer-
tain restrictions in the way of doing the clipping and the
shape of the triangles. These restrictions create, also in
this case, a strong dependency between the geometry
and texture systems.

3 STRUCTURE OVERVIEW
The system proposed in this paper is based in the
clipmap concept described by Tanner, caching a sub-
set of the texture pyramid in video memory (Figure 1).
We introduce a different memory structure of the algo-
rithm, described in this section.

Texture information is structured in three storage lev-
els: disk, system memory (RAM) and video memory
(VRAM).

Figure 1: Virtual texture.

3.1 Disk
Texture is completely stored on disk using a mipmap
pyramidal scheme. This texture is called virtual tex-
ture. The highest detail level of this pyramid is formed
by 2l−1× 2l−1 texels, where l is the number of levels
(Figure 1). Levels are numbered from 0 and up, be-
ing 2i× 2i the size for level i. Higher levels can be in-
complete, allowing incrementation of detail for special
interest areas (insets).

Every level is stored on disk being divided in square
fragments of t× t texels, called tiles, except those lev-
els which dimension is smaller than the tile. Tile size
is chosen so as to maximize the speed of disk to RAM
transfer, while avoiding fragmentation. Tiles are ad-
dressed using three coordinates: x (column), y (row)
and z (level).

The disk database is fully compatible with the
OpenGL Performer [10] clipmap format.

The amount of disk space used by the texture is then
estimated with the equation:

D� 22l−2 · 4
3
·b bytes

where b is the texture color depth measured in bytes per
texel.
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3.2 System memory
Disk stored tiles are cached in a set of RAM buffers,
one buffer per tile.

Cache requests address the tiles by column, row and
level. Tile loading is done asychronously, and an LRU
algorithm is used to choose the buffer where the tile is
to be stored.

Requests are prioritized on a level basis, the coarser
levels being those with higher priority. This facilitates
having information of the zone of interest as quickly as
possible, since lower level tiles cover larger areas. The
detail is then being progressively and orderly refined as
higher level tiles become available.

RAM usage is determined by the number of buffers
(n) assigned to the cache, being calculated as follows:

R = n · t2 ·b bytes

3.3 Video memory
A subset of the virtual texture pyramid stored in disk is
stored in video memory (Figure 1).

Clip size (c) determines the maximum size stored in
VRAM for each level of the virtual texture. We will
choose a base level, this being the level of the pyra-
mid with a size equal to the clip size. This base level
and lower ones are stored entirely and permanently in
VRAM. For each level higher than the base level, a re-
gion of c×c texels around the center of detail is cached.
The base level (lb) is calculated as follows:

lb = log2 c

Information placed in VRAM is organized in a graph-
ics system texture stack, being those textures indepen-
dent of each other. The stack is composed by l− lb tex-
tures of c× c texels each. Texture ti caches level lb + i
in the pyramid (Figure 2).

Figure 2: Texture stack.

In order to allow the graphic system to perform a tri-
linear filtering to avoid aliasing, mipmap levels for ev-
ery texture are needed. Let ti j be the mipmap level j of
the texture i in the stack (Figure 3).

Texture t0 has all its mipmap levels, corresponding
with the base level and coarser levels. For the rest of
the textures, level ti j caches level lb + i− j of the virtual
texture. In these textures, the number of mipmap levels
can be limited to save bandwidth.

We can visualize this stack as a set of rings represent-
ing different resolutions (Figure 4). In the Figure 5 we

Figure 3: Texture stack. Mipmap levels correspondence.

can see the application of different levels of detail to the
terrain, represented by a color code.

Figure 4: Rings of detail.

Figure 5: Virtual textures applied to the terrain. Levels
of detail are shown using a color code.

To compute the usage of video memory let us supose
that m mipmap levels are used for the textures corre-
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sponding to those levels of the disk pyramid above the
base level. It is computed as

V =

(

(l− lb−1) ·
m

∑
i=0

( c
2i

)2
+

lb+1

∑
i=0

22i

)

·b

4 UPDATE
The data stored on the texture stack, as described in the
previous section, corresponds to a zone of the virtual
texture around the center of detail. As the center of
detail position is moved, it is necessary to update the
contents of the stack and other related structures.

Center of detail. For every frame, the application
must place the center of detail in the location where
higher quality is desired. Several strategies can be used,
usually computing it as a function of the camera posi-
tion and orientation.

The simplest approach is to place the center of detail
in the vertical projection of the camera location over the
ground. More adequate approaches place the center of
detail on a point of the visible geometry close to the
camera.

Texture stack update. Each texture of the VRAM
texture stack is updated independently, caching a level
of the virtual texture. VRAM textures are considered
to be divided in square patches, called subtiles. The
subtile is the texture updating unit. The subtile size (s)
must be a divisor of the clip size and the tile size, with

s = 2i, t = 2 j, c = 2k, with i≤ j e i < k

After the center of detail is moved, some subtiles will
retain useful data, but other tiles must be updated. Each
texture has a state matrix that keeps the state of its sub-
tiles. Subtiles that must be loaded with new data are
marked in the state matrix as invalid.

Processing the textures of the stack in ascending or-
der, each invalid subtile is loaded from the tile that con-
tains the information it needs at that moment. If the
requested tile is in the cache in RAM, the subtile is up-
dated. Otherwise, the subtile remains invalid, waiting
for the needed tile to be loaded from disk. In case of
incomplete levels, subtiles in the areas where there is
no information will never be updated.

To keep the coherence of data, the described sub-
tile update implies updating the related area in every
mipmap level of the texture. Update of levels ti j, where
j > 0, can be made from lower textures in the stack
because this data is replicated in several textures (Fig-
ures 2 and 3). In this way data can be transferred inside
VRAM, faster than loading it from RAM.

There is a toroidal structure of the subtiles in VRAM
due to efficiency reasons. Considering the virtual tex-
ture levels divided in subtiles, subtile (xa,ya) from level

i on disk is placed in position (xb,yb) inside the texture
in VRAM, where

(xb,yb) = (xa mod K,ya mod K) and K =
2i

s

Load control. The speed of the center of detail af-
fects the amount of texture that must be updated. The
higher detail textures cover a smaller area than the
lesser detail ones and they must be updated more fre-
quently. The time required to update the texture stack
in VRAM can cause the time available for rendering the
frame to be overrun. To avoid this potential problem, it
is necessary to restrict the amount of time available for
updating the texture stack.

The stack update is made from the coarser texture in
ascending order. A texture from the stack must be com-
pletely updated before the update of the next texture
begins. No matter how quickly the center of detail is
moving, there will always be a set of textures fully up-
dated (at least the base level).

Computing the subtile size, it is important to find a
tradeoff between an adequate load control and a good
transfer rate. The less the subtile size is, the higher
the accuracy to measure the update time will be. Even
though the subtile update time is strongly dependent on
hardware used, usually the smaller sizes have a very
poor efficiency.

Concentric rings updating. As the textures in the
stack are not always completely updated, it is neces-
sary to decide when a texture is appliable. A simple
approach is to discard a texture from the stack until it
is completely updated. The problem here is that ev-
ery time the center of detail is moved the distance of
a subtile, it will be invalidated until being completely
updated again. This problem is reduced by applying
the texture when a partial area of the full texture area is
loaded. This subarea is called texture coverage.

We update the subtiles in concentric rings, innermost
to outermost, so the coverage grows as the subtile rings
are updated (Figure 6). This way the texture is use-
ful from the moment it begins to have valid subtiles.
Beginning from the center, the highest interest zone is
available sooner. Also, the center subtiles are the ones
with higher life expectancy.

5 RENDERING
To use the described technique in a real application, we
have to do the following tasks

• Apply the texture

• Compute the texture coordinates

• Draw the geometry

There are two possible approaches to doing these
tasks:
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Figure 6: Circular update.

1. For each geometry set, apply the finest available tex-
ture covering this region.

2. Apply each texture from the stack, asking for its
coverage and drawing the geometry covered by this
level but not for the finer ones.

For texture mapping the geometry, we need the vir-
tual texture coordinates bound to each vertex. Texture
coordinate computation is made in exactly the same
way, no matter which one of the two approaches we
choose.

Virtual texture coordinates are converted to coordi-
nates of the texture selected from the stack. Texture
coordinates are scaled because each texture from the
stack covers half the virtual space of the previous one.
Thus, the scale factor for the level i from the stack is
computed as S = 2i. We only need the texture matrix
of the fixed function pipeline to automatically scale the
texture coordinates. Once the coordinates are scaled,
the toroidal organization assures that repeated applica-
tion of the texture [3] will be correctly mapped over the
covered surface (Figure 7).

Figure 7: Mapping a texture from the stack.

5.1 Automatic generation of texture coor-
dinates.

In terrain visualization, the usual way of mapping the
geometry is to have the texture coordinates precalcu-
lated.

The computation of virtual texture coordinates can
be done by the texturing system. The only information
the texturing system needs to know about the geometry

database is the coordinate system used. There can even
be different projection systems for texture and geome-
try.

The real-time computation of these texture coordi-
nates gives us some advantages, one of them being the
ability to dinamically modify the geometry while keep-
ing the mapping right.

The programmable capabilities of new graphics
pipelines allows us to move these computations from
CPU to GPU. This way, we achieve a significant re-
duction of bandwidth consumption between RAM and
VRAM, and avoid the need of VRAM space to store
texture coordinates. We can generate the virtual texture
coordinates and scale them using a vertex program.

5.2 Multitexturing
An interesting feature of our technique is that several
virtual textures can be managed simultaneously. Each
one is bound to a texture stage in the graphics system.
The maximum number of virtual textures is determined
by the graphics hardware used.

In terrain visualization, we can check different types
of information over the ground by mapping several
overlapping textures (Figure 8).

Figure 8: Virtual textures combination.

6 EXAMPLE OF APPLICATION:
SANTI

An OpenGL [11] implementation of the technique de-
scribed above has been applied in the last version of
SANTI, a terrain visualization system [8] (Figure 9).
SANTI is an application that was developed to display
a very large area of Spain as part of a permanent exhi-
bition from 1999 on. It was initially implemented on
an SGI Infinite Reality architecture using clipmapping
for terrain texture management. Currently it runs on a
common personal computer.

This application combines several virtual textures si-
multaneously, using a vertex program to dynamically
compute the texture coordinates.

The system uses an De Boer’s [4] inspired algorithm
to render the geometry dividing the total mesh into
equally sized patches that can be drawn using differ-
ent levels of detail. There is no constraint on the way
the patches are generated. The texture level of detail
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is calculated on a block basis, and it has no relation at
all with the geometry level of detail. Distant patches
are considered as a block in themselves, while close
patches are split considering every new subpatch as a
block for texturing purposes. Using this approach, the
geometry granularity is increased near the camera, to
display higher textural detail.

Figure 9: Real-time terrain visualization (SANTI).

This system has been successfully used to visualize
real cases of digital terrain models covering more than
60,000 km2. The most detailed texture used to map this
surface has a virtual size of 220×220 texels, composing
a pyramid with 21 levels of detail. In this pyramid, lev-
els 0 to 16 are generated for the full geographical area,
allowing full coverage of the terrain with a 5 meters per
texel detail, while for special interest areas levels 17 to
20 are also generated to reach a texture detail of up to
0.25 meters per texel (Figure 10).

Figure 10: View of a 0.25 meters per texel area.

Texure is fragmented in tiles, each of them of 512×
512 texels. Clip size measures 2048× 2048 texels and
the subtile size is 128×128 texels.

The application maintains a steady 75 fps display rate
over all the terrain using a personal computer with a
regular hardware configuration.

At present, authors are preparing a new 5 terabytes
database with 21 full levels of detail that will allow their
users to visualize the above mentioned 60,000 Km2 ter-
rain with a continuous 0.25 meters per texel resolution.

7 RESULTS AND DISCUSSION
The system has been tested with a real data set. These
tests were done in a low end personal computer with
the following features: Intel Pentium 4 2.8 GHz with
512 MB DDR RAM, GeForce 4 Ti4800SE with 128
MB, AGP 8x, SATA disk 7200 rpm with an approxi-
mate bandwidth of 53 MB/s.

The rendered data set includes two combined vir-
tual textures of Galicia (northwest of Spain), simulta-
neously showing satellite image and a road map (Figure
8) for a 250×250 km area. The resolution of the satel-
lite image is 5 meters per texel over all the area, with
one aerial image inset of 0.5 meters per texel, covering
a 32× 32 km area and other of 0.25 meters per texel,
covering a 2.5× 2.5 km (21 levels). The resolution of
the road map image is 16 meters per texel (15 levels).
These images are mapped over a regular 200× 200 m
cell sized terrain mesh.

Both virtual textures have a clip size of 1024 texels,
a subtile size of 128 texels, a color depth of 24 bits per
texel. There is a maximum allowed update time of 1 ms
per frame for each virtual texture.

The test was a flight over the insets with 0.5 and 0.25
resolution. The speed of flight was 250 meters/s.

Figure 11: Test results.

The Figure 11 shows a graph for a 4 seconds interval.
There we can compare the frame rate with the num-
ber of subtile and tile updates, as well as the quality
available for both textures. The quality of a texture is
measured as the percentage of updating of the texture
stack.

As seen in Table1, the average quality of the virtual
textures is never under 95%. The update process has
little influence on the frame rate, keeping it always over
75 fps.

The update of the texture stack uses an average band-
width of 7.25 MB/s, approximately 55.29 KB/frame,
while the update of the RAM cache needs a transfer rate
of 17.4 MB/s, being 32.84% of disk total bandwidth.
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Globals Min. Max. Avg. Std. dev.
Frame rate (frames/s) 91.65 152.05 128.54 11.66
Subtile load (subtiles/frame) 0 14 1.17 2.32
Tile load (tiles/frame) 0 2 0.20 0.51
Tile load latency (ms) 0.96 126.15 15.83 17.62
Terrain texture
Quality (%) 86.93 100.00 96.00 4.35
Subtile load (subtiles/frame) 0 7 1.13 2.19
Tile load (tiles/sec) 0 2 0.19 0.50
Road map texture
Quality (%) 97.50 100.00 99.93 0.39
Subtile load (subtiles/frame) 0 7 0.05 2.32
Tile load (tiles/sec) 0 1 0.01 0.51

Table 1: Test statistics.

These results prove that our technique allows the
management of multiple virtual textures with excep-
tional performance.

8 SUMMARY AND FUTURE WORK
We introduce a new technique for managing very large
textures through a paging system. It keeps the tex-
ture and geometry databases independent of each other
and it can be implemented on personal computers using
standard graphic API’s, like OpenGL, without the need
of special hardware.

This technique has been applied on a real case dis-
playing a 60,000 Km2 terrain texture with a detail of up
to 0.25 meters per texel with a steady 75 fps frame rate.

The dynamic, procedural generation of the texture is
a research line that is currently open. This could be
used for rendering vector data such as GIS information
over a three-dimensional geometry, without the need of
keeping the texture stored on disk.

Another line of research is to try different alternatives
for real time texture decompression [7] [1] in order to
reduce the bandwidth needed to transmit those textures
through a network for LAN or Internet applications.
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ABSTRACT

Principle component analysis (PCA) is commonly used to compute a bounding box of a point set in R
d . The

popularity of this heuristic lies in its speed, easy implementation and in the fact that usually, PCA bounding

boxes quite well approximate the minimum-volume bounding boxes. In this paper we give a lower bound on the

approximation factor of PCA bounding boxes of convex polytopes in arbitrary dimension, and an upper bound on

the approximation factor of PCA bounding boxes of convex polygons in R
2.
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1. INTRODUCTION

Substituting sets of points or complex geometric

shapes with their bounding boxes is motivated by

many applications. For example, in computer graph-

ics, it is used to maintain hierarchical data structures

for fast rendering of a scene or for collision detec-

tion. Additional applications include those in shape

analysis and shape simplification, or in statistics, for

storing and performing range-search queries on a

large database of samples.

Computing a minimum-area bounding box of a set

of n points in R
2 can be done in O(n logn) time, for

example with the rotating caliper algorithm [Tou83].

O’Rourke [O’R85] presented a deterministic algo-

rithm, a rotating caliper variant in R
3, for computing

the exact minimum-volume bounding box of a set of

n points in R
3. His algorithm requires O(n3) time

and O(n) space. Barequet and Har-Peled [BHP99]

have contributed two (1+ε)-approximation algorithms

for computing the minimum-volume bounding box

for point sets in R
3, both with nearly linear com-

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
Copyright UNION Agency – Science Press, Plzen, Czech Re-
public.

plexity. The running times of their algorithms are

O(n + 1/ε4.5) and O(n logn + n/ε3), respectively.

Numerous heuristics have been proposed for com-

puting a box which encloses a given set of points.

The simplest heuristic is naturally to compute the

axis-aligned bounding box of the point set. Two-

dimensional variants of this heuristic include the

well-known R-tree, the packed R-tree [RL85], the

R∗-tree [BKSS90], the R+-tree [SRF87], etc.

A frequently used heuristic for computing a bounding

box of a set of points is based on principal component

analysis. The principal components of the point set

define the axes of the bounding box. Once the axis di-

rections are given, the dimension of the bounding box

is easily found by the extreme values of the projection

of the points on the corresponding axis. Two distin-

guished applications of this heuristic are the OBB-tree

[GLM96] and the BOXTREE [BCG+96], hierarchical

bounding box structures, which support efficient colli-

sion detection and ray tracing. Computing a bounding

box of a set of points in R
2 and R

3 by PCA is quite

fast, it requires linear time. To avoid the influence of

the distribution of the point set on the directions of

the PCs, a possible approach is to consider the convex

hull, or the boundary of the convex hull CH(P) of the

point set P. Thus, the complexity of the algorithm in-

creases to O(n logn). The popularity of this heuristic,

besides its speed, lies in its easy implementation and
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in the fact that usually PCA bounding boxes are tight-

fitting (see [LKM+00] for some experimental results).

Given a point set P ⊆ R
d we denote by BBpca(P)

the PCA bounding box of P and by BBopt(P)

the bounding box of P with smallest possi-

ble volume. The ratio of the two volumes

λd(P) = Vol(BBpca(P))/Vol(BBopt(P)) defines

the approximation factor for P, and

λd = sup
{

λd(P) | P ⊆ R
d
,Vol(CH(P)) > 0

}

defines the general PCA approximation factor. We are

not aware of any previous published results about this

quality feature of PCA. Here, we give lower bounds

on λd for arbitrary dimension d, and an upper bound

on λ2.

The paper is organized as follows. In Section 2. we

review the basics of principal component analysis. In

particular, we present the continuous version of PCA,

which results in the introduction of a series of approx-

imation factors λd,i, where i ranges from 0 to d and

denotes the dimension of the faces of the convex hull

that contribute to the continuous point set for which

the principal components are computed. In Section 3.

we give lower bounds on λd,i for arbitrary values of d

and 1 ≤ i ≤ d. An upper bound on λ2,1 is presented

in Section 4. We conclude with future work and open

problems in Section 5.

2. PRINCIPAL COMPONENT ANALY-

SIS

The central idea and motivation of PCA [Jol02]

(also known as the Karhunen-Loeve transform, or

the Hotelling transform) is to reduce the dimen-

sionality of a point set by identifying the most

significant directions (principal components). Let

X = {x1,x2, . . . ,xm}, where xi is a d-dimensional

vector, and c = (c1,c2, . . . ,cd) ∈ R
d be the center of

gravity of X . For 1 ≤ k ≤ d, we use xik to denote the

k-th coordinate of the vector xi. Given two vectors u

and v, we use 〈u,v〉 to denote their inner product. For

any unit vector v ∈ R
d , the variance of X in direction

v is

var(X ,v) =
1

m

m

∑
i=1

〈xi − c,v〉2
. (1)

The most significant direction corresponds to the unit

vector v1 such that var(X ,v1) is maximum. In gen-

eral, after identifying the j most significant directions

B j = {v1,v2, . . . ,v j}, the ( j+1)-th most significant di-

rection corresponds to the unit vector v j+1 such that

var(X ,v j+1) is maximum among all unit vectors per-

pendicular to v1,v2, . . . ,v j.

It can be verified that for any unit vector v ∈ R
d ,

var(X ,v) = 〈Cv,v〉, (2)

where C is the covariance matrix of X . C is a sym-

metric d × d matrix where the (i, j)-th component,

ci j,1 ≤ i, j ≤ d, is defined as

ci j =
1

m

m

∑
k=1

(xik − ci)(x jk − c j). (3)

The procedure of finding the most significant direc-

tions, in the sense mentioned above, can be formu-

lated as an eigenvalue problem. If λ1 > λ2 > · · · > λd

are the eigenvalues of C, then the unit eigenvector v j

for λ j is the j-th most significant direction. All λ js

are non-negative and λ j = var(X ,v j). Since the ma-

trix C is symmetric positive definite, its eigenvectors

are orthogonal. If the eigenvalues are not distinct, the

eigenvectors are not unique. In this case, an orthogo-

nal basis of eigenvectors is chosen arbitrary. However,

we can achieve distinct eigenvalues by a slight pertur-

bation of the point set.

The following result summarizes the above back-

ground knowledge on PCA. For any set S of

orthogonal unit vectors in R
d , we use var(X ,S) to

denote ∑v∈S var(X ,v).

Lemma 1 For 1 ≤ j ≤ d, let λ j be the j-th largest

eigenvalue of C and let v j denote the unit eigenvector

for λ j. Let B j = {v1,v2, . . . ,v j}, sp(B j) be the linear

subspace spanned by B j, and sp(B j)
⊥ be the orthogo-

nal complement of sp(B j). Then λ1 = max{var(X ,v) :

v ∈ R
d
,‖v‖ = 1 }, and for any 2 ≤ j ≤ d,

i) λ j = max{var(X ,v) : v ∈ sp(B j−1)
⊥
,‖v‖ = 1}.

ii) λ j = min{var(X ,v) : v ∈ sp(B j),‖v‖ = 1}.

iii) var(X ,B j) ≥ var(X ,S) for any set S of j orthog-

onal unit vectors.

Since bounding boxes of a point set P (with respect

to any orthogonal coordinate system) depend only on

the convex hull of CH(P), the construction of the co-

variance matrix should be based only on CH(P) and

not on the distribution of the points inside. Using the

vertices, i.e., the 0-dimensional faces of CH(P) to de-

fine the covariance matrix C we obtain a bounding box

BBpca(d,0)(P). We denote by λd,0(P) the approxima-

tion factor for the given point set P and by

λd,0 = sup
{

λd,0(P) | P ⊆ R
d
,Vol(CH(P)) > 0

}

the approximation factor in general. The example in

Figure 1 shows that λ2,0(P) can be arbitrarily large if
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1stPC

2ndPC

1stPC

2ndPC

Figure 1: Four points and its PCA bounding-box

(left). Dense collection of additional points signifi-

cantly affect the orientation of the PCA bounding-

box (right).

the convex hull is nearly a thin rectangle, but with a

lot of additional vertices in the middle of the two long

sides. Since this construction can be lifted into higher

dimensions we obtain a first general lower bound.

Proposition 2 λd,0 = ∞ for any d ≥ 2.

To overcome this problem, one can apply a continu-

ous version of PCA taking into account (the dense set

of) all points on the boundary of CH(P), or even all

points in CH(P). In this approach X is a continuous

set of d-dimensional vectors and the coefficients of the

covariance matrix are defined by integrals instead of

finite sums.

Note that for for d = 1 the above problem is trivial,

because the PCA bounding box is always optimal, i.e.,

λ1,0 and λ1,1 are 1.

2.1 Continuous PCA

Variants of the continuous PCA, applied on tri-

angulated surfaces of 3D objects, were presented

by Gottschalk et. al. [GLM96], Lahanas et. al.

[LKM+00] and Vranić et. al. [VSR01]. In what

follows, we briefly review the basics of the continuous

PCA in a general setting.

Let X be a continuous set of d-dimensional vectors

with constant density. Then, the center of gravity of X

is

c =

∫

x∈X xdx
∫

x∈X dx
. (4)

Here,
∫

dx denotes either a line integral, an area inte-

gral, or a volume integral in higher dimensions. For

any unit vector v ∈ R
d , the variance of X in direction

v is

var(X ,v) =

∫

x∈X 〈x− c,v〉2dx
∫

x∈X dx
. (5)

The covariance matrix of X has the form

C =

∫

x∈X (x− c)(x− c)T dx
∫

x∈X dx
, (6)

with its (i, j)-th component

ci j =

∫

x∈X (xi − ci)(x j − c j)dx
∫

x∈X dx
, (7)

where xi and x j are the i-th and j-th component of the

vector x, and ci and c j i-th and j-th component of the

center of gravity. It can be verified that relation (2) is

also true when X is a continuous set of vectors. The

procedure of finding the most significant directions,

can be also reformulated as an eigenvalue problem and

consequently Lemma 1 holds.

For point sets P in R
2 we are especially interested in

the cases when X represents the boundary of CH(P),
or all points in CH(P). Since the first case corre-

sponds to the 1-dimensional faces of CH(P) and the

second case to the only 2-dimensional face of CH(P),
the generalization to a dimension d > 2 leads to a se-

ries of d −1 continuous PCA versions. For a point set

P ∈ R
d , C(P, i) denotes the covariance matrix defined

by the points on the i-dimensional faces of CH(P),

and BBpca(d,i)(P), denotes the corresponding bound-

ing box. The approximation factors λd,i(P) and λd,i

are defined as

λd,i(P) =
Vol(BBpca(d,i)(P))

Vol(BBopt(P)) , and

λd,i = sup
{

λd,i(P) | P ⊆ R
d
,Vol(CH(P)) > 0

}

.

3. LOWER BOUNDS

We start with straightforward conclusion from Propo-

sition 2.

Proposition 3 λd,i = ∞ for any d ≥ 4 and any 1≤ i <

d−1.

Proof. We can use a lifting argument to establish

λk,i ≤ λk+1,i+1, and thus λd,i ≥ λd−1,i−1 ≥ . . . ≥

λd−i,0 = ∞. �

This way, there remain only two interesting cases for

a given d: the factor λd,d−1 corresponding to the

boundary of the convex hull, and the factor λd,d corre-

sponding to the full convex hull. The nontrivial lower

bounds we are going to derive are based on the fol-

lowing connection between the symmetry of a point

set and its principal components.

Lemma 4 Let P be a d-dimensional point set symmet-

ric with respect to a hyperplane H and assume that the
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covariance matrix C has d different eigenvalues. Then,

a principal component of P is orthogonal to H.

Proof. Without loss of generality, we can assume that

the hyperplane of symmetry is spanned by the last

d−1 standard base vectors of the d-dimensional space

and the center of gravity of the point set coincides

with the origin of the d-dimensional space, i.e., c =

(0,0, . . . ,0). Then, the components c1 j and c j1, for

2 ≤ j ≤ d, are 0, and the covariance matrix has the

form:

C =











c11 0 . . . 0

0 c22 . . . c2d

...
...

. . .
...

0 cd2 . . . cdd











(8)

Its characteristic polynomial is

det(C−λ I) = (c11 −λ ) f (λ ), (9)

where f (λ ) is a polynomial of degree d −1, with co-

efficients determined by the elements of the (d−1)×

(d − 1) submatrix of C. From this it follows that c11

is a solution of the characteristic equation, i.e., it is an

eigenvalue of C and the vector (1, 0, ...,0) is its cor-

responding eigenvector (principal component), which

is orthogonal to the assumed hyperplane of symmetry.

�

3.1 Lower bounds in R
2

The result obtained in this subsection can be seen

as special case of the result obtained in the subsec-

tion 3.3. To gain a better understanding of the problem

and the obtained results, we consider it separately.

Theorem 5 λ2,1 ≥ 2 and λ2,2 ≥ 2.

Proof. Both lower bounds can be derived from a rhom-

bus. Let the side length of the rhombus be 1. Since

the rhombus is symmetric, its PCs coincide with its

diagonals. On the right side in Figure 2 its optimal-

area bounding boxes, for 2 different angles, α > 90◦

and β = 90◦, are shown, and on the left side its cor-

responding PCA bounding boxes. As the rhombus’

angles in limit approach 90◦, the rhombus approaches

a square with side length 1, i.e., the vertices of the

rhombus in the limit are ( 1
√

2
,0),(− 1

√

2
,0),(0,

1
√

2
) and

(0,−
1
√

2
) (see the left side in Figure 2), and the dimen-

sions of its PCA bounding box are
√

2×
√

2. Accord-

ing to Lemma 4, the PCs of the rhombus are unique

R2

1 1

1 1

x

y

α → 90
◦

11

α

11

α → 90
◦

x

y

α

β β

Figure 2: An example which gives us the lower

bound of the area of the PCA bounding box of an

arbitrary convex polygon in R
2.

as long its angles are not 90◦. This leads to the con-

clusion that the ratio between the area of the bounding

box on the left side in Figure 3, and the area of its

PCA bounding box, on the right side in Figure 3, in

limit goes to 2. �

Alternatively, to show that the given squared rhombus

fits into a unit cube, one can apply the following rota-

tion matrix

R2 =
1
√

2

[

1 1

1 −1

]

. (10)

It can be verified easily that all coordinates of the ver-

tices of the rhombus transformed by R2 are in the in-

terval [−0.5,0.5]. We use similar arguments when we

prove the lower bounds in higher dimensions.

3.2 Lower bounds in R
3

Theorem 6 λ3,2 ≥ 4 and λ3,3 ≥ 4.

Proof. Both lower bounds are obtained from a

dipyramid, having a rhombus with side length
√

2

as its base. The other sides of the dipyramid have

length
√

3
2

. Similarly as in R
2, we consider the case

when its base, the rhombus, in limit approaches the

square, i.e., the vertices of the square dipyramid

are (1,0,0),(−1,0,0),(0,1,0),(0,−1,0),(0,0,

√

2
2

)

and (0,0,−

√

2
2

) (see the left side in Figure 3). The

dimensions of its PCA bounding box are 2× 2×
√

2.

Now, we rotate the coordinate system (or the square
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dimension R R
2

R
3

R
4

R
5

R
6

R
7

R
8

R
9

R
10

lower bound 1 2 4 16 16 32 64 4096 4096 8192

Table 1: Lower bounds for the approximation factor of PCA bounding boxes for the first 10 dimensions.

1

1

√

2

x

y

z
2

2

√

2

2

2

y

z

x

R3

Figure 3: An example which gives the lower bound

of the volume of the PCA bounding box of an arbi-

trary convex polygon in R
3.

dipyramid) with the rotation determined by the

following orthogonal matrix

R3 =











1
√

2
−

1
√

2
0

1
2

1
2

−
1
√

2

1
2

1
2

1
√

2











. (11)

It can be verified easily that the square dipyramid, after

rotation with R3 fits into the box [−0.5,0.5]3 (see the

right side in Figure 3). Thus, the ratio of the volume

of the bounding box, on the left side in Figure 3, and

the volume of its PCA bounding box, on the right side

in Figure 3, in limit goes to 4. �

3.3 Lower bounds in R
d

Theorem 7 If d is a power of two, then λd,d−1 ≥

√

d
d

and λd,d ≥

√

d
d
.

Proof. For any d = 2k, let ai be a d-dimensional vector,

with aii =
√

d
2

and ai j = 0 for i 6= j, and let bi = −ai.

We construct a d-dimensional convex polytope Pd with

vertices V = {ai,bi|1 ≤ i ≤ d}. It is easy to check that

the hyperplane normal to ai is a hyperplane of reflec-

tive symmetry, and as consequence of Lemma 4, ai is

an eigenvector of the covariance matrix of Pd . To en-

sure that all eigenvalues are different (which implies

that the PCA bounding box is unique), we add εi > 0

to the i-th coordinate of ai, and −εi to the i-th coor-

dinate of bi, for 1 ≤ i ≤ d, where ε1 < ε2 < .. . < εd .

When all εi, 1 ≤ i ≤ d, arbitrary approach 0, the PCA

bounding box of the convex polytope Pd converges to

a hypercube with side lengths
√

d, i.e., the volume of

the PCA bounding box of Pd converges to
√

d
d
. Now,

we rotate Pd , such that it fits into the cube [− 1
2
,

1
2
]
d
.

For d = 2k, we can use a rotation matrix derived from

a Hadamard matrix1, recursively defined by

Rd =
1
√

2





R d
2

R d
2

R d
2

−R d
2





, (12)

where we start with the matrix R2 (10) defined above

for d = 2. A straightforward calculation verifies that

Pd rotated with Rd fits into the cube [−0.5,0.5]d . �

Remark: Theorem 7 holds for all dimensions d for

which a d × d Hadamard matrix exists. Hadamard

conjectured that this is the case for all multiples of

four. This conjecture is known to be true for d ≤ 664

[KTR05].

We can combine lower bounds from lower dimensions

to get lower bounds in higher dimensions by taking

Cartesian products. If λd1
is a lower bound for the ra-

tio between the PCA bounding box and the optimal

bounding box of a convex polytope in R
d1 , and λd2

is

a lower bound in R
d2 , then λd1

·λd2
is a lower bound

in R
d1+d2 . This observation together with the results

from this section enables us to obtain lower bounds

in any dimension. For example, for the first 10 dimen-

sions, the lower bounds we obtain are given in Table 1.

4. AN UPPER BOUND FOR λ2,1

Given a point set P ⊆ R
2 and an arbitrary bounding

box BB(P) we will denote the two side lengths by a

and b, where a ≥ b. We are interested in the side

lengths aopt(P) ≥ bopt(P) and apca(P) ≥ bpca(P) of

BBopt(P) and BBpca(2,1)(P), see Figure 4. The para-

meters α = α(P) = apca(P)/aopt(P) and β = β (P) =
bpca(P)/bopt(P) denote the ratios between the corre-

sponding side lengths. Hence, we have λ2,1(P) =

α(P) ·β (P). If the relation to P is clear, we will omit

the reference to P in the notations introduced above.

Since the side lengths of any bounding box are

bounded by the diameter of P, we can observe that in

1 A Hadamard matrix is a ±1 matrix with orthogonal columns.
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apca

bpca

lpca

P

l1

2

bopt

aopt

P

b
′

Figure 4: A convex polygon P , its PCA bounding box and the line lpca, which coincides with the first

principal component of P , are given in the left part of the figure. The optimal bounding box and the line

l 1
2
, going through the middle of its smaller side, parallel with its longer side, are given in the right part of

the figure.

general bpca(P) ≤ apca(P) ≤ diam(P) ≤
√

2aopt(P),
and in the special case when the optimal bounding

box is a square λ2,1(P) ≤ 2. This observation can

be generalized, introducing an additional parameter

η(P) = aopt(P)/bopt(P).

Lemma 8 λ2,1(P) ≤ η + 1
η and λ2,2(P) ≤ η + 1

η
for any point set P with fixed aspect ratio η(P) = η .

Proof. We have for both apca and bpca the upper bound

diam(P) ≤
√

a2
opt + b2

opt = aopt

√

1 + 1
η2 . Replacing

aopt by η ·bopt in the bound for bpca we obtain αβ ≤

η
(
√

1 + 1
η2

)2

= η + 1
η . �

Unfortunately, this parametrized upper bound tends to

infinity for η → ∞. Therefore we are going to de-

rive another upper bound that is better for large val-

ues of η . In this process we will make essential use

of the properties of BBpca(2,1)(P). In order to dis-

tinguish clearly between a convex set and its bound-

ary, we will use calligraphic letters for the bound-

aries, especially P for the boundary of CH(P) and

BBopt for the boundary of the rectangle BBopt(P).
Furthermore, we denote by d2(P, l) the integral of the

squared distances of the points on P to a line l, i.e.,

d2(P, l) =
∫

x∈P d2(x, l)ds. Let lpca be the line going

through the center of gravity and parallel to the longer

side of BBpca(2,1)(P) and l 1
2

be the bisector of BBopt(P)

parallel to the longer side. By Lemma 1, part ii) lpca is

the best fitting line of P and therefore

d2(P, lpca) ≤ d2(P, l 1
2
). (13)

Lemma 9 d2(P, l 1
2
) ≤

bopt
2aopt

2
+

bopt
3

6
.

Proof. If a segment of P intersects the line l 1
2
, we

split this segment into two segments, with the inter-

section point as a split point. Then, to each seg-

ment f of P flush with the side of the PCA bounding

l 1
2

a
opt

b
opt

BB
S

P

Figure 5: The convex polygon P , its optimal

bounding box, and the staircase polygon BBS (de-

picted dashed).

box, we assign a segment identical to f . To each re-

maining segment s of P , with endpoints (x1,y1) and

(x2,y2), with |y1| ≤ |y2|, we assign two segments: a

segment s1, with endpoints (x1,y1) and (x1,y2), and a

segment s2, with endpoints (x1,y2) and (x2,y2). All

these segments form the boundary BBS of a stair-

case polygon (see Figure 5 for illustration). Two

straightforward consequences are that d2(BBS, l 1
2
)≤

d2(BBopt , l 1
2
), and d2(s, l 1

2
)≤ d2(s1, l 1

2
)+d2(s2, l 1

2
),

for each segment s of P . Therefore, d2(P, l 1
2
) is

at most d2(BBS, l 1
2
), which is bounded from above

by d2(BBopt, l 1
2
) = 4

∫

bopt
2

0 x2 dx+2
∫ aopt

0 (
bopt

2
)2 dx =

bopt
2aopt

2
+

bopt
3

6
. �

T
upp

T
low

U1 L1

a
pca

b
pca

l
pca

P

b
′

L2U2

U3

L3

a1 a2

b1 b2

Figure 6: The convex polygon P , its PCA bound-

ing box, and a construction for a lower bound for

d2(P, lpca)
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T
upp

T
low

a
pca

b
pca

l
pca

P
′

upp

P
′

low

P

Figure 7: Two polylines P ′

upp and P ′

low (depicted

dashed) formed from P .

Now we look at P and its PCA bounding box (Fig-

ure 6). The line lpca divides P into an upper and a

lower part, Pupp and Plow. lupp denotes the orthogo-

nal projection of Pupp onto lpca, with U1 and U2 as its

extreme points, and llow denotes the orthogonal projec-

tion of Plow onto lpca, with L1 and L2 as its extreme

points. Tupp = △(U1U2U3) is a triangle inscribed in

Pupp, where point U3 lies on the intersection of Pupp

with the upper side of the PCA bounding box. Anal-

ogously, Tlow = △(L1L2L3) is a triangle inscribed in

Plow.

Lemma 10

d2(P, lpca) ≥ d2(Tupp, lpca)+ d2(Tlow, lpca).

Proof. Let Q denote a chain of segments of P , which

does not touch the longer side of the PCA bounding

box, and whose one endpoint lies on the smaller side

of the PCA bounding box, and the other endpoint on

the line lpca. We reflect Q at the line supporting the

side of the PCA bounding box touched by Q. All

such reflected chains of segments, together with the

rest of P , form two polylines: P ′

upp and P ′

low (see

Figure 7 for illustration). As a consequence, to each of

the sides of the triangles Tlow and Tupp, L1L3, L2L3,

U1U3, U2U3, we have a corresponding chain of seg-

ments R as shown in the two cases in Figure 8. In both

cases d2(t, lpca) ≤ d2(R, lpca). Namely, we can para-

metrize both curves, R and t, starting at the common

endpoint A that is furthest from lpca. By comparing

two points with the same parameter (distance from A

along the curve) we see that the point on t always has

a smaller distance to lpca than the corresponding point

on R. In addition t is shorter, and some parts of R have

no match on t.

Consequently, d2(P ′
, lpca)≥ d2(Tupp

⋃

Tlow, lpca) =
d2(Tupp, lpca) + d2(Tlow, lpca), and since,

d2(P ′
, lpca) = d2(P, lpca) = d2(Pupp

⋃

Plow, lpca),

the proof is completed. �

l
pca l

pca

R Rt t

(1) (2)

A A

Figure 8: Two types of chains of segments (depicted

dashed and denoted by R), and their corresponding

triangles’ edges (depicted solid and denoted by t).

Since P is convex, the following relations hold:

|lupp| ≥
b′

bpca
apca, and |llow| ≥

bpca −b′

bpca
apca. (14)

The value

d2(Tupp, lpca) =
∫

√
a2

1+b′2

0 ( α√
a2

1+b′2
b′)2 dα

+
∫

√
a2

2+b′2

0 ( α
√

a2
2+b′2

b′)2 dα

= b′
2

3
(
√

a2
1 + b′2 +

√

a2
2 + b′2)

is minimal when a1 = a2 =
|lupp|

2
. With (14) we get

d2(Tupp, lpca) ≥
b′

3

3bpca

√

a2
pca + 4b2

pca.

Analogously, we have for the lower part:

d2(Tlow, lpca) ≥
(bpca −b′)3

3bpca

√

a2
pca + 4b2

pca.

The sum d2(Tupp, lpca) + d2(Tlow, lpca) is minimal

when b′ =
bpca

2
. This, together with Lemma 10, gives:

d2(P, lpca) ≥
b2

pca

12

√

a2
pca + 4b2

pca. (15)

Combining (13), (15) and Lemma 9 we have:

1

2
aoptb

2
opt +

1

6
b3

opt ≥
b2

pca

12

√

a2
pca + 4b2

pca ≥
b2

pca

12
apca.

(16)

Replacing aopt with ηbopt on the left side, b2
pca with

β 2b2
opt and apca with αaopt = αηbopt on the right side

of (16), we obtain:

(

η

2
+

1

6

)

b3
opt ≥

β 2 α η

12
b3

opt

which implies

β ≤

√

6η + 2

α η
.
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This gives the second upper bound on λ2,1(P) for point

sets with parameter η :

α β ≤

√

(6η + 2)α

η
≤

√

√

√

√

6η + 2

η

√

1 +
1

η2
(17)

Theorem 11 The PCA bounding box of a point set P

in R
2 computed over the boundary of CH(P) has a

guaranteed approximation factor λ2,1 ≤ 2.737.

Proof. The theorem follows from the combination of

the two parametrised bounds from Lemma 8 and (17)

proved above:

λ2,1 ≤ sup
η≥1











min






η +

1

η
,

√

√

√

√

6η + 2

η

√

1 +
1

η2

















.

It is easy to check that the supremum s ≈ 2.736 is ob-

tained for η ≈ 2.302. �

5. FUTURE WORK AND OPEN PROB-

LEMS

It should be possible to prove an upper bound on λ2,2

along the same line as for λ2,1, but the analogon of

Lemma 9 seems to require some new analytical tools,

since, e.g., the reflection tricks do not apply in that

setting. However, there is some evidence that an upper

bound proof for λ2,2 would give some ideas to attack

the 3-dimensional problem for λ3,3, and, maybe also a

generalization to λd,d in higher dimensions.
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[VSR01] D. V. Vranić, D. Saupe, and J. Richter.

Tools for 3d-object retrieval: Karhunen-

Loeve transform and spherical harmon-

ics. In IEEE 2001 Workshop Multimedia

Signal Processing, pages 293–298, 2001.

Full Papers 192 ISBN 978-80-86943-98-5 



Octree-based view-dependent triangle meshes

Marta Fairén
Department of Software

Universitat Politècnica de Catalunya
mfairen@lsi.upc.edu

Ramón Trueba
Department of Software

Universitat Politècnica de Catalunya
rtrueba@lsi.upc.edu

ABSTRACT

In this paper we present a new technique for view-dependent LOD rendering, where the scene is represented through an octree
model from which we can obtain a triangle mesh corresponding to a view-dependent LOD. We present the construction of this
octree model and the visualization algorithm that generates on-the-fly a closed and valid triangle mesh for each frame of the
visualization. This visualization algorithm is a depth-first traversal algorithm which also allows to re-use triangles from one
frame to another.

Keywords: View-dependent LOD rendering, octree-based model, valid triangle mesh generation.

1 INTRODUCTION

During the last few decades substantial research efforts
have been devoted to devise new techniques to pro-
vide interactive navigation through complex 3D models
containing thousands of objects and millions of primi-
tives. Most recent approaches fall into three major tech-
niques: level-of-detail (LOD) rendering, image-based
rendering, and occlusion culling.

In the case of level-of-detail rendering and more
concretely in view-dependent LOD rendering the main
problem these techniques have is in those regions
where there is a change of level among neighbours,
where cracks in the generated triangulation should be
avoided.

In our proposal the scene is represented through an
octree model which is able to differentiate among ob-
jects (allowing further operations like selection, for
example, during the navigation) and from which we
can obtain a triangle mesh corresponding to a view-
dependent LOD. We present the construction of this
octree and the algorithm that generates on-the-fly, by
doing a depth-first traversal of the octree, a closed and
valid triangle mesh for each frame of the visualization.

Some differences between our proposal and other
view-dependent LOD techniques are: our data structure
does not keep topology information; we do not impose
any restriction on the difference of levels among neigh-
bour nodes; and we do keep information about objects.

The main contributions of this paper include:
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this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
Copyright UNION Agency – Science Press, Plzen, Czech
Republic

• A new octree-based data structure which encodes
the geometry of the scene and which enables the on-
line extraction of arbitrary view-dependent LODs.

• An off-line algorithm for building such an octree
from different input data.

• An efficient algorithm for rendering the scene en-
coded by the octree. Triangles extracted from pre-
vious frames are efficiently cached and reused on a
hierarchical basis.

The rest of the paper is organized as follows. Sec-
tion 2 briefly reviews the previous work. In section 3
we introduce some definitions and an outline of the al-
gorithm. Sections 4 and 5 explain respectively the def-
inition and generation of the octree model. Section 6
presents the view-dependent octree traversal algorithm.
Finally in section 7 we show some results and discus-
sion and we conclude in section 8.

2 PREVIOUS WORK

There are several papers that use hierarchical models to
represent very complex scenes and which at the end vi-
sualize triangles. Among many of them we can cite [7],
which computes a topology preserving isosurface from
a volumetric grid using Marching Cubes for geometry
processing applications; and [2], which describes an ef-
ficient technique for out-of-core construction and accu-
rate view-dependent visualization of very large surface
models. It uses a regular conformal hierarchy of tetra-
hedra to spatially partition the model.

Our approach uses a hierarchical model as well. Sim-
ilarly to [3], which uses a new spanned sub-meshes
simplification technique to build view-dependence trees
I/O-efficiently, preserving the correct edge collapsing
order and thus assuring the run-time image quality, our
octree is view-dependent and we visualize the triangles
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that correspond to a front which is being adapted to the
point of view at each frame.

Another related paper is [5], which describes a new
method for contouring a signed grid whose edges are
tagged by Hermite data. They develop an octree-based
method for simplifying contours produced by this
method. Their method generates quads from Black-
White edges. As we will see in the following sections
in our case we also consider White-White edges as
well as those joining different levels among nodes
(T-edges).

Our extraction of triangles from edges is similar to
how [6] does to generate triangle strips from the dual
mesh.

Schmitt [8] also generates triangles from an octree
but in his case the front only moves through complete
levels (all nodes in the front should be at the same
level).

To the best of our understanding, our approach is the
first one that includes a complete view-dependent trian-
gle mesh generation from an octree by doing it on-the-
fly and allowing the reuse of geometry already com-
puted.

3 DEFINITIONS AND OUTLINE
OF THE VISUALIZATION ALGO-
RITHM

The first step of our proposal consists on a pre-process
of input data dedicated to generate the structure that will
be used by the view-dependent algorithm. Our input
data can be a BRep model or a voxel model. From the
input data, the pre-process generates an octree where
each grey node contains the coordinates of a point rep-
resenting the surface inside the node, a normal vector
and a colour. Each octree node has binary information
of their vertices (in or out). Out vertices will be labeled
as white whereasin vertices will be labeled as black.
The octree specification and generation process is fur-
ther explained in next section. We will start first by
some definitions:

Definition 1 Relevant edge
An edge of a node is relevant when it has a white

vertex and a black vertex or both vertices are white but
the original surface intersects the edge.

Definition 2 Membrane node
A membrane node is an octree node containing at

least a relevant edge.

Definition 3 Surface edge
A relevant edge e is a surface edge of an octree node

n iff e is one of the 12 edges of n.

Definition 4 Edge belongs to node
A relevant edge e belongs to an octree node niff e is

part of any surface edge of n.

As an example, in figure 1(b) we will say that the
red edge is a surface edge of nodes B and D and also
belongs to nodes A and C.

Definition 5 Edge belongs to subtree
Being S a subtree of the octree and e a relevant edge,

e belongs to Siff

∀k : e belongs to nk : nk belongs to S

(e belongs to S when the two or four nodes having e
as an edge are in the subtree S).

Note: If e belongs to a subtree S, e also belongs to all
subtrees containing S.

Definition 6 Edge internal to node
A relevant edge e is internal to an octree node niff e

belongs to one or more descendants of n but it does not
belong to n.

Definition 7 T-edge
A T-edge is a relevant edge which belongs to two

membrane nodes and also lays over a face of a third
node (see figure 1(a)).

Definition 8 X-edge
An X-edge is a relevant edge which belongs to four

membrane nodes (see figure 1(b)).

Once we have the octree pre-computed, the algorithm
presented in section 6 traverses this structure in a view-
dependent manner, by using anon-the-flygeneration
of triangles. The algorithm traverses the octree and
for each node being processed it computes the required
level in order to decide if the octree level of this node
is enough, depending on the point of view, to represent
the node in this frame as a leaf node.

Definition 9 Front
We call front to the set of membrane nodes being at

their required level.

Thefront is changing at each frame depending on the
point of view. The nodes participating on this front are
a subset of the membrane nodes. The view-dependent
depth-first traversal of the octree stops when a mem-
brane node is in its required level and this node becomes
part of the front for this frame.

A white face of a cube representing a membrane node
is a face shared with a white node. The union of all
white faces of the nodes of the front will be called the
white surface of the front.

Taking all T-edgesandX-edgesof those nodes par-
ticipating on the front and generating the correspond-
ing triangles (one for each T-edge and two for each X-
edge), it can be shown that we obtain a valid triangula-
tion which represents the scene at the suitable level of
detail, where a valid triangulation is a triangulation that
is homeomorphic to the white surface of the front.
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(a) T-edge (b) X-edge

Figure 1: Example of a T-edge (a) and an X-edge (b). In both cases the edge is the one drawn in red. A T-edge
(a) generates a triangle of the final mesh whereas an X-edge (b) generates two triangles. The nearest point to
the relevant edge is chosen to divide the quad in the two triangles.

4 OCTREE DEFINITION

The octree model [1] we generate to represent the orig-
inal model stops its subdivision process when a node
does not contain model surface (the node is completely
inside or outside the solid); when the node, at this level,
already has the necessary information to represent the
model surface; or when the subdivision level reaches
the maximum level predefined.

With this kind of construction we have a non-
restricted octree, where each leaf node can have as
neighbours other leaf nodes without any restriction on
their size.

For our algorithm, we only need to store information
in the grey nodes of the octree, not in the black or white
ones. This information includes:

• A representative point of the surface inside the
node, being represented by its coordinates, a normal
vector and a colour.

• The vertex signsof the node, indicating, for each
one of the 8 vertices of the cube representing the
node, whether they arein or out of the solid.

• Relevant edgesof the node. We store boolean infor-
mation indicating which of the 12 edges of the cube
are relevant.

• Object identifier . We store information about the
object whose point is used as a representative point.
It facilitates to work with multi-objects.

5 OCTREE GENERATION

Our input data can be a correct BRep model or a voxel
model. From this input data, we generate the non-
restricted octree containing all the information.

The pre-process consists of two steps. The first step
is used to fill the information in the leaf nodes and the
second to fill the octree inner nodes. The first step is
different depending on the input data.

5.1 Construction from a BRep model
The construction of the octree from a BRep model is
done recursively starting from a cube (root node) which
includes all the scene, and following a classical subdi-
vision process. This subdivision process stops when the
node has the minimum edge length (minimal resolution
node) or when the node information fulfills a certain
condition (terminal octree node).

The octree nodes are terminal (no more subdivision
to do) in two cases:

• when the node doesn’t have surface inside it, in this
case the node becomes white or black depending on
the situation of the node (in or out) with respect to
the solid;

• when the node has solid surface inside it, it becomes
terminal if the surface it contains only belongs to an
object and fulfills one of the following conditions:

– it has only one vertex of the geometry;

– it has only one edge of the geometry;

– it has only one face of the geometry.

In case the subdivision stops because of a minimal
resolution we can have geometry of different objects
inside it, so we choose the most relevant object in the
node (the one with the largest area inside the node).

The information to be kept in any membrane node is
computed as follows:

Representative point coordinates.If the node con-
tains a feature vertex of the solid surface we store
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the vertex; otherwise, if the node contains a feature
edge, we compute that point on the edge nearest to
the center of the node; in any other case we compute
the nearest point of the surface to the center of the
node.

Representative point normal vector. The normal
vector stored is the normal of the solid surface at
the point we kept as a representative point.

Representative point colour. We take the colour that
the representative point has in the original solid.

Signs of vertices.For each node vertex we compute
whether it is inside or outside of the solid. The pro-
cess to compute the signs of vertices is done after
the construction of the octree. For each vertex of
the cube representing the octree node we compute
whether it is white (outside the solid) or black (in-
side the solid).

Relevant edges.An edge of the node is considered rel-
evant if it has Black-White vertices or it has White-
White vertices and the solid surface intersects the
edge. This is computed also at the end of the octree
construction. We identify those edges having White-
White vertices that have to be relevant because the
solid surface intersects them. It is also possible to
have Black-Black edges intersected by the solid sur-
face, but these edges are not considered relevant be-
cause this geometry intersecting the edge is consid-
ered internal to the solid and is not visualized.

Object identifier. Identifier of the object whose point
is used as a representative point.

5.2 Construction from a voxel model
The construction of the octree from a voxel model starts
by identifying each voxel as black, white or membrane
node at the minimal resolution of the octree.

The information to be kept in any membrane node at
this minimal resolution is filled as follows:

Representative point coordinates.The represen-
tative point chosen could be computed through
an interpolation from the voxels in the 26-
neighbourhood. However, in the present implemen-
tation we have chosen to use the middle point of the
voxel, because its size is sufficiently small.

Representative point normal vector. We take the
gradient of the voxel calculated from the 26-
neighbour intensity.

Representative point colour. The colour will be the
one kept in the voxel model or computed by us-
ing a transfer function from the value of the voxel
model [4].

Signs of vertices.We classify a vertex as interior when
this vertex does not have any white node around and
we classify it as outer when the vertex touches at
least one white node.

Relevant edges.An edge of the node is considered rel-
evant if it has Black-White vertices.

Object identifier. Identifier of the object whose point
is used as a representative point.

Once we have identified the minimal resolution
nodes, we compact those black/white nodes which can
be grouped into other black/white nodes to get lower
level terminal octree nodes.

5.3 Filling inner nodes

Once all the leaf nodes are processed we have to fill in
the octree inner nodes. We apply a bottom-up simpli-
fication algorithm and fill each inner membrane node
information as follows:

• The sign of each node’s vertex corresponds to the
sign of the child sharing this vertex with the node.

• The relevant node’s edges are those constituted by
two White-Black edges or by two White-White
edges with at least one of them being relevant.

• The vertex information, normal, colour and object
identifier are taken from one of the children elected
as representative following the next criterion: A vote
is made among the children to discover which object
appears in more nodes (the object with a greater sur-
face inside the node) and among the children voting
for that object, the one that has the nearest point to
the node’s center is chosen as the representative.

6 VIEW-DEPENDENT OCTREE
TRAVERSAL

The algorithm we use to traverse the octree and gen-
erate the view-dependent triangle mesh can be summa-
rized as follows:
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1 advance = true;
2 node = first_son(root);
3 while node != rootdo
4 if not in_frustum(node)then
5 process_edges_node();
6 else
7 if reusable(node)then
8 Reuse_triangles();
9 else

10 if level_required > current_level and
11 not node.is_terminal()then
12 node = node.first_son(); // go down
13 advance = false;
14 else
15 process_edges_node();
16 endif
17 endif
18 endif
19 if advancethen
20 while node != root and
21 node.is_last_son()do
22 node = parent(node); // going up
23 process_edges_non_terminal_node();
24 endwhile
25 if node == rootthen
26 process_edges_root();
27 else
28 node = next_brother(node);
29 endif
30 endif
31 endwhile

The geometry drawn by the algorithm at each frame
is computed at run time. The algorithm traverses the
octree model and depending on the point of view de-
cides which nodes and at which level will generate the
triangles to be drawn (see figure 2).

In order to take profit from the coherence existing be-
tween one frame and the next one, the algorithm keeps
memory of a list of triangles that stores the triangles
drawn in one frame and sorted in the order in which
those triangles were generated. This order in the list
allows to know each sub-list of triangles belonging to
each intermediate node of the octree. When the algo-
rithm decides that a node keeps the same level-of-detail
from one frame to the next one, it does not re-compute
the triangles for the sub-tree of this node but re-uses
those triangles in the list already computed in some pre-
vious frame (lines 7 and 8 in the algorithm).

We decide a node is reusable (line 7 in the algorithm)
if it fulfills the following conditions:

• it has already generated its corresponding triangles
in a previous frame (so these triangles are kept in the
list of triangles);

• its level-of-detail has not changed from the previous
frame;

• the number of frames passed since the last time the
triangles of the node were generated does not exceed
a certain predefined limit.

The required level for a node being processed on a
frame is computed taking into account the number of
pixels that the representation of this node is going to
cover on its projection from the user point of view. The
level required for the front in a certain subtree depends
on the apparent size of their nodes in the screen, which
should be smaller than a certain given tolerance. A node
being near to the user would require a higher level while
a node being far from the user would require a lower
level (see figure 3).

The depth traversal of the octree has a treatment done
to each node while descending and another done while
ascending. While descending, a node can be classified
and treated as:

• A node thatcan be re-usedfrom the last frame. The
list of triangles corresponding to this node are di-
rectly re-used from the last frame (line 8 in the algo-
rithm).

• A node consideredat the required levelfor the point-
of-view. This node is considered a leaf node (in
this frame) and the only treatment required for this
node is to recognize those edges of the node that are
relevant edges and that should be processed in the
treatment to do while ascending (line 15 in the al-
gorithm). These relevant edges will be passed to the
parent node to be considered by it (see below the
explanation of the process done in the intermediate
nodes while ascending).

• A nodenot being in the frustum. Although no treat-
ment would be needed for this node, their edges
should be considered in order to generate triangles
joining this node with others inside the frustum. It
is treated as a node being at the required level (line
5 in the algorithm).

• A node whose required level classifies it asan in-
termediate node. These nodes require no treatment
while descending, the algorithm just goes down in
the tree (lines 12 and 13 in the algorithm).

While ascending in the depth traversal of the octree,
the treatment is mainly centered in the intermediate
nodes. Each intermediate node has to process those rel-
evant edges that are internal to the subtree represented
by the node (it is the root of the subtree), and which
have not been processed before, i.e. it processes those
relevant edges that are internal to this node and not to
any one of its sons (lines 22 and 23 in the algorithm).
The relevant edges that are not internal to the subtree
represented by the node will be passed to the parent
node. In figure 2(a) the relevant edges 1 and 2 will be
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(a) (b)

Figure 2: Triangle mesh generated for an example having 7 relevant edges (a) (relevant edges are drawn in thick
red line). In case the node A8 is considered at the required level of subdivision (b) only 2 relevant edges are
considered and the triangle mesh is simplified.

Figure 3: The level for a node is computed depending
on the distance to the user.

processed by the node A8, while the relevant edges 3, 4,
5, 6 and 7 will be processed by the root node A (because
even though they belong to the A8 subtree, they are not
internal to it). The process for each relevant edge con-
sists only on the generation of the triangle (T-edge) or
triangles (X-edge) joining the points representing the
nodes that are involved in the edge (see figure 1).

7 RESULTS AND DISCUSSION

We have implemented a prototype version of the pro-
posed technique and we have measured its performance
with several test models.

The first model is a voxel model of a jaw (see
figure 4) containing a total of 1.139.816 voxels. From
these, 49.998 are grey voxels (which become mem-
brane nodes at the minimal resolution of the octree).
The complete mesh generated from these terminal
membrane nodes, without simplification, contains a
total of 84.190 triangles.

Figure 5 shows the total number of triangles sent
to OpenGL by our algorithm during a short and sim-
ple navigation. This navigation consists on moving the
camera closer to the jaw and going back. We can ob-
serve that when the camera is close to the model the
total number of triangles drawn is near to the complete
mesh because the level-of-detail should be high enough,
while when the camera is going back the number of tri-
angles drawn decreases again.

In figure 6 we can see the number of triangles re-
used on each frame during the same short navigation.
We can observe that the number of triangles re-used is
near to the number of triangles drawn except in those
frames where the number of triangles to draw changes
(compare this with figure 5 which shows the number
of triangles drawn at each frame and also with figure 7
which shows the percentage of triangles re-used). This
re-using of triangles already generated can be optimized
by using vertex buffer objects of the GPU.

A snapshot of a second model can be seen in figure 7.
This model has a total of 2.004.504 voxels with 64.577
of them being grey voxels. The complete mesh gen-
erated from these terminal membrane nodes, without
simplification, contains a total of 108.534 triangles.

8 CONCLUSION AND FUTURE
WORK

We have presented a new technique for a view-
dependent LOD rendering, which builds an octree-
based data structure enabling the extraction of arbitrary
view-dependent LODs and renders the scene by using
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Figure 4: Several views of the model of a jaw during the navigation. The step on the left side of the magnified
view is also present in the original model.

Figure 5: Triangles sent to OpenGL compared with the
triangles of the full resolution model.

a depth-first traversal algorithm which allows to re-use
triangles from one frame to another.

As a future work we can improve the efficiency of our
current prototype by including the use of vertex buffer
objects for the triangles to be re-used among frames and

Figure 6: Total number of reused triangles per frame.

also by generating strips of triangles instead of trian-
gles.

We will also include in the algorithm the possibility
of having out-of-core data, so our octree will be stored
completed in external memory while having the front
nodes kept in internal memory. This will require some
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Figure 7: Percentage of reused triangles per frame.

Figure 8: Snapshot of the model of a hand.

pre-fetching techniques to avoid latency on changing
the nodes being kept in internal memory.

Finally, another future work is to allow the selection
of objects during the navigation, which will permit the
user to see an object in more detail than others, for ex-
ample. To do this, it will be necessary to keep a list
of object identifiers at each leaf node of the octree in
order to represent correctly those nodes at the minimal
resolution.
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ABSTRACT 
In this paper we present a novel approach for interactive rendering of large terrain datasets which is based on 
subdividing the terrain into rectangular patches at different resolutions. Each patch is represented by four 
triangular tiles which can be at different resolutions; and four strips which are used to stitch the four tiles in a 
seamless manner. As a result, our scheme maintains resolution changes within patches and not across patches. 
At runtime, the terrain patches are used to construct a level of detail based on view-parameters. The selected 
level of detail only includes the layout of the patches and the resolutions at boundary edges. Since adjacent 
patches agree on the resolution of common edges, the resulted mesh does not include any cracks or degenerate 
triangles. The GPU generates the meshes of the patches by using scaled instances of cached tiles and 
assigning elevation for each vertex from the cached textures. Our algorithm manages to achieve quality 
images at high frame rates while providing seamless transition between different levels of detail.  

Keywords: Terrain visualization, view-dependent rendering, and level of detail 
 

 
(a) (b) (c) (d) 

Figure 1: Terrain rendering using seamless patches. (a) A selected view; (b) The wire-frame of (a), where the 
green region marks one patch; (c) Top view of (a); (d) The wire-frame of (c) with the same marked patch. 

1. INTRODUCTION 
Interactive visualization of landscapes and outdoor 
graphics environments is important for graphics 
applications such as computer games, flight 
simulators, and virtual exploration of remote planets. 
Terrains and height field geometry are vital 
components of these virtual environments.  

The rapid development in acquisition of topographic 
maps and cartography has led to the generation of 
large terrain datasets that contain billions of samples. 
Such terrains exceed the rendering capability of 
available graphics hardware, thus reducing the 
geometric complexity of these datasets is mandatory 
for interactivity. Adjusting the terrain triangulation 
in a view-dependent manner is a common approach 
for interactive terrain rendering. Furthermore, 
adaptive level-of-detail rendering not only simplifies 
the geometry, but also manages to reduce aliasing 
artifacts that may result from rendering uniform 
dense triangulation. 

The challenges of interactive terrain rendering have 
attracted the interest of researchers for several 
decades and extensive research has been done (see 
Section 2). Classic level-of-detail rendering schemes 
generate, usually off-line, multiresolution hierarchies 
which are used at runtime to guide the selection of 
appropriate levels of detail based on view-
parameters. Some of these approaches utilize 
temporal coherence among consecutive frames by 
adaptively simplifying or refining the geometry of a 
frame to produce the next frame's geometry. Other 
approaches generate the geometry for each frame 
independent of its previous frames. These 
approaches have managed to accelerate the rendering 
of large terrains, but they were not able to maintain 
the improvement rate as the GPUs grow faster. In 
addition, generation of the frame's geometry is 
performed by executing refine and simplify 
operations on the CPU, which often fails to complete 
these computations within the duration of one frame. 
This geometry, which is transferred to the graphics 
hardware at each frame, often exceeds the bandwidth 
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of the communication channel and results in 
unacceptably low frame rates.  

  

Figure 2: An image of one patch (left) and its 
wire-frame showing the stitching strips (right). 

To reduce computation load on the busy CPU, 
several approaches partition the terrain into patches 
at different resolutions. At runtime these patches are 
stitched together to generate the appropriate levels of 
detail, which are then transmitted to the graphics 
hardware. Stitching these patches in a seamless 
manner is the main challenge for these approaches. 
Introducing degenerate triangles and dependencies 
among patches are used to handle these problems. 
However, these solutions may introduce visual 
artifacts or require additional random-access 
memory references.  

To reduce data transmission between CPU and GPU, 
several algorithms use cached templates and quadric 
terrain elevation maps to generate geometry within 
the GPU. These algorithms often rely on triangular 
templates, which do not fit the rectangular texture 
interfaces and, hence, impose additional complexity 
in maintaining and storing textures.  

In this paper we present a novel approach for 
interactive rendering of large terrain datasets, which 
is designed to prevent the above limitations of 
previous algorithms. Our approach subdivides the 
terrain into rectangular patches at different 
resolutions as shown in Figure 1. Each patch is 
represented by four triangular tiles that can be at 
different predetermined discrete resolutions and are 
stitched together by four strips as shown in Figure 2. 
Since the number of different resolutions is very 
small, the number of required patterns of stitching 
strips is also very small. 

At runtime, these patches are used to construct the 
appropriate level of detail based on view-parameters. 

The selected levels of detail do not include any 
geometry; instead they only include the layout of the 
patches and the resolutions along their boundaries. 
The resolutions along the boundaries are used to 
guide the selection of the adequate tiles and strips to 
cover each patch without the need to query adjacent 
patches. Since adjacent patches agree on the 
resolution of the shared edges, the generated mesh 
does not include any cracks or degenerate triangles. 
Scaled templates of the cached tiles are used to 
generate the geometry, within the GPU, based on the 
boundary resolution. The vertex and fragment 
processors fetch and assign elevation and color for 
each vertex using the cached textures. To handle 
large terrain datasets, we provide external texture 
memory support that caches the necessary 
displacement and color maps in the GPU's memory. 

Our approach provides a number of advantages over 
previous terrain rendering schemes. The level of 
detail in each patch is determined without querying 
adjacent patches. Such a scheme saves unnecessary 
random-access memory references. The rendered 
mesh does not include any degenerate or sliver 
triangles, since our approach assures the same 
triangulation on the two sides of each boundary 
edge. In addition, it uses an implicit hierarchical 
representation that maintains the structure of the 
different patches in runtime. Furthermore, it reduces 
communication overhead as a result of transmitting 
only the layout of patches to the GPU at each frame, 
and using predetermined planar triangular tiles, 
which are cached in texture memory, to generate the 
selected level-of-detail representation. Therefore, 
only elevation values are transmitted to the graphics 
hardware in each frame. 

In the rest of this paper we briefly overview related 
work in terrain rendering. Then we discuss our novel 
approach, followed by implementation details and 
experimental results. Finally, we draw some 
conclusions and suggest directions for future work. 

2. RELATED WORK 
In this section we briefly overview related work in 
level-of-detail terrain rendering. We focus on 
approaches that utilize the special properties of 
height-field datasets. 

General level-of-detail rendering algorithms 
represent terrains as triangulated meshes. They 
usually utilize temporal coherence and manage to 
achieve the best approximation of the terrain for 
given view-parameters and triangle budget. 
However, these algorithms require the maintenance 
of mesh adjacency and validation of refinement 
dependences at each frame.  

Level-of-detail algorithms for height-field datasets 
are based on regular grid representation. They utilize 
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the longest edge bisection scheme to simplify 
memory layout by using a restricted quadtree 
triangulation [Bao04a, Paj98a], triangle bintrees 
[Duc97a, Lin96a], or hierarchies of right triangles 
[Eva01a, Lin02a]. However, updating the mesh at 
each frame prevents the use of efficient rendering 
schemes, such as geometry caching.   

To utilize efficient rendering schemes, several 
approaches partition the terrain into square patches 
at different resolutions. At runtime the appropriate 
patches are selected, stitched together, and rendered 
[Hit93a, Paj98a, Pom00a]. Cignoni et al. [Cig04a] 
and Yoon et al. [Yoo05a] have developed similar 
approaches for general 3D models. The main 
challenge for these approaches is to stitch the 
boundaries of the appropriate patches seamlessly.  

To overcome this communication bottleneck several 
algorithms have utilized cached geometry. Various 
approaches cache triangulated regions in texture 
memory [Cig03a, Cig03b, Lar03a, Lev02a], while 
others exploit the geometric locality to maximize the 
efficiency of the cache [Hop99a]. Terrains usually 
compensate small geometric details by textures and 
as a result, they are often accompanied by huge 
texture maps. Tanner et al. [Tan98a] have introduced 
the texture clipmaps hierarchy, and Döllner et al. 
[Dol00a] have developed a more general hierarchy 
to handle large texture maps. Caching techniques 
enable fast transfer of geometry and texture to 
graphics hardware. However, cache memory is 
limited, thus large datasets may still involve an 
overhead in communication between CPU and cache 
memory. 

Cook [Coo84a] introduced the displacement maps 
that represent elevation maps as vertex textures. 
Other frameworks for displacement maps on 
programmable graphics hardware have been 
suggested by [Dog00a, Gum99a, Los04a, Mou02a]. 
Although these approaches are not implemented at 
GPU, they are based on designs which prefer many 
simple computations over a few complicated ones.  

The advances in graphics hardware and its 
programmability have driven the development of a 
new generation of level-of-detail rendering 
algorithms. Losasso et al. [Los03a] and Bolz and 
Schröder [Bol05a] used the fragment processor to 
perform mesh subdivision. Southern and Gain 
[Sou03a] and Larsen and Christensen [Lar03a] used 
the vertex processor to interpolate different 
resolution meshes in a view-dependent manner. 
Wagner [Wag04a] and Hwa et al. [Hwa04a] used 
GPU-based geomorphs to render terrain patches of 
different resolutions. Dachsbacher and Stamminger 
[Dac04a] used GPU programmability to generate 
and render procedural details for terrains at runtime. 

Schneider and Westermann [Sch06a] suggested 
progressive transmission to reduce the data transfer 
between CPU and GPU. 

Geometry clipmaps algorithm [Asi05a] stores the 
surface triangulation layout in a view-dependent 
manner. In each frame, the visible part of the 
triangulation is sent to the GPU and modified 
according to the uploaded elevation and color maps. 
However, this algorithm does not perform local 
adaptivity, and the transition between levels of detail 
is not smooth and may result in cracks. The cracks 
problem is resolved by inserting degenerate 
triangles, but such triangles may generate visual 
artifacts. 

3. OUR APPROACH 
In this section we present our novel algorithm for 
interactive terrain rendering. It partitions the terrain 
into rectangular patches and utilizes advanced 
features of graphics hardware, such as 
programmability, displacement mapping, and 
geometry caching. Our algorithm involves a light 
preprocessing stage, in which it generates hierarchies 
of elevation maps and color textures and stores them 
in main memory. In our patch scheme, the 
coexistence of different discrete geometry 
resolutions within the same patch enables seamless 
stitching (without cracks or degenerate triangles) of 
adjacent patches. In each frame our algorithm uses 
an implicit patch hierarchy to select a set of 
appropriate patches (for rendering) and determine 
the resolution on their boundaries based on view 
parameters. The resolution of each patch is 
determined based on its four boundary edges and 
without the need to query its adjacent patches. 

Patch Scheme 
Previous terrain rendering algorithms use either 
triangular or rectangular patches for view-dependent 
level-of-detail rendering. On one hand, algorithms 
that use rectangular patches assign constant 
resolution over the entire patch, and hence prevent 
local adaptivity and impose severe difficulty in 
stitching adjacent patches. On the other hand, 
algorithms that use triangular patches enable easier 
stitching schemes and provide better local adaptivity, 
but they suffer incompatibility with texture 
rectangular interface and complicate texture 
management. Our patch scheme combines the 
advantages of the two approaches; it subdivides the 
terrain into rectangular patches which consist of 
triangular tiles that allow different resolutions to 
coexist within one patch. Such a scheme provides 
limited local adaptivity and enables the stitching of 
adjacent patches in a seamless manner.  
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In our scheme, a patch is arranged as four tessellated 
triangular regions which are determined by the two 
diagonals of the rectangular patch (see Figure 3). We 
shall refer to these tessellated triangular regions as 
triangular tiles (or simply tiles). The four tiles can 
have different resolutions which are selected from a 
predefined set of uniform resolutions. One could 
treat these tiles as discrete levels of detail of the 
same tile. Within a patch, the triangular tiles are 
stitched together by using predefined strips (refer to 
Figure 4).  Since the number of different resolutions 
for the tiles is usually small – 2 to 4 – the number of 
different stitching strips is also very small. Six strip 
types are required to stitch tiles at three different 
resolutions.   

We have chosen to adopt tile resolutions at 
consecutive powers of two to comply with the 
mipmap resolutions and meet the requirement of 
Claim 1 (see Level of Detail section below).  

Patch Hierarchy  
The patch hierarchy is constructed top-down by 
subdividing each patch into R×R children patches, 
where R is the branching factor of the hierarchy. The 
branching factor is determined by the number of 
different resolutions for tiles and equal to the ratio 
between the smallest and largest resolutions. For 
example, 2 and 3 resolutions require branching 
factors of 2 and 4, respectively. This relation ensures 
seamless stitching among adjacent patches and 
absence of cracks. 

The patch hierarchy does not store any geometry; 
instead it stores the position and dimension of each 
patch with respect to the terrain. Therefore, it easily 
fits in local memory, even for very large terrains. In 

practice, there is no need to implement the hierarchy 
explicitly, and therefore in our current 
implementation we use implicit hierarchy.  

Runtime Rendering 
At runtime, the patch hierarchy is used to guide the 
selection of the various levels of detail based on 
view-parameters. In each frame, the patch hierarchy 
is traversed in a top-down manner to select a set of 
active patches that form the appropriate level of 
detail. The traversal process starts from the root and 
for each visited patch τ an error metric is computed. 
If the error is too large, with respect to the view-
parameters, the children of the patch τ are traversed. 
Otherwise, the resolutions of boundary edges are 
computed and the patch is added to the stream of 
active patches. 

 
Figure 5: A terrain view with a wire-frame on 
top. The meshes of triangular tiles appear in 
white color and the strips appear in red. 

Single-unit-size meshes that represent each 
resolution of the tiles and stitching strips (3 tiles and 
6 strips for three different resolutions) are cached in 
texture memory. In each frame, the active patches 
are streamed to the graphics hardware for rendering. 
The light representation of active patches by their 2D 
enclosing rectangle contributes to the dramatic 
reduction on the CPU-GPU communication load. 
The resolutions at boundary edges (of patches) are 
discretized to match the resolution of the predefined 
triangular tiles. The resolution at the boundary edges 
is enough to determine the tiles and strips required to 
cover the patch τ in a straight forward manner (see 
Figure 5). The cached instances of the selected tiles 
and strips are transformed to match the enclosing 
rectangle of the patch, which selects its tiles without 
querying any of its adjacent patches. Since each two 
adjacent patches agree on the resolution of the 
common edge, the stitching of adjacent patches is 
smooth and does not include cracks or degenerate 
triangles.   

Tiling a patch with triangular tiles produces a planar 
mesh without elevation or color components. These 
components are assigned (for each vertex) by the 

  

(a) (b)
Figure 3: The components of one patch. (a) The 
image of four tiles. (b) The image of four strips. 

 
Figure 4: Triangular tiles at two different 
resolutions and the required stitching strips. 
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vertex and fragment processors, which use x and y 
coordinates of a received vertex to fetch and assign 
the appropriate elevation/color from cached textures.                  

Level of Detail 
The level of detail of a patch is represented by the 
resolutions of its tiles which are determined by the 
resolution at boundary edges. The resolution of an 
edge is computed based on its length l and the 
distance d from the viewpoint by using Equation 1, 
where ρ is a precision factor. If ε is larger than 1, the 
patch is split to its children, otherwise the resolution 
of the edge is determined by εRmax rounded up to the 
closest resolution, where Rmax is the highest available 
resolution. 

      
d
lρε =                                              (1)                                     

The scaling factor is used to resize a tile to match the 
patch's enclosing rectangle and select the appropriate 
texture level from which the elevation and color 
values are fetched.   

Claim 1: The generated mesh does not include 
cracks, which means that any two adjacent tiles 
agree on the resolution of the common edge. 

Proof: Without loss of generality we prove the claim 
for two resolutions and quadtree subdivision. We 
distinguish between two cases: 

I. The two adjacent patches have the same 
dimensions: Since the two patches have the same 
dimensions, they have the same enclosing 
rectangle and share a common edge along an entire 
side. By selecting the same tile on the two sides of 
the shared edge, the two patches are stitched 
seamlessly.  

II. The two adjacent patches are in different 
dimensions, which means that the edge belongs to 
one patch on one side and two patches on the other 
side (see the edge AB  in Figure 6): 
We first show that the tile ABJ  gets the highest 
resolution R2. The patch ABCD  has split to four 
children, which means that one of its edges has 
required a resolution higher than R2 (beyond the 
available resolution); let this edge be CD . Let l be 
the length of the edge AB and the distances of the 
edges AB  and CD  from the viewpoint are dfar and 
dnear, respectively. Based on Equation 1, 

neardl >⋅ρ holds as a result of assuming that the 
patch ABCD  has split into its four children, then:  

nearfar
farnearnear
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Therefore, the edge AB  is assigned the resolution 
R2, and the edges AE and EB are assigned the 
resolution R1. Our algorithm assigns resolution R1 

to edges with error values ε in the range [0, 0.5] 
and R2 to those with error values in the range (0.5, 
1.0]. For that reason, the difference between 
adjacent patches is at most one level (in the case of 
two different resolutions).   

 
Figure 6: Stitching tiles at two different levels 
of detail. 

Texture Pyramid 
Terrain datasets are usually represented by elevation 
maps and color textures, which store the properties 
of vertices in the original terrain. We use multiple-
level texture pyramids at successive powers of two 
(similar to mipmaps) to support level-of-detail 
rendering. These texture pyramids are used at 
runtime to achieve faithful sampling of the textures 
for the vertices of each tile. Since these multiple-
level pyramids are similar to mipmaps, we could let 
the hardware construct them. Then at runtime, the 
vertex processor determines from which level to 
select the values. However, such an approach does 
not work when the terrain size exceeds the capacity 
of the base level of the mipmaps [Los04a].  

For large terrains, the multiple-level texture 
pyramids are constructed once by the CPU before 
being transferred for caching in the texture memory. 
We start with the original texture, which represents 
the most detailed level, and each new level is 
generated from the previous one by reducing the 
resolution by half at each dimension. The pixels in 
the generated level are computed by interpolating the 
four corresponding pixels of the previous level.  

Note that elevation and color values of a vertex are 
selected from different levels of the hierarchies 
based on the geometric level of detail of the 
processed tile. 

4. IMPLEMENTATION DETAILS 
In our current implementation we do not construct 
the patch hierarchy explicitly; instead, an implicit 
representation is used. The root of the hierarchy is 
the coarsest level of detail that fits in texture memory 
and matches the interactive rendering capability of 
the graphics hardware. Therefore, the height of the 
hierarchy can be easily determined based on the 
hardware capabilities and the predefined branching 
factor. Note that the 2D bounding rectangle of the 
root is the same as that of the original terrain. Also 
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recall that the patch hierarchy does not store any 
mesh geometry or pixel information. The 
subdivision of a patch into its children is performed 
by several shift instructions within the CPU. The 
traversal of the implicit patch hierarchy is performed 
similar to the explicit one and is often more efficient 
as a result of avoiding random memory access to 
fetch the children patches. We found that traversing 
the patch hierarchy is negligible compared to the 
rendering time as shown in the CPU column on 
Table 2.   

View-frustum culling is performed by the CPU 
during the traversal which determines the set of 
active patches. For each patch τ which requires 
further subdivision to reach the appropriate level of 
detail, we test its children patches against the view-
frustum only if τ intersects the boundary of the view-
frustum. If the patch τ is entirely included within the 
view-frustum, then all its children patches are also 
within the view-frustum. If τ intersects the view-
frustum's boundary, we test and mark each of its 
children patches as to whether it is inside, outside, or 
intersecting the view-frustum. Outside patches are 
culled and they are not processed further.     

The meshes that represent the different resolutions 
tiles and strips are cached in texture memory. At 
runtime, these meshes are used to tile the selected 
patches. Since the number and the size of these 
meshes are small (3 tiles and 6 strips are required to 
support three different resolutions within a patch), 
we store four orientations of each tile and each strip 
to avoid rotation and mirroring of these meshes at 
runtime.   

To handle large terrain datasets we have 
implemented an out-of-core support similar to the 
one proposed by Losasso and Hoppe [Los04a]. This 
scheme stores the texture pyramids in main memory 
and caches in texture memory only the portions 
necessary for rendering. The updates of the cached 
textures are performed in an active manner by 
loading "L-Shape" regions into texture memory, as 
early as they are required.  

In earlier algorithms, the CPU needs to send three 
coordinates for an uncached vertex to place it in the 

model space. Our algorithm utilizes hardware 
supported displacement mapping, and thus the CPU 
sends only the elevation value for each vertex. The 
other two coordinates are generated by the GPU in a 
parametric manner using the terrain grid structure. 
This technique reduces the data transfer at runtime 
from three coordinates to one coordinate for each 
vertex. The elevation components are uploaded into 
the vertex texture using Fragment Buffer Object 
extensions (FBO). 

5. RESULTS 
We have tested our implementation on an AMD 
Athlon 3500 with 1GB memory, and an nVidia 
GeForce 7800 GTX graphics card with 256M texture 
memory using Puget Sound and Grand Canyon 
terrain datasets. In this section we report and analyze 
selected entries of these results. 

The performances of our algorithm are summarized 
in Table 1. For each dataset we view different 
regions of the terrain to capture the various 
processing patterns. In each row we report the terrain 
size, viewed region, precision factor, and 
performance with and without view-frustum culling. 
We record two options for the viewed regions: edge 
and middle, which refer to flying near an edge and 
inside the terrain, respectively. The precision factor 
(see also Equation 1) 2ρ0 selects more detailed levels 
than the levels selected by ρ0. In the performance 
columns we report the number of rendered triangles 
(Triangle column), the number of traversed patches 
(Traversed column), the number of rendered patches 
(Rendered column), the number of culled patches 
(Culled column), and the frame rates. The view-
frustum culling doubles the performances when 
flying on the edge of the terrain and triples it in 
general. Our algorithm manages to achieve quality 
images at high frame rates, as can be seen in Table 1. 
The frame rates depend mainly on the number of 
triangles. The first row shows 156 FPS without view 
frustum culling for about 330K triangles and 91 
rendering patches, and the sixth row reports the same 
FPS with view frustum culling and 56 patches. Such 
observation reveals that patch selection is negligible 
with respect to the total rendering time. Note that 

With Frustum Culling Without Frustum Culling Dataset 
Size 

View 
Region 

ρ 
Factor Triangles Traversed Rendered Culled FPS Triangles Traversed Rendered FPS 

4Kx4K Edge ρ0 172696 109 46 36 283   331428 121 91 156 
4Kx4K Middle ρ0 138668 109 33 49 380   403896 141 106 138 

16Kx16K Edge ρ0 180731 100 50 27 271   338240 123 93 153 
16Kx16K Middle ρ0 148200 126 39 58 354   389197 151 107 135 
4Kx4K Edge 2ρ0 354248 137 66 37 138   763864 189 142   69 
4Kx4K Middle 2ρ0 330480 133 56 44 156 1133796 265 199   52 

16Kx16K Edge 2ρ0 422358 179 82 74 112   915190 213 160   56 
16Kx16K Middle 2ρ0 414966 152 70 63 112 1359642 340 231   43 

Table 1: Runtime performance. 
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patch selection also includes view-frustum culling 
and transmission of active patches list. 

Figure 7: View-frustum culling: A shaded view 
(left) and its wire-frame representation (right). 

We compared the results of our algorithm with the 
results of three known terrain rendering algorithms. 
To bring all the results to a common base, we have 
estimated the expected performance of these 
algorithms on our machine based on the reported 
results and the used machine's hardware. To present 
a reliable approximation, we measure only triangles 
that are actually processed by the graphics hardware. 
On comparable hardware we expect that BDAM 
[Cig03a], Clipmap [Asi05a], and the algorithm 
suggested in [Hwa04a] will achieve about 46M, 
44M, and 43M textured triangles per second, 
respectively. Our algorithm manages to achieve 53M 
textured triangles per second on average. These 
numbers show that the simplicity of our GPU code 
with the advantages of displacement map 
functionality provides encouraging performance. 

Table 2: Hardware performance analysis 

The contribution of the CPU and the GPU to the 
performance of the algorithm is shown in Table 2. 
The first three columns of each row represent the 
configuration of a frame, which includes the number 
of rendered triangles, rendered patches, and culled 
patches. The fourth and fifth columns report the 
CPU and the GPU processing time, respectively. The 
CPU load is tiny and has almost no influence on the 
frame rates for two main reasons – the selection of 
the active patches (by the CPU) is very light and the 
CPU runs parallel to the GPU. These conclusions are 
also supported by the results shown in Table 2. 
These results also show that our algorithm will 
benefit from the current trend in improving GPU 
rates. 

Figure 7 shows the shaded and wire-frame 
representations of a terrain view after applying view-
frustum culling. Figures 8 and 9 were generated 
from a Puget Sound terrain dataset using our 

algorithm at different precision factors ρ. In each 
figure, image (a) shows a shaded view that depicts 
image quality, image (b) shows the wire-frame 
representation that illustrates the triangular tiles in 
white color and the stitching strips in red.  

Figure 8: A terrain view at ρ = ρ0. (a) A shaded 
surface. (b) Tiles in white and strips in red. 

6. SUMMARY AND FUTURE WORK 
We have presented a novel approach for 

interactive terrain rendering that reduces the load on 
the CPU, utilizes texture memory, and leverages 
advanced features of the GPU. The terrain is 
subdivided into rectangular patches on the fly. Each 
patch is represented by four triangular tiles at 
different resolutions which are stitched together 
using four strips. At runtime the CPU selects the 
appropriate patches based on view-parameters and 
determines the resolution at their boundaries. The 
different tiles and stitching strips are cached in 
texture memory and used to tile each patch 
according to its boundary resolution. Multiresolution 
levels of color textures and displacement maps are 
also cached in texture memory and used by the 
vertex and fragment processors to assign the 
elevation and color for each vertex. 

Our approach balances computation load among the 
CPU and GPU and dramatically reduces the 
communication between them. Adjacent patches are 
stitched in a seamless manner without cracks or 
degenerate triangles, since they agree on the 
resolution of the common edge. Furthermore, each 
patch determines its own resolution without querying 
its adjacent patches; it simply selects the different 
tiles that comply with its boundary resolution. The 
use of tiles provides limited local adaptivity which 
contributes to the smoothness of the generated mesh. 

 

Figure 9: A terrain view at ρ=2ρ0. (a) A shaded 
surface. (b) Tiles in white and strips in red. 

Our algorithm performances are strongly influenced 
by the speed of vertex pipelines. The algorithm relies 

Configuration Time
Triangles Rendered Culled CPU (μs) GPU (ms) FPS
  88986 
  96246 
119054 
148200 
180731 
230372 

18 
22 
27 
39 
50 
47 

34 
13 
18 
58 
27 
23 

17.54 
22.57 
26.88 
30.67 
34.84 
39.06 

1.85 
1.98 
2.58 
3.04 
3.98 
5.68 

583 
545 
418 
354 
271 
190
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on the vertex fetch operation which enables the 
vertex processor to access texture memory. 
However, the fetch operations within vertex 
processors are not yet optimized. We predict that 
future development in vertex processor hardware 
will lead to impressive improvement on the 
performance of our algorithm. 

We see the scope of future work in extending the 
idea of independent patches to general 3D models. 
Such development will provide view-dependent 
rendering for large datasets in a seamless manner 
without imposing dependencies among adjacent 
patches. Moreover, our suggested approach 
generates patch geometry within the GPU, and hence 
can not utilize temporal coherence among 
consecutive frames. Utilizing temporal coherence 
within the GPU could contribute to further 
performance improvements.  
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ABSTRACT

In this paper we propose two novel software implementationsof the ray-casting volume rendering algorithm for irregular grids,
called ME-Raycast (Memory Efficient Ray-casting) and EME-Raycast (Enhanced Memory Efficient Ray-Casting). Our algorithms
improve previous work by Bunyket al [1] in terms of complete handling of degenerate cases, memory consumption, and type of
cell allowed in the grid (tetrahedral and/or hexahedral). The use of a more compact and non-redundant data structure, allowed
us to achieve higher memory efficiency. Our results show consistent and significant gains in the memory usage of ME-Raycast
and EME-Raycast when compared to Bunyket al implementation. Furthermore, our results also show that handling of degenerate
cases generates accurate images, correctly rendering all the pixels in the image, while Bunyket al implementation fails in rendering
up to 38 pixels in the final image. When we compare our algorithms to other robust rendering algorithm, like ZSweep [2], we
have considerable performance gains and competitive memory consumption. We conclude that ME-Raycast and EME-Raycastare
efficient methods for ray-casting that allow in-core rendering of large datasets with no image errors.

Keywords: Volume rendering, Ray-casting.

1 INTRODUCTION

Direct volume rendering has become a popular technique
for visualizing volumetric data from sources such as sci-
entific simulations, analytic functions, and medical scan-
ners such as MRI, CT, and ultrasound. A big advantage
of direct volume rendering is to allow the investigation of
the interior of the data volume, because the objects are
considered as composed of a semi-transparent material.

Volumetric data used in volume rendering is usually
represented in the form of a regular or irregular grid. Reg-
ular grids are built with a rigid topological framework,
and can be represented in an implicit form. Irregular
grids, on the other hand, have the advantage of generality
since they can conform to nearly any desired geometry,
and thus, they are useful to represent complex geometries
in a compact way.

Although several algorithms and methods have been
proposed to efficiently render irregular grids, the most
popular one is theray-casting method. In this method,
rays are casted from the viewpoint through every pixel
of the image what determines which cells of the volume
each ray intersects. Every pair of intersections is used

to compute a contribution for the pixel color and opac-
ity. The ray stops when it reaches full opacity or when it
leaves the volume.

There are many different implementations of the ray-
casting algorithm, [6, 5, 7, 8]. Only a few software solu-
tions, however, deal with irregular grids. Garrity [3] pro-
posed an efficient method for ray-casting irregular grids
using the connectivity of cells. In his method, as the ray
intersects one cell, it must exit through one of its faces. At
this point it is only necessary to check intersections of the
ray with the cell’s faces. Therefore, Garrity used the con-
nectivity of the data to move from cell to cell of the grid,
in order to reduce the cost of identifying the cells which
the ray intersects. This scheme leads to a quadratic cost
on the number of cells. Later, Bunyket al [1] improved
Garrity’s work by determining for each pixel an ordered
list of intersections on external visible faces. This allows
them to efficiently enumerate which boundary face in-
tersects a given ray, and the correct order of the entry
points for the ray. The rendering process follows Gar-
rity’s method, but when a ray exits the grid, the algorithm
can easily determine in which cell the ray will re-enter
the grid. This approach becomes simpler and more effi-
cient than Garrity’s propose, however it keeps some large
auxiliary data structures.

The memory consumption of Bunyket al approach is
very high. This can have some implications in the algo-
rithm efficiency when the computer does not have enough
main memory. In addition, the amount of memory used
by the ray-casting algorithm could complicate its imple-
mentation in the graphics hardware. Nowadays, this be-
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comes a huge obstacle for achieving real-time perfor-
mance in rendering.

Besides the memory consumption problem, Bunyket
al approach has other shortcomings. First, there are some
degenerate cases that cannot be handled by their algo-
rithm. And second, it deals only with tetrahedral grids. In
this work, we propose two novel ray-casting algorithms
based on Bunyket al approach, but improving it in dif-
ferent ways. Our goal is to develop memory efficient ray-
casting algorithms that provide accurate results. Our ap-
proaches: (i) completely handle degenerate cases; (ii) use
different data structures that are much smaller than the
ones used in Bunyket al approach; and (iii) deal with
both tetrahedral and/or hexahedral grids.

Our algorithms, called ME-Raycast (Memory Efficient
Ray-casting) and EME-Raycast (Enhanced Memory Ef-
ficient Ray-Casting), presented consistent and significant
gains in memory usage over Bunyket al approach. Our
gains were not only in memory usage, but also in the cor-
rectness of the final image. Bunyket al approach did
not handle all possible degenerated cases, so it generated
some incorrect pixels in the image.

We also compared our algorithms to other robust di-
rect volume rendering algorithms based on cell projection
paradigm, ZSweep. Our algorithms outperform ZSweep
for all datasets. In terms of memory usage, for smaller
images resolutions, ME-Ray spends more memory than
ZSweep. EME-Ray, otherwise, spends less memory than
ZSweep for most of the cases.

The remainder of this paper is organized as follows.
In the next section we relate our work to others in the
field of volume rendering of irregular grids. Section 3 de-
scribes our ray-casting algorithms and the improvements
we made on Bunyk’s approach, and shows how our al-
gorithms handle the degenerate cases. In section 4 we
present the results of our most important experiments.
Finally, in section 6, we present our conclusions and pro-
posals for future work.

2 RELATED WORK

There are mainly two categories of algorithms for direct
volume rendering on irregular grids: ray-casting and pro-
jection.

Ray-casting algorithms are usually called image-space
methods, since in its outer loop, it iterates over all the
pixels of the output image. In the work by Garrity [3], as
mentioned before, for each ray, exterior faces are tested
to find the first intersection point. After that, the cells are
traversed using the connectivity relation between them.
This work was further improved by Bunyket al [1], by
computing for each pixel a list of intersections on exter-
nal visible faces, and easily determining the correct order

of the entry points for the ray. These two are all-software
approaches, which means that they do not require any
graphics hardware. Our work is also an all-software im-
plementation, but provides improvements over Bunyket
al work. Weiler et al [12], on the other hand, imple-
mented ray-casting using the graphics hardware. They
find the initial ray entry point by rendering front faces,
and then traverse through cells using the fragment pro-
gram by storing the cells and connectivity graph in tex-
tures. Their method, however, work only on convex un-
structured data, and is based on GPU programming.

Another class of rendering algorithms is the one that
performs the render based on the sweeping paradigm to
lower the cost of the ray-casting. The first work in this
class was developed by Giertsen [4]. In his work, a plane
sweeps the dataset in the up direction, or in the direction
of Y axis, intersecting with cells. For every line of pix-
els of the image, all intersections of the sweeping plane
with the cells of the grid is approximated by a regular
2D grid, and a bidimensional raycast is performed. One
weakness of this method is the approximation imposed
in the accommodation of the 2D grid, result of the inter-
section of the plane sweep with the data cells, onto the
regular grid. Later, the work by Silvaet al [10] improved
Giertsen work. The Lazy Sweep algorithm avoids the ap-
proximation mentioned above.

Projection algorithms, on the other hand, reconstruct
the image from the object space to the image space. The
projection requires that the cells are first sorted in visi-
bility ordering and then composed to generate their color
and opacity in the final image. The first algorithm to be
fully implemented to use projection was the ZSweep by
Fariaset al. [2]. The algorithm was implemented using
only the CPU, what provided flexibility and easy paral-
lelization. The ZSweep is a simple and efficient face pro-
jection rendering algorithm. ZSweep sweeps the dataset
vertices, in depth order, with a plane perpendicular to
the viewing direction. When the sweep plane hits a ver-
tex, ZSweep project the faces incident on that vertex. To
achieve memory efficiency, they used a mechanism called
early ray composition. We used ZSweep algorithm as a
baseline for our performance evaluation, in order to com-
pare the speed and memory usage of our ray-casting algo-
rithms over a projective one. The great advantage of pro-
jective methods is that they are efficiently implemented
in programmable graphics hardware. Several cell projec-
tion algorithms were implemented using hardware graph-
ics (e.g., [13], [9], [11]).

3 OUR APPROACHES

The main goal of ME-Raycast and EME-Raycast algo-
rithms is to combine correctness of the results with effi-
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ciency in memory usage, without degrading the execution
time.

For both algorithms, the traversal for each pixel starts
in the same way proposed in Bunyket al implementation.
We project the visible faces on the screen and keep for
each pixel the list of intersection points which enters the
volume. Nevertheless, for the internal grid adjacency
representation, ME-Raycast and EME-Raycast use com-
pletely different data structures. In fact, EME-Raycast
was developed as an optimization of ME-Raycast in
terms of memory usage. EME-Raycast uses simpler
data structures than ME-Raycast. Our algorithms also
include an identical and efficient method to deal with the
degenerate cases that can occur during the ray traversal
process, described in section 3.3.

3.1 ME-Raycast Algorithm

Before explaining the ME-Raycast algorithm itself, we
describe its basic data structures. These data structures
are also used by EME-Raycast, except for the most mem-
ory expensive array and some auxiliary structures, which
are eliminated in EME-Raycast to lower memory con-
sumption.

Basic Structures ME-Raycast keeps three basic struc-
tures: the vertex array (Points_VEC), the cell array
(Cells_VEC) and the face array (Faces_VEC). There
are also some auxiliary structures: theUse_Set of a
vertex v is a list of all cells incident onv (see Farias
et al [2]); the Neighbor_Array of a cell c is an ar-
ray of indices of all neighboring cells ofc; and the
Triangular_Faces of a cellc is an array of indices
of the triangular faces that boundc (in hexahedral cells,
the faces need to be broken in two triangular faces).

TheUse_Set array substitutes thereferredBy list
used in Bunyk’s implementation. TheUse_Set for each
vertex, is a list of all cells incident on the vertex, in con-
trast with thereferredBy list, which is a list of faces
incident on the vertex. TheUse_Set can be created in
the preprocessing phase, inO(c), wherec is the number
of cells. We allocate an array of integers (int_array),
of the size of the number of vertices. For each cell, we
loop through each of its vertices, and increment the ele-
ment ofint_array indexed by the number of the ver-
tex, and a global counter. At the end, we know how many
cells are incident on each vertex and the global total of
incident cells on every vertex. Then, we allocate another
array (Use_Set ) using the global counter. We repeat
the loop on the array of cells and fill in theUse_Set of
each vertex.

Another step in the preprocessing phase is to find
for each cell Ci its face-neighbor cells, which are
the cells that share a face withCi, and create the

Neighbor_Array for Ci. We determine all the
face-neighbor cells by scanning theUse_Set of the
vertices of the cell. During this scanning, we create for
each cell a list with the indices for itsface-neighbor
cells. We save a great amount of memory by keeping
such lists on the cell structure instead of on the face
structure (as done in Bunyk’s method), since the number
of faces is always greater than the number of cells. This
information speeds up the process of stepping through
the grid during ray-casting.

The Faces_VEC array is created on demand during
the raycast process, as the faces are intersected by the
rays. Only intersected faces are inserted. As a face is
inserted, all its related parameters are computed. The
number of faces in the array will depend on the image
resolution and on the size of the dataset. For example,
for a small resolution image and a large scale dataset, lots
of faces will never be intersected by any ray and con-
sequently will not be created by the process. Bunyk’s
method, on the other hand, inserts all faces in the prepro-
cessing phase and compute their parameters at the begin-
ning of the rendering. Processing time is saved, but with
the cost of great memory overhead.
Algorithm The ME-Raycast algorithm can be divided
into two phases: the preprocessing phase, and the core en-
gine. Just like Bunyk’s implementation, the preprocess-
ing is performed while the dataset is read. In the prepro-
cessing phase, the following steps are performed:

1. Read and store the vertices and cells of the dataset,
creatingPoints_VEC andCells_VEC.

2. Generate theUse_Set list for each vertex.

3. Determine for each cell itsface-neighbor list.

To identify external faces of a cell, we store its own in-
dex, indicating that there is noface-neighbor cell sharing
this face. We also create a list with all external faces. This
list keeps, for each face, the index to the cell and to the
relative face in the cell. The core engine of ME-Raycast
algorithm performs the rendering process. For each point
of view, ME-Raycast execute the following code.

Project external faces
creating Ext_Faces;

For each pixel
While( Ext_Faces not empty){
Repeat {

Find next intersection by
checking other cell’s faces;
If (no intersection)

check degenerate case;
Accumulate colors/opacity;
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} While (next intersected
face is internal)

}

The visible external faces (the ones whose normals
have angles greater than 90o with the viewing direction)
are projected on the screen, generating for each pixel a
list of intersections with the external faces. These inter-
sections will be used to start the raycast for each pixel.

To visualize the dataset from a different point of view,
the list of faces is reused, saving processing time. Only
the faces parameters must be recomputed for all faces.
Also, our implementation allows both parallel and per-
spective projections.

3.2 EME-Raycast Algorithm

EME-Raycast and ME-Raycast have similar algorithms,
but in EME-Raycast we have removed some data struc-
tures used in ME-Raycast.

The basic structures used in the EME-Ray are only two:
the array of vertices (Points_VEC), and the array of
cells (Cells_VEC). We have removed the array of faces
(Faces_VEC), since it was one of the most memory ex-
pensive structures in ME-Raycast. Without the array of
faces, we can save about 5∗2∗ f bytes of memory, where
f is the total number of triangular faces in the data set.
Therefore, in a dataset with about 1 million faces, we are
save about 52 Mb of memory.

From the cell structure, we removed the array
Triangular_Faces. As tetrahedral cell uses 36
bytes, saving 16 bytes, and a hexahedral cell uses 60
bytes, saving 48 bytes of memory. In all we save about
(16∗ t + 48∗ h) bytes of memory, wheret is the total
number of tetrahedral cells andh is the total number of
hexahedral cells.

The vertex structure is identical to the one used in ME-
Ray. However, the data structures removals are responsi-
ble for increasing the execution time. As we do not store
the faces anymore, we need to recalculate the parameters
for verification of ray intersection every time that a new
face is checked.

3.3 Handling Degeneracies

The intersection between a ray and a face of a cell is the
result of the algebraic calculation of the intersection be-
tween a line and a plane, see [1]. For tetrahedral grids, it
is the intersection between the line defined by the ray path
and the plane defined by the three vertices of a triangular
face. For hexahedral grids, where each quadrangular face
is defined by four vertices, the intersection is found by
splitting the quadrangular face into two triangular faces,
and performing the same calculation mentioned above,

for each face. This way, we do not need to worry about
the four points being coplanar to define a plane.

Bunyket al use the Point-Within-Triangle algorithm to
determine the ray intersections and to look for the next
cell the ray will intersect. In their algorithm, however,
degenerated situations may arise when the ray hits a ver-
tex or an edge. In Figure 1, we exemplify in 2D the case
where the ray hits a vertex. The blue cell corresponds to
the first cell that the ray intersects, called the current cell.
Bunyk et al approach would check only the cells neigh-
boring the current cell faces, i.e., faces of the cellsA and
E. However, the ray does not intersect with neitherA nor
E faces. In this case, the final color of the pixel will be
wrong, since the composition process will be interrupted.

a b c

A B

DE

C

Figure 1: 2D example where the ray hits a vertex and
Bunyk approach does not find c

To avoid this type of error, we propose a different kind
of verification to look for the next cell intersected by the
ray. The idea is to allow the continuation of the ray traver-
sal, by looking for the next cell scanning theUse_Set
of each vertex which determine the current cell. In the
example in Figure 1, this scanning will return cellsA, B,
C, D andE. Therefore, this scheme asserts that another
intersection will be found in a face of cellC, guaranteeing
that the ray traversal will continue and the image will be
correctly generated.

When the ray hits an edge, the problem can be solved
by the same procedure explained above. In Figure 2, we
show an 3D example for this case. In this example, the
blue cell of (a) corresponds to the first cell that the ray
intersects. The next intersection is in the edgeV0V1 in the
point b. Bunyk et al approach would look for the next
intersection in all the faces adjacent toV0V1 edge. These
faces are shown in (b). As we can observe in the figure, it
is not possible to find the next intersection in the adjacent
faces ofV0V1. Our approach, on the other hand, uses the
Use_Set of the vertices of the blue cell to find the next
intersection. Using theUse_Set of V0 andV1, we find
the yellow cell of (a). In the yellow cell, we find the next
face the ray intersects, determiningc.

4 EXPERIMENTAL RESULTS

In this section we evaluate the performance and mem-
ory usage of ME-Raycast (ME-Ray) and EME-Raycast
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Figure 2: 3D example where the ray hits an edge and
Bunyk approach does not find c

(EME-Ray). Our evaluation uses two different baselines
for the comparisons. The baselines are two direct vol-
ume rendering algorithms for irregular grids: the Bunyk
et al implementation of ray-casting (BUNYK ); and the
ZSweep cell projection algorithm (ZSweep). The ideas
behind these comparisons are to: (1) Measure the im-
provements over Bunyk work in terms of memory usage
and correctness of the final image. (2) Put our results in
perspective, with respect to other robust rendering algo-
rithm (that generates correct final images). Following, we
briefly describe the two baselines, show the datasets used
in our experiments, and, then, describe our performance
analysis.

4.1 Baselines

BUNYK: Bunyk et al. implementation initially projects
the external visible faces on the screen, creating for each
pixel, a list of the intersections generated by these pro-
jections. The process starts by projecting all faces whose
normal make an angle greater then 90o with the viewing
direction. After projecting every visible face, the algo-
rithm knows, for each pixel, which face through which
the ray enters the volume. Since the algorithm computes
all cell’s neighbors in preprocessing, it is computed, in
constant time, the next face the ray is going to intersect.
For every two consective intersections, opacity and color
integrations are computed. Once there is no more entry
point for the pixel, the ray has left the volume, and the
process is finshed for the current pixel. It is important
to notice that, the list of faces created to carry on this
method is responsible for about half the memory usage
of this implementation.

Table 1: Datasets used in our experiments.
Dataset Information

Datasets Vertices Faces Boundary Cells

Blunt Fin 40.960 381.548 13.516 187.395
Comb. Chamber 47.025 437.888 15.616 215.040

Oxygen Post 109.744 1.040.588 27.676 513.375
SPX 149.224 1.677.888 44.160 827.904

Delta Wing 211.680 2.032.084 41.468 1.005.675

Hexa 2.684 6.432 1.344 1.920

ZSweep: The ZSweep algorithm is a direct volume
rendering algorithm based on the sweeping paradigm,
and built over the success of prior sweep approaches [10].
The main idea of ZSweep algorithm is the sweeping of
the data with a plane parallel to the viewing planeXY ,
towards the positivez direction. The sweeping process
is performed by ordering the vertices by their increasing
z coordinate values, using a heap sort, and then retriev-
ing one by one from this data structure. For each vertex
swept by the plane sweep, the algorithm projects, onto
the screen, all faces that are incident to it. When a face
is projected onto a given pixel, the result is equivalent
to the intersection of the ray emanating from this same
pixel and the face being projected. ZSweep stores its
z-value, and other auxiliary information, in sorted order
in a list of intersections for the given pixel, called pixel
list. To achieve memory efficiency, ZSweep uses a mech-
anism called early composition. The composition of the
intersections in a pixel list is performed as thetarget-Z
is reached. Thetarget-Z represents the maximumz coor-
dinate among the vertices adjacent to the first vertex en-
countered by the sweeping plane. When the plane reaches
a targetz, the next targetz will be again the maximum
z coordinate among the vertices adjacent to the current
reached target, and the process continues.

4.2 Workload

Our experiments were conducted in a Pentium 4,
2.80GHz with 1GB of memory, running Linux Fedora
Core 2. We have used five different tetrahedral datasets:
Blunt Fin, Combustion Chamber, Oxygen Post, SPX and
Delta Wing, and also one small hexahedral dataset, called
Hexa, used only to show our handling of hexahedral
grids. The number of vertices, faces, boundary faces and
cells for each dataset are listed in Table 1. We also varied
the image sizes, from 128× 128 to 1024× 1024 pixels.

4.3 ME-Raycast and EME-Raycast Perfor-
mance

In this section we evaluate ME-Raycast and EME-
Raycast algorithms, compared to ZSweep and BUNYK
results. In terms of the number of pixels rendered,
ME-Ray, EME-Ray and ZSweep rendered all the pixels,
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generating a correct image. However, since BUNYK
does not handle all possible degenerate cases, it fails in
rendering the amount of pixels shown in Table 2. As we
can observe in this table, for Blunt Fin, Oxygen, Delta
and SPX, BUNYK generates a great amount of flaws in
the 512×512 and 1024×1024 images. Up to 38 pixels
were not rendered correctly.

Table 2: Pixels not rendered by BUNYK
Bad pixels - BUNYK

Image Size Blunt Fin Combustion Oxygen Delta SPX
1282 2 - - 1 -
2562 3 1 4 2 3
5122 10 - 11 7 5
10242 31 2 38 17 18

Tables 3, 4, 5, 6 and 7 show the results of time and the
amount of memory consumed for Blunt Fin, Combustion
Chamber, Oxygen Post and SPX datasets, respectively,
rendered by ME-Ray and EME-Ray when compared to
BUNYK and ZSweep execution, for four different im-
age resolutions, 128× 128, 256× 256, 512× 512, and
1024×1024. The results for the Hexa dataset are not con-
sidered because it is a very small dataset, and BUNYK
algorithm cannot handle heaxahedral datasets. The per-
centages presented in these tables correspond to the ratio
of our algorithm (ME-Ray or EME-Ray) result over the
baseline (BUNYK or ZSweep). In other words, we con-
sider BUNYK or ZSweep results as 100% and are pre-
senting how much we increase or decrease this baseline.

Table 3 presents the results for the Blunt Fin dataset.
Comparing ME-Ray and EME-Ray with BUNYK, we
observe that they use considerably less memory than
BUNYK. ME-Ray uses, for a 1024× 1024 image, al-
most the same memory BUNYK uses for a 128×128 im-
age. EME-Ray uses 3.5 times less memory than BUNYK
for a 512×512 image and 2.5 times less memory for a
1024×1024 image. These significant reductions in mem-
ory usage comes with an increase in the execution time.
The increase, however, is only about 26% for ME-Ray
for a 1024× 1024 image. When compared to ZSweep,
we observe that EME-Ray outperforms ZSweep in terms
of render time and memory usage for the three larger im-
age precisions.

Table 4 shows the results for Combustion Chamber
dataset. ME-Ray and EME-Ray also consume less mem-
ory than BUNYK. For a 512× 512 image, EME-Ray
spends 3.6 times less memory than BUNYK and, for
a 1024× 1024 image EME-Ray spends 2.7 times less
memory. In terms of execution time, BUNYK outper-
forms ME-Ray, but for a 1024×1024, ME-Ray is only
6% slower. When compared to ZSweep, ME-Ray spends
more memory, but is faster, and EME-Ray is faster and
uses less memory for larger images.

Table 3: Blunt Fin Data Results
Time Memory

Image BUNYK ZSweep BUNYK ZSweep
1282 ME-Ray 145% 32% 52% 229%

EME-Ray 225% 50% 24% 106%

2562 ME-Ray 133% 30% 61% 184%
EME-Ray 281% 64% 25% 75%

5122 ME-Ray 138% 32% 69% 96%
EME-Ray 335% 78% 28% 39%

10242 ME-Ray 126% 29% 75% 40%
EME-Ray 304% 70% 39% 20%

Table 4: Combustion Chamber Results
Time Memory

Image BUNYK ZSweep BUNYK ZSweep
1282 ME-Ray 184% 57% 73% 351%

EME-Ray 166% 51% 24% 115%

2562 ME-Ray 141% 43% 74% 287%
EME-Ray 215% 65% 25% 96%

5122 ME-Ray 153% 57% 75% 169%
EME-Ray 232% 87% 28% 63%

10242 ME-Ray 106% 38% 76% 76%
EME-Ray 224% 80% 37% 37%

Table 5 shows the results for Liquid Oxygen Post
dataset. ME-Ray and EME-Ray use considerably less
memory than BUNYK. For larger images, BUNYK
uses about 3 times more memory than our algorithms.
As the image size grows, however, BUNYK becomes
much more faster than EME-Ray. Compared to ZSweep,
ME-Ray is about 2.6 times faster and uses 1.5 times less
memory for the largest image precision. For a 512×512
image, EME-Ray is about 1.5 times faster and uses 1.6
times less memory than ZSweep.

Table 5: Liquid Oxygen Post Results
Time Memory

Image BUNYK ZSweep BUNYK ZSweep
1282 ME-Ray 162% 24% 44% 216%

EME-Ray 200% 29% 24% 118%

2562 ME-Ray 137% 39% 50% 205%
EME-Ray 268% 76% 24% 100%

5122 ME-Ray 142% 41% 57% 142%
EME-Ray 276% 79% 26% 64%

10242 ME-Ray 136% 38% 66% 70%
EME-Ray 289% 82% 30% 32%

Table 6 shows the results for the largest dataset, Delta
Wing, that has more than 1 million cells. ME-Ray
method is about 1.5 times slower than BUNYK, but uses
1.6 times less memory and EME-Ray uses less than 30%
of the memory used by BUNYK. Compared to ZSweep,
ME-Ray is faster for all images sizes, but consumes more
memory. For small images, even EME-Ray consumes
more memory than ZSweep. This is due to the indices we
keep for the neighboring cells for each cell. Nevertheless,
EME-Ray performs significantly better than ZSweep.
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Table 6: Delta Wing Results
Time Memory

Image BUNYK ZSweep BUNYK ZSweep
1282 ME-Ray 141% 15% 38% 200%

EME-Ray 150% 16% 23% 124%

2562 ME-Ray 162% 26% 44% 216%
EME-Ray 203% 32% 24% 118%

5122 ME-Ray 139% 32% 51% 209%
EME-Ray 244% 56% 24% 100%

10242 ME-Ray 148% 33% 61% 152%
EME-Ray 271% 61% 27% 68%

Table 7 shows the results for the SPX dataset. Although
ME-Ray is slower than BUNYK, it uses less memory.
EME-Ray uses even less memory. For example, to create
a 512×512 image, EME-Ray uses about 1/4 of the mem-
ory necessary for BUNYK to create a 256×256 image.
Compared to ZSweep, ME-Ray and EME-Ray are faster
than ZSweep. In terms of memory usage, ME-Ray uses
more memory than ZSweep and EME-Ray uses 1.2 times
less memory than ZSweep for a 1024×1024 image.

Table 7: SPX Results
Time Memory

Image BUNYK ZSweep BUNYK ZSweep
1282 ME-Ray 120% 20% 51% 273%

EME-Ray 197% 33% 23% 125%

2562 ME-Ray 154% 41% 68% 349%
EME-Ray 178% 48% 24% 121%

5122 ME-Ray 136% 46% 72% 320%
EME-Ray 192% 66% 24% 109%

10242 ME-Ray 116% 41% 74% 222%
EME-Ray 222% 79% 27% 83%

5 DISCUSSION

ME-Ray and EME-Ray had obtained consistent and sig-
nificant gains in memory usage over BUNYK. In terms
of the image resolution, we can observe that the gains
of ME-Ray and EME-Ray over BUNYK are bigger for
smaller image sizes. This occurs because BUNYK cre-
ates at once an array with all the faces in the dataset, and
this does not depend on the image size. While ME-Ray
creates the faces as they are intersected by the rays. Oth-
erwise, in terms of the dataset size, as we expected, when
the dataset increases, the reductions in memory usage of
ME-Ray also increases. This result confirms that our data
structures are set to handle big datasets.

Furthermore, the reductions in memory requirements
we obtained with our data structures, allowed us to use
double precision in the parameters to calculate the inter-
section between a ray and a face. BUNYK uses float for
these parameters, consequently causing some precision
errors. We have made some experiments with BUNYK
algorithm increasing the parameters precision to double

and obtained better images. On the other hand, the mem-
ory requirements increased about 12F bytes (where F is
the number of faces in the dataset).

The increase in the execution time, when compared
to BUNYK, comes from the fact that we have to scan
through out theUse_Set of the vertices to perform the
ray traversal. Since theUse_Set keeps the indices for
the cells incident on each vertex, its likely to occur dou-
ble intersection computation for internal faces. On the
other hand, BUNYK keeps all faces incident on the ver-
tices which makes it faster to compute such intersections,
while spending more memory. In our experiments, how-
ever, we are only comparing executions where the whole
dataset fits in main memory for both methods. As the
memory usage increases, the rendering will need to use
of the virtual memory mechanisms of the operating sys-
tem, which would have great influence on the overall ex-
ecution time.

It is also important to notice that ME-Ray and
EME-Ray gains over BUNYK are not only in memory
usage, but also in the correctness of the final image.
BUNYK does not handle all possible degenerated cases.
For 1024× 1024 images, in all the datasets, BUNYK
algorithm generates some flaws in the image. For Delta
Wing, for example, BUNYK fails in rendering 17 pixels.
This causes some black spots in the image as we can
observe in the 512× 512 image of Figure 3.

When compared to ZSweep, ME-Ray outperforms
ZSweep, in execution time, significantly for all the
datasets and all the image resolutions. Although it is
not an intuitive result, it is explained by the fact that,
in ZSweep, while thetarget-Z is not reached, the pixel
list increases. The bigger the list is, the more expensive
is the insertion, since it is ordered. Depending on the
dataset, thetarget-Z could be a bad parameter to start the
composition. ME-Ray, on the other hand, composes the
pixels on-the-fly as each intersection is found.

Another important difference in the performance of
ME-Ray and EME-Ray, when compared to ZSweep,
is the dataset structure. More "irregular" datasets with
holes and much more external visible faces would benefit
ZSweep, since ME-Ray and EME-Ray would have to
compute more external faces intersection. This, however,
is not the case for our workload, except for SPX, that
provides the smaller performance difference between
ME-Ray and EME-Ray compared to ZSweep.

In terms of memory requirements, ME-Ray spends
more memory than ZSweep, except for 1024× 1024 im-
age resolutions. EME-Ray, on the other side, spends less
memory than ZSweep for most of the datasets and image
resolutions. ZSweep increases linearly the memory re-
quirement with the increase in the image size, since as the
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image size increases, each face projected will insert inter-
section units into more pixel lists. ME-Ray also increases
linearly the memory requirements with the increase in the
image size. This increase is due to the increase in the size
of Faces_VEC, since more faces are intersected. EME-
Ray, otherwise, does not haveFaces_VEC data struc-
ture, so the memory usage maintains almost constant,
even when the image size increases.

Figure 3: Delta (512x512) generated by BUNYK with bad
rendered pixels highlighted by the orange box.

6 CONCLUSIONS

We proposed two novel ray-casting algorithms, ME-
Raycast (Memory Efficient Ray-casting) and EME-
Raycast (Enhanced Memory Efficient Ray-Casting). Our
algorithms improve previous work by Bunyket al in
terms of memory consumption, type of cell allowed in
the grid (tetrahedral and hexahedral), and complete han-
dling of degenerate cases. Our goal in improving Bunyk
et al work was to provide a software implementation of
ray-casting that is memory efficient without performance
degradation, and robust, i.e., generates correct images

Our experimental results showed that ME-Raycast and
EME-Raycast are comparable in performance to Bunyk
et al in most of the cases, but had obtained consistent and
significant gains in memory usage over their approach.
These results confirm that our data structures store only
essential information. When compared to other accurate
rendering algorithm, ZSweep, ME-Raycast and EME-
Raycast obtained considerable performance gains, and
competitive memory consumption. EME-Raycast by it-
self spends less memory than ZSweep for most of the
datasets and image resolutions.

Our results also showed that ME-Raycast and EME-
Raycast complete handling of degenerate cases generates
accurate images, rendering correctly all the pixels of the
image. Nevertheless, Bunyket al work failed on render-
ing some pixels in the final image, generating incomplete
results. Besides the memory and performance results, we

showed that we can deal with grids represented by tetra-
hedra, hexahedra or both. As far as we know, they are
the first ray-casting implementations which handle, at the
same time, both types of irregular grids.

We conclude that ME-Raycast and EME-Raycast are
efficient algorithms for ray-casting that allows the in-
core rendering of big datasets, avoiding paging opera-
tions on disk. The low memory usage of our algorithms
also makes them suitable for hardware-based implemen-
tations, in order to achieve real-time rendering. As future
work, we consider the study of out-of-core versions of the
codes that run on clusters of PCs.
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ABSTRACT

For city planning purposes, animations of growing trees of several species can be used to deduce which species
may best fit a particular environment. The models used for theanimation must conform to real measured data. We
present an approach for inverse modeling to fit global growthparameters. The model comprises local production
rules, which are iteratively and simultaneously applied tobuild a fractal branching structure, and incorporates the
propensity of trees to grow towards light. The parameters ofthe local production rules are derived from global
functions that describe the measured tree growth data over time. The production rules are influenced by the global
light distribution, which is represented by the amount of light available at each position within the tree’s crown.
Since we want to allow the user to explore the tree’s appearance interactively at any time during the animation,
all modeling computations must be within a time frame that allows for interactive rendering rates. To this end,
we developed a fast approximate algorithm for computing thelight distribution. The rendering itself must also be
fast; therefore, we sought a well-balanced compromise between photo-realism and performance. Because shadow
computations play a key role for photo-realism, we developed a fast approximate shadow computation algorithm
including soft shadows and self-shadowing. We applied our methods in order to model and animate the growth of
seven single-stemmed tree species in an interactive setting.

Keywords
Tree Growth Modeling, Animation, Real Time Rendering.

1 Introduction

Trees produce benefits that enhance quality of life for
city residents. Benefits include energy savings, air pol-
lutant uptake, CO2 sequestration, storm-water runoff
reduction, increased property values and increased vi-
tality in commercial areas. As trees grow larger, ben-
efits increase as leaf surface area increases. How-
ever, the benefits can be offset when tree branches, and
leaves conflict with other urban infrastructure, such as
buildings, awnings, signs, traffic signals, and lighting.
In dense urban environments limited space is a major
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constraint to tree planting. One goal of urban green-
ing is to maximize functional benefits and minimize
conflicts between trees and other infrastructure. To
achieve this goal it is important to know (1) the mature
size of different tree species, since both functionality
and conflicts depend on tree size relative to the space
that is available, and (2) the rate of growth for differ-
ent trees, because this influences the length of time be-
fore conflicts occur, as well as how soon functional
benefits are realized. Currently, landscape architects,
city planners, and urban foresters lack tools that help
them visualize how trees will grow over time, so that
they can compare different species and select ones best
suited to the site and their design objectives. Because
trees are expensive to plant and can live to be hundreds
of years old, computer-animated tree-growth modeling
can help users make judicious choices that will pay
large dividends over the long-term.

In computer graphics, several methods exist to de-
scribe and model computer-generated trees. The goal
of these methods is to generate photo-realistic images
of trees of selected species. The trees should appear as
natural as possible and vary in appearance as they do
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in nature. Typically, the quality of the images, i.e. how
natural the appearance of the trees is, is not quantita-
tively evaluated but just estimated by the human eye.
Real measured data such as tree dimensions are not
used to compare the models with nature.

For animations of trees growing over time, the com-
plex growing process under the influence of many bio-
logical phenomena has to be considered. Some elabo-
rate approaches exist. Our approach differs from most
of these in two main ways:

1) Our tree growth is based on measured data.

2) Our entire tree growth modeling process is done
on-the-fly, i.e. while users watch and interact with
the animation. We achieve interactive rates for
modeling and rendering.

The properties of our model allow users to interac-
tively compare the growth of different tree species side
by side. Because our model is based on real data the
users confidence in the approach is increased. For a
case study, we used global functions for seven single-
stemmed tree species. Our growth model described in
Section 3 is based on basic biological background on
tree growth so that a realistic branching structure can
be generated. We also used measured data for fitting
the global shape properties of the respective species.
Typically, a computer model for trees consists of a
branching structure with position, length and orienta-
tion information for every branch. Local production
rules are applied to each branch iteratively to generate
the complex branching structure. We derive local pro-
duction rules for our model based on the global func-
tions given. Moreover tree growth cannot be deter-
mined by local rules only, but global phenomena like
light seeking or shadow avoidance also have to be in-
cluded. Thus our production rules also consider avail-
able light and its distribution.

For tree rendering, several photo-realistic approaches
exist including sophisticated techniques such as the
creation of soft shadows by multiple subsurface scat-
tering. However, these approaches do not meet
real-time requirements especially when dealing with
steadily changing geometry. Thus we had to find
a compromise between photo-realistic rendering and
fast rendering. We observed that shadows are of high
importance in this context. We developed a simple and
fast method to approximate and render soft shadows.
In addition, the effect of self-shadowing is included
by drawing leaves with a luminance depending on the
light distribution. Details of our rendering methods are
described in Section 4.

2 Related Work

The modeling, simulation, and rendering of trees and
plants is a well-studied topic in computer graphics.
The formal description of trees is usually based on
local production rules. Starting with a trunk and it-
eratively applying local production rules generates a
complex branching structure.

The Lindenmayer systems (L-systems), introduced by
the theoretical biologist Aristid Lindenmayer [Lin68],
are the most common approach for a formal descrip-
tion of plants. In their bookThe Algorithmic Beauty
of Plants[PL90], Prusinkiewicz and Lindenmayer de-
scribes the general concept of L-systems and their ap-
plication to modeling different plants with different
structures. They also introduced the concept of para-
metric L-systems in which the local production rules
depend on parameters that are locally stored and up-
dated. This concept has been used and extended in
several algorithms [AK85, Blo85, LD99]. A survey of
existing L-system approaches is given in [PHMH95].

Natural phenomena such as growth, death, repro-
duction, and information flow in growing plants
can be modeled via L-systems. Prusinkiewicz et
al. [PHHM97] explained how the L-system model ap-
plies to nature. The influence of the environment on
the growth of plants is also considered.

For computer graphics applications, the main objec-
tive of modeling plants is to generate a highly re-
alistic scene. Therefore stochastic tree models have
been introduced to simulate the variety within one
species. The individual, realistic-looking plants dif-
fer from each other and can be organized to render
forests or fields [CSHD03] and even entire ecosystems
[DCSD02]. The goal of the previous modeling sys-
tems differs from ours in that they weren’t limited to
interactive frame rates.

Approaches using inverse modeling of trees have
been developed by Galbraith et al. [GMW04] and
Prusinkiewicz et al. [PMKL01]. They used relative
positions inside the crown to describe the local prop-
erties of the plant organs to generate trees that fit a
given shape. Inverse modeling in this sense means, for
example, that the relative position of a branch along
the trunk (height of the starting point of the branch di-
vided by the crown height) and the knowledge of the
crown shape and dimension determine the length of
the branch. This approach allows the use of real mea-
sured tree data such as height or crown shape.

Linsen et al. [LKMH05] presented a visualization
method for tree growth at interactive frame rates us-
ing global functions to model the shape and size of
the trees. They used some global parameters to de-
termine the local production rules but their approach
was too simple to produce realistic branch lengths. In
their method, several biological phenomena were not
considered including the fact that growth is periodical
in years, or that plants try to avoid growing leaves in
shadows.

Several approaches account for the light available
for the growth of plants [Ben96, HB03, HdFBR04,
SSBD03]. In these approaches a light source is mod-
eled and the amount of light a leaf or a branch receives
is computed. The illumination computation is very in-
tense due to the complex and changing geometry of
growing trees. The computations of the precise illu-
mination inside a tree crown are further complicated
by the reflected and transmitted light. To allow for in-
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teractive modeling, our light computation needs to be
much faster. We propose a fast approximate computa-
tion of the light distribution that is sufficiently precise
for growth modeling and for realistic shadow compu-
tations.

3 Modeling

3.1 Global Functions

Our tree growth model is based on global functions
of time that describe global properties of the tree
during growth. For modeling we use functions for
the diameter at breast heightfDBH, tree height fH ,
crown diameterfCD and the crown heightfCH. These
functions are derived from real measured data for
seven single-stemmed tree species, the London plan-
etree (Platanus x acerifolia), silver maple (Acer sac-
charinum), Modesto ash (Fraxinus excelsior), golden-
rain tree (Koelreutaria paniculata), Southern magno-
lia (Magnolia grandiflora), Chinese pistache (Pistacia
chinensis), and hackberry (Celtis occidentalis).

3.2 Biological Background

We briefly summarize the biological characteristics of
tree growth for single-stemmed trees that are impor-
tant to our approach; for a more detailed explanation,
we refer the reader to the literature [SS02, Mat91,
Nul68].

A tree is a plant that grows over years, building up
a large branching structure. The growth of a branch
segment is divided into two phases, primary growth
and secondary growth. Primary growth is the elonga-
tion of a bud from last year’s growth to a shoot ter-
minated by an apical bud. During primary growth,
leaves and lateral buds are produced. After the first
year’s growth, branch segments start the secondary
growth phase, which is characterized by steady thick-
ening while elongation stops. The apical bud always

Figure 1: Annual growth of a branch. The apical
bud (red) on the left produces an apical shoot (red) on
the right with a new apical bud (red) and lateral buds
(green). One of the lateral buds on the left produces a
lateral shoot (green).

produces the longest shoot and elongates the branch,
while the lateral buds produce shorter shoots, a phe-
nomenon known as apical dominance. The lateral
buds do not always produce a shoot. The probability
that they will produce a shoot is mainly dependent on
the available light. A schematic example of the growth
of one branch is shown in Figure 1.

The leaves growing along the shoots produce energy
by the process of photosynthesis. Thus trees tend to
grow leaves in positions with good light. The different
responses of plants to light and shadow are explained
and discussed inPhotomorphogenesis in Plantsby
Kendrick and Kronenberg [KK86]. Branches receiv-
ing enough light try to produce many leaves to pro-
duce energy. Thus they tend to bifurcate more of-
ten. Branches exposed to less light do not bifurcate as
much; they tend to grow faster and to produce longer
branches in order to reach for more light.

3.3 Tree Growth

A branching structure consists of bifurcations and
branches. To generate complex branching structures,
computer models typically use iteratively and simul-
taneously applied local production rules. In order
to generate branching structures that consider global
properties like the global functions derived in Sec-
tion 3.1 or the available light distribution, we have to
extend these local production rules to rules that couple
local reproducibility with global growth properties.

In our model, a branch consists of branch segments
representing the annual growth. A branch segment is
defined by its length, diameter, starting point, and di-
rection. A bifurcation is characterized by the bifur-
cation angle, the divergence angle, and the ratios of
length and diameter between the parent branch and the
child branches. The bifurcation angle describes the
angle between the new and old branches and the di-
vergence or twisting angle describes the change in ori-
entation because not all branches lie in one plane. In
addition to branches and bifurcations, we also model
leaf growth. Flowers and fruits can be handled in the
same way but are not included in our model, since our
goal is the visualization of growth over several years
while seasonal changes are omitted. The leaves spi-
ral around the branch equidistantly. The leaves only
grow on young and small branches that are exposed to
sufficient light.

Tree growth is modeled in discrete steps each repre-
senting 1

n-th of a year wheren is exchangeable and
can accommodate existing graphics hardware equip-
ment. In our implementation we usen = 20. In each
step, the production rules are applied to all branch seg-
ments. Using a pseudocode description, the recursive
function for growing branches is given by:

grow (branch)
if (primary growth)

compute new length
if (end of primary growth)

produce apical branch segment
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produce lateral branch segment
if (secondary growth)

compute radius
grow(apical branch)
if (lateral branch exists)

grow(lateral branch)

The result of “produce lateral branch segment” is a
new lateral branch segment but only if the global pa-
rameters allow its generation. Otherwise nothing is
done. A branch segment is in the phase of primary
growth for one year. Afterwards, the secondary growth
starts.

Every branch has an order representing its depth in the
branching structure (Weibull ordering). The trunk has
order 0, the branches connected to the trunk have order
1 and so on.

3.3.1 Trunk length

The trunk consists of two parts, one below the crown
and one surrounded by the crown. The lengths of both
are controlled by the global functionsfH and fCH. The
length of the part below the crown is calculated as the
difference between the measured tree height and the
measured height of the crownl(t) = fH(t)− fCH(t)
wheret is the age of the tree in years. The length of
the part surrounded by the crown is given by the mea-
sured height of the crown,fCH(t). The whole trunk
consists of many trunk segments each representing an-
nual growth and the last one is the only one in the pri-
mary growth phase. Thus the growth of the last seg-
ment is given by the difference between old and new
crown height, fCH(t)− fCH(t −∆t) for time steps of
size∆t.

3.3.2 Branch length

For calculating the length of each branch, its order, its
relative position,pr ∈ [0,1], along the parent branch,
and the length of the parent branch,lp, are used. The
length calculation of the branches is done with the help
of a crown shape function,c : [0,1]→ R, which is rep-
resented by a geometric function that returns the rela-
tive length of a branch at a relative position,pr , along
the trunk to fit the crown shape (see Figure 2). The
crown shape function is applied recursively for the en-
tire branching structure, i.e., the length of each branch
is determined with respect to the crown shape function
applied to its parent branch.

Multiplying the relative length of a branch,c(pr),
by the length of the parent branch,lp, by an order-
depending factor, and by a length scaling factor,sl ,
gives the new length

l = sl ·
c(pr) · lp

0.5+0.5·order
.

This scaling factorsl ∈ R+ randomly assigned to each
branch during its initialization is uniformly distributed
over [0.6,1]. To allow for a few branches to break out

pr

c(pr)

Figure 2: Example for elliptical crown shape func-
tion: pr is the relative position of the starting point of a
branch andc(pr) the computed relative branch length.

of the given shape and grow towards empty regions,
5% of the branches of order≥ 2 are assigned a factor
uniformly distributed over[1.2,1.5]. Again the growth
is only added to the length of the last branch segment,
i.e., the only segment of the branch in primary growth
phase.

Since branches grow towards light, we adjust our
model so that light influences the scaling factorsl .
When there is only a little light at the branch apex, the
scaling factor increases such that the branch reaches
out of the shadow. When there is plenty of light at
the apex of the branch, the scaling factor does not in-
crease.

3.3.3 Radius

The radius of each branch segment is computed us-
ing the diameter at breast height functionfDBH. Sim-
ilar to the method of scaling the length with factorsl ,
we apply a scaling factorsr ∈ [0,1] to the radius. The
new radius for each branch segment or trunk segment
is given by

r(t) = sr · fDBH(t) ,

wheret, again, denotes the age of the branch segment
in years. The scaling factorsr for a branch segment is
computed during initialization depending on the scal-
ing factorsr, f of the previous branch segment as

sr = sr, f · (1−sr, f ·0.7) .

3.3.4 Bifurcation

Once the primary growth of a branch segment stops,
the production rules for new branches have to be ap-
plied. As mentioned in Section 3.2, the probability
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that a bud near the apex will produce a shoot is much
larger than for the other buds. In our model, the apical
bud always produces a new shoot, which elongates the
branch and becomes a new segment. One lateral bud
can produce a new shoot which starts a new branch of
one order higher. The probability is determined by the
local tree density, the available light at this position,
and a random factor. Basically, plenty of light leads to
many bifurcations and the absence of light leads to no
further bifurcations.

For these new shoots, the scaling factorssl andsr are
generated, and the angles characterizing the bifurca-
tion are determined. The angles used are inspired by
the ones that can be seen in nature in the respective tree
species. In particular, branches tend to spiral around
the parent branch.

3.4 Light

For the purpose of interactive modeling and visualiza-
tion light calculations must be fast. We use a method
to approximate the available light at each position in-
side the crown of the tree. We divide an axes-aligned
box that covers the full-grown tree into discrete vol-
umes. We send light rays simulating daylight through
the scene that lose intensity as they pass through the
cells. The loss of intensity is proportional to the per-
centage of the cell’s space covered by branches and
leaves.

After each growth step, the light distribution within
the crown has to be recomputed. Therefore, we de-
fine equidistant planes parallel to the ground in the
crown space. Thus, the bounding box of the tree is
partitioned into slabs. Each branch is projected into
the lower plane in each slab using parallel projection
while information on its radius and number of leaves
is stored.

Each plane is divided into squares forming a regular
grid. The size of the grid is adapted to the size of the
crown. For each squareS, a density,D ∈ [0,1], is com-
puted that measures the percentage of the square not
covered by branches or leaves

D = ∏
i∈S

(1−A(i)) · (1− l(i))

where A(i) is the area of the part of the projected
branchi that intersectsS, and l(i) is the area of the
leaves ofi whose projection intersectsS. DensityD
can be interpreted as the density of the cuboid above
the square and it approximates the percentage of the
incoming light that passes through this cuboid. Note
that branches that are projected to the same position in
the square are both fully considered as we are comput-
ing the density of the cuboid.

With this information we need to simulate daylight to
compute the illumination within the trees crown. The
direction of the incoming sunlight varies over the day.
Thus we cannot assume a steady light source with par-
allel rays, but need to consider directional light. Benes

[Ben96] discussed the effect of daylight and its inten-
sity and direction. The light enters the scene with
the greatest intensity from the top and decreases to-
wards the sides. Therefore we send many rays from
the top and fewer rays from the sides as shown in Fig-
ure 3. For interactive modeling, the efficiency of the

Figure 3: Light rays (green) from the boundary faces
directed underneath the tree are used to simulate day-
light.

ray traversal computations is important. We adopt the
idea of Bresenham’s line-drawing algorithm [Bre65]
and generalize it to 3D to quickly compute the se-
quence of cuboids that are traversed by each ray. The
amount of light available for each cuboid accumulates
with each ray that traverses it. If a ray with intensityIr
hits a cuboid with previous intensityIc, Ic gets updated
using the accumulation rule

Ic = 1− ((1− Ic) · (1− Ir)) = Ic + Ir − IcIr .

If the cuboid has densityD, then the intensity of the
traversing rayIr is reduced by multiplying it byD. Af-
ter all ray traversals we have a good approximation of
the light available for each cuboid.

4 Rendering

In our implementation, all geometry is rendered as tex-
tured polygons. As a texture for the bark, we used
photographs of the trees’ bark, and as a texture for the
leaves, we scanned a typical leaf or took photographs.
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4.1 Branches

For each branch a closed mesh of generalized cylin-
ders is generated. For branches of higher orders, a new
mesh is generated that starts inside the parent branch.
Hence, we do not have to compute a special bifurca-
tion structure but instead generate the impression of
branches coming out of the parent branch.

4.2 Leaves

The leaves surrounding a branch are rendered as
equidistant triangles twisted around the branch. The
position of each leaf has to be computed after every
growth step as it depends on the new position of the
branch and on the new diameter of the branch. For
each leaf, the coordinates of a triangle are computed in
such a way that the triangles are tangent to the branch.
Therefore, no leaf stalk starts inside the branch, and
each leaf is connected to the branch. These triangles
are rendered using a partially transparent leaf texture.

4.3 Shadows

Shadows are very important for natural-looking
scenes. For realistic shadows, we need soft shadowing,
which is too time-consuming to compute precisely. In-
stead, we approximately compute hard shadows and
render them using textures with higher opacity in the
center and decreasing opacity to the boundary. We can
render such polygons in real-time and generate soft
shadows.

The positions of the shadows of the branches and the
attached leaves are computed using the results of the
light computation described in Section 3.4. As a re-
sult of the light computation, we obtain planes with
projected coordinates of all branch segments. In addi-
tion, we store information about their diameters and
the leaves at these branch segments. For each pro-
jected branch segment, the coordinates of a quadrilat-
eral are computed. For the shadows of the leaves the
coordinates of small squares around the respective pro-
jected branch are computed. The soft-shadow textures
of all branches and leaves are accumulated in a texture
buffer, which is rendered at each frame.

Real shadowing includes not only the shadows under-
neath the tree on the ground but also self-shadowing
within the tree. We apply self-shadowing to the leaves
with the help of the available light information ob-
tained from the computations described in Section 3.4.
The leaves are divided into 10 luminance classes de-
pending on the amount of incoming light. The leaves
of each class are rendered with the respective lumi-
nance so that leaves appear darker or brighter due to
the light that arrives at the small cuboid in which they
are located. All leaves are rendered with the same tex-
ture.

4.4 Implementation

For every branch segment, the orientation is stored as
a rotation relative to the orientation of the previous
branch segment. These rotations are not stored as ma-
trices but as quaternions to avoid matrix computations.
The branch segments are stored in a binary tree with
the first trunk segment being the root. While travers-
ing the tree, the start position of a branch segment is
passed as a parameter of the parent branch segment.
This position can be used directly, since only the an-
cestors affect this new position. With this position
and the orientation, the coordinates of the generalized
cylinders are computed, again with the help of quater-
nions. Even the leaf positions are computed this way.

The simulation can be stopped at any time for a closer
look at the tree of this age. To speed up the perfor-
mance, we save all the necessary coordinates, normals
and texture coordinates in each step and render them at
once. Therefore no new geometry computations have
to be performed when the simulation is interrupted.

5 Results and Discussion

We animated the growth of prototypical trees from 4
to 50 years. We did not start the animation earlier,
as we had no data available for trees younger than 4
years. The animation can be halted at any time to have
a closer look at a tree of a certain age. The frame rates
we achieved allow for changing the viewpoint interac-
tively even while the animation continues, and growth
modeling processes are executed in addition to the ren-
dering.

We were able to animate trees of realistic natural ap-
pearance. Moreover, the trees fit the global mea-
sured functions of tree height, crown height and width,
trunk length, and radius. One can also observe com-
mon natural phenomena of trees within our computer-
generated models. For example, the interior of the
crown exhibits fewer branches and leaves than along
the outside due to the light distribution. This shows
that using light information for modeling growth re-
ally helps improve the model, getting closer to a real
tree. The branching structure of the trees looks very
realistic. It is not as regular as it would be when ap-
plying simple L-systems, and it follows natural laws
of tree growth. For the local production rules, we use
several stochastic components to achieve a higher di-
versity within our trees and also among our trees.

In Figure 4, some screen-shots of growing trees taken
from the animation can be seen. The trees all have
different densities, crown shapes, and overall appear-
ances. The last screen-shot of the two Southern mag-
nolia trees shows the effect randomness has on the
trees. Both trees use the same light and growth pa-
rameters, but have a distinct appearance. In addition,
we provide a video showing the animated growth at
www.math-inf.uni-greifswald.de/informatikJP/rudnick/video.

Depending on the computer system used, the interac-
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(a) (b) (c)

(d) (e) (f)

Figure 4: Screen-shots of different tree species taken fromour animations: Modesto ash at 20 years (a), silver
maple at 20 years (b), hackberry at 20 years (c), London planetree at 30 years (d), Chinese pistache at 30 years (e),
and two Southern magnolias at 50 years (f).

tive animation may slow down a little for older trees
due to the large number of branch segments. Obvi-
ously the time for all calculations depends on the num-
ber of branch segments. In every growth step, the
local production rules have to be applied to all seg-
ments, the light information for every position inside
the crown has to be computed, and every branch has
to store this information for its own position. For ren-
dering all polygons of branches, leaves, and shadows,
the respective geometry has to be computed. When
the growth simulation is halted, the animation achieves
a better frame rate because no growth steps have to
be performed and only the rendering computations are
needed. In Table 1, the computation time in millisec-
onds for the individual modeling computations and
the rendering is shown dependent on the number of
branch segments. We enlist the computation time for
the growth modeling (applying production rules), for
updating the light distribution, and for generating the
mesh geometry. The Southern magnolia, for example,
with 30,000 branch segments is rendered with nearly
half a million polygons. The times were measured on a

PC equipped with a 3.06GHz processor and an NVidia
GeForce 6800 ultra graphics card.

Although implementation on the GPU may be used to
further improve the frame rates, our overall goal was to
distribute our program over the web for city planning
purpose. Thus, our system should run on any personal
computer with any hardware configuration. Thus, we
decided not to require specific graphics hardware.

6 Conclusions and Future Work

We have presented a real-time tree-growth animation
for urban street trees. The real-time computations in-
clude all tree-growth modeling steps, geometry gen-
eration, and rendering. The growth of the trees is
controlled by given, global functions of time for tree
height, diameter at breast height, and crown height and
width. In our model, we have mapped these global pa-
rameters to local production rules. The trees are gen-
erated by simultaneously and iteratively applying lo-
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# branch computation times (inms) rendering
segments growth light mesh time (in ms)

5,000 7 7 2 16
10,000 13 8 12 16
20,000 27 12 30 33
30,000 40 13 60 33

Table 1: The computation time in milliseconds for
each frame, dependent on the number of branch seg-
ments. A tree with 30,000 branch segments is quite a
large and old tree. It consists of nearly half a million
polygons.

cal production rules to all branches. This approach
produces trees with a natural branching structure that
fits the global properties. In our model, we have also
included the influence of light on the growth of the
tree. We used a data structure giving us global control
of the tree and allowing us to compute the available
light at every position inside the crown at any time. As
a result, crown density conforms to characteristics of
measured trees, as does crown size.

For rendering purposes, we used a polygon-based ap-
proach with photographs and scans for textures. The
appearance of the tree is highly realistic when con-
sidering real-time constraints. In our animation we
reached interactive rates due to the sophisticated yet
simple modeling and rendering methods. For shadow
computations including self shadowing we made use
of the light distributions computed during modeling.

We applied our model to seven different single-
stemmed tree species. For future work we plan to
apply our method to additional tree species, includ-
ing multi-stemmed ones. We will also model conifers
when the necessary global functions are available. An-
other objective for future work is to include the effects
of buildings on light distribution and tree-growth.
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ABSTRACT 

This paper presents a fast closed-form solution estimating the rotation points of joints relative to the motion capture 
data. The proposed solution estimates the physical location of joints inside the body of the person wearing the track-
ers. The Generalized Delogne-Kåsa method used for our implementation fits spheres, cylinders, circles and planes to 
the motion capture data without the need for initial guessing. This non-iterative, closed-form solution is fast as it 
calculates the rotation point with O(N) averaging along with one inversion of a 3x3 positive semi-definite matrix for 
each joint. The error in the joint location is on average 3σ/√N which is low. In addition, sample points for every 
joint can be from different time sequence allowing flexibility in recovering the joint locations. Once the joint loca-
tion relative to the tracker position is determined, it could be used for the remainder of the data set. Publicly avail-
able CMU motion capture data was used for this study. Two animation sequences, showing our method, are in-
cluded with this paper. These results can be compared to that available at the CMU site for the same animation.  
Since the pose is found relative to the given data, our pose estimation provide better fit to the given data, revealing 
subtle, individual nuances of the person used for the motion capture. Because of the closed form solution, our tech-
nique is ideally suited for the use of motion captured data to create skeletal motion in 3D games or applications 
where real time performance is essential.  
Key words: sphere curve fit, joint location, articulated motion, Delogne-Kåsa Method, motion-
capture data 
 

1. Introduction 

Motion capture animation has been continuously im-
proved by many authors [2, 5, 6, 12-21, 25, 27, 28, 32].  
Their studies can be divided into two methods of analy-
sis: kinematic and kinetic [1].  In kinematic methods, 
scientists study the mechanical displacements of the 
limbs during motion.  In kinetic (or dynamics) methods, 
the energies and forces on the limbs are studied during 
the motion of the articulated figure. 

Kinematic methods are used in animation by determin-
ing the joint angles from space-time constraints.  Holt et 

al. [8] estimated the 3D motion of an articulated object 
from a sequence of 2D perspective views.  They used a 
decomposition approach to break down the motion of 
each segment.  This was a good use of video motion 
capture to estimate the animation of a figure.  Choi [5] 
improved standard forward kinematic techniques to 
provide more accurate end-effector positions.  Inverse 
kinematics is another technique employed by many 
authors [19].  Kinematics tends to be a faster technique 
than kinetics. 

Kinetic methods consider the changes in energy, inertia, 
and forces to create animation.  These changes deter-
mine the way the joint angles change in time.  Semwal 
et al. [24] visualize the leg rotations of a cyclist show-
ing forces during the pedal-movement.  A straightfor-
ward approach is to use Newtonian or Lagrangian me-
chanics, and involves solving simultaneous second or-
der partial differential equations.  Recursive methods 
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can be more efficient [30].  Liu and Popović [15] infuse 
physical reality in to sparsely keyed motion data.  An 
articulated figure realistically played hopscotch using a 
minimal set of pre-determined positions.  Liu and Pop-
ović [15] relied on off-line calculations.  Popović and 
Witkin [21] discuss a novel application by transforming 
standard models of motion in to a diverse assortment of 
similar motions.  For instance, a standard run sequence 
can transform into a run with a limp-sequence, while 
retaining realism. 

Recently, motion captured data has become a rich 
source for providing realistic human motion.   Content 
based retrieval [17] and using lower dimensional data 
[5] are recent examples of use of the motion captured 
data in recent studies.  Kinetics is of interest on the mo-
tion captured data in Zordan [32].  Most of the existing 
methods involve an initial guess of the underlying 
skeleton and iterating through until a stable solution 
evolves. Various forms of least squares fitting are the 
most popular, most of which use the Levenberg-
Marquart method for solving the minimum.  O’Brien 
[19] calculates a skeleton and then uses inverse kine-
matics to produce motion from motion capture data.  
Our method also belongs to the kinematics group by 
analyzing motion-captured data to find a skeleton 
within the data similar to O’Brien [19].  The proposed 
method improves on the work of O’Brien [19] by pro-
viding a faster replacement for the least squares fit of 
joints.  Our technique is more computationally efficient 
than O’Brien because once the offsets from the sensors 
are calculated during pre-processing, they are reused 
during skeletal animation. This direct approach captures 
the subtle deformations that the human body is capable 
of undergoing during complex movements and is inher-
ent in the sensor (motion captured) data.  These subtle 
body deformations are also present in our skeletal ani-
mation because of our algorithm, thus improving the 
quality of animation.  Although not a focus of this pa-
per, an incremental improvement technique, being im-
plemented, would provide yet another order of magni-
tude improvement in future.   

An articulated figure can be divided into rigid segments 
that are connected to each other by joints.  A tree struc-
ture is a perfect way to organize these segments [19].  
Root to leaf processing of segment properties allow for 
a dependency on the parent segment’s position and ori-
entation.  Such a dependency is exploited in this paper.  
The tree structure of segments can be known ahead of 
time (a-priori).  When the tree structure is not known, 
e.g. motion data from an unknown figure), much more 
off-line analysis is needed to produce the hierarchy.  
The solution is the equivalent of a minimal spanning 

tree [19].  Ko and Cremer [11] used 34 DOF for their a-
priori system.  Bolt [4] used 17 DOF in his model of the 
human figure.  The proposed research in this paper ex-
tends to arbitrary number of DOF, and motion captured 
from other animal forms.  Although implemented for a 
human skeleton that conforms to a tree hierarchy, our 
technique easily extends to the case when tree structure 
is not apparent, and animation must directly work from 
the sensor data. 

2. Closed Form Rotation Point Determination 

In our research, it was found that a closed-form solution 
existed when the variance of the square of the distance 
from the measurement to the point of rotation is mini-
mized.   Zelniker [31] shows that the 2D equivalent had 
been studied and rediscovered since the 1970’s.  Zelni-
ker generalized the method to any number of dimen-
sions and proved that the bias in the estimation is not 
significant enough.  Our Monte Carlo experiments 
comparing the Least Squares Linear Regression (LS), 
and the Generalized Delogne-Kåsa Estimator (GDKE) 
show them to have approximately the same error in 
answer.  The speed is improved when analyzing the 
same count as shown in Figure 1. 
 

Figure 1: Relative speed improvement of GDKE versus 
linear least-squares. 
 
Previous solutions [3, 7] and recently O’Brien et.al. 
[19] determine the rotation point by iterating on a least-
squares equation or M-estimators starting from an ini-
tial guess.  This approach involves either linear or non-
linear fitting of the data and has a chance of not con-
verging to a solution.  The initial guess must be close 
enough to the truth or the iterations may diverge away 
from the point.  The GDKE solution to the center of 
rotation involves no guessing, no iterations, and the 
inversion of a 3x3 matrix.  The GDKE is robust with 
noise and also can distinguish cylindrical joint motion, 
with a little extra work. The speedup shows that our 
method is computationally more efficient than the least-
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square method of O’Brien’s [19],  and is a suitable re-
placement for both linear and non-linear least-squares 
fitting of a sphere, cylinder, circle, and a plane.   
 
The requirements in order to determine the point of 
rotation for this method are: (a) Known fixed axes on a 
parent segment. (b) No translational movement. (c) 
Enough rotational motion. (d) At least 4 positions of 
one marker.  The above requirements are satisfied for 
the problem in hand which amounts to finding the best-
fit sphere for a 2 or 3 degrees-of-freedom (DOF) joint 
or the best-fit cylinder for a 1 DOF joint.  According to 
the National Institute of Standards and Technology [26] 
the best approach to this problem is non-linear Least-
Squares fitting but that method could be problematic for 
the general case.  O’Brien [19] uses linear least-squares 
fitting.  Our research, consistent with recent results in 
Zelniker’s [31], shows that the GDKE is a viable and 
robust replacement for speeding up the calculations as 
explained below.   
 
2.1. Theory  
Presented here is a derivation of the Generalized 
Delogne-Kåsa Estimator (GDKE).  The estimator is a 
closed form solution for a hypersphere that has O(N) 
averaging and involves the inversion of a 3x3 positive-
semidefinite matrix.  Stated simply -- the solution in-
volves solving for the absolute minimum of the vari-
ance of the square of the lengths from the point of rota-
tion to each position for a single marker.  The ith posi-
tion for the jth joint (xji) around the joint’s rotation point 
(cj) can be expressed as 

x ji = c j + R jiρ ji  

where  
ρ ji = 1 

This position (xji) is not the absolute position that comes 
directly from motion capture.  Instead it is relative to 
the parent segment in its fixed coordinate system.  The 
square of the radius of the measurement (Rji) has a vari-
ance of  

s j
2 = 1

N j −1 R ji
2 − ˆ R j

2( )2

i=1

N j

∑              (1)
 

where the radius can be written as 

R ji ≡ x ji − c j  

and the average square of the radius is 

ˆ R j
2 = 1

N j
R ji

2

i=1

N j

∑ . 

Equation 1 is then minimized to solve for the GDKE 
rotation point (cj).  Setting the gradient of the variance 
to zero thus 

∇s j
2 = 0  

will provide an equation to find cj.  The gradient can be 
written, after much algebraic manipulation not pre-
sented here due to space-limitation, as 

∇s j
2 = 4 2C j c j − x j( )− S j( ) 

where Cj is the standard definition of the sample vari-
ance-covariance matrix for a vector quantity given by 

C j = 1
N j −1 x ji − x j( ) x ji − x j( )T

i=1

N j

∑       (2)
 

The average is given by 

x j = 1
N j

x ji
i=1

N j

∑ .                        (3)
 

The variance-covariance matrix (2) is a biased estima-
tor for the covariance of the vector measurement.  Cj 
has been used in many situations [9] for curve fitting 
and has proven useful in identifying the best-fit plane 
for data. 
The other vector quantity Sj can be considered the vec-
tor equivalent of the third central moment and is  

 S j = 1
N j −1 x ji − x j( ) x ji − x j( )T

x ji − x j( )
i=1

N j

∑     (4)
 

Equation 4 is an unbiased mix of multi-dimensional 
moments, and is a new quantity, not available in [29, 
23]. The final solution for the center of the hypersphere 
(i.e. the relative joint location) is 

c j = x j + 1
2 C j

−1S j .                       (5) 

This formula looks different than Zelniker [31] 
but is  algebraically equivalent. 

The variance-covariance matrix Cj is positive-
semidefinite so Cholesky decomposition provides a 
more efficient solution to the equation.  There are two 
cases that Cholesky decomposition produces an unde-
sirable answer or even fails.  The trivial case is if all 
points coincide, then Cj is singular.  This case occurs 
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when the joint does not move.  The non-trivial case is 
during planar motion.  If there exists a vector n such 
that 

x ji
T n = k  

where k and n are constants for all positions of the 
marker, then Cj is singular.  All is not lost though with 
these singularities or even near singularities.  The pla-
nar motion can still be solved for as explained below. 

The Null Space of a matrix is a set of vectors that solve 
the equation Cjn=0.  This set of vectors is inherently 
extracted during the Singular Value Decomposition 
(SVD) [22] of a matrix based on some threshold.  The 
condition number of Cj will provide the threshold and 
the measure for which to check if the motion is planar.  
The condition number is the ratio of the largest eigen-
value to the smallest eigenvalue.  If the threshold is 
equal to the inverse of the condition number then a sin-
gle vector exists in the Null Space of Cj and that vector 
happens to be the normal to the plane of motion.  That 
vector is also the eigenvector that corresponds to the 
smallest eigenvalue.  This is proven by solving for the 
minimum of the variance of the distance from the plane.  
The distance (zji) from the plane for each point is 

z ji = x ji
T n . 

The gradient of the variance is then determined to be 

∇Var z j( )= 2C jn  

which clearly shows the minimum occurs when Cjn=0.  
The only solution to this equation is the Null Space of 
the variance-covariance matrix Cj.  If the motion is de-
termined to be planar the null vector can be used to 
determine the center of the circle on the plane.  The 
equation for the best-fit circle is then 

′ c j = c j + nnT x j − c j( )                   (6) 

which basically removes one dimension along the null 
vector for the solution to the hypersphere. 
So we have a solution for the equation when it is both 
singular and positive.  How do we know it is unique or 
worse yet, maybe it is a maximum and not a minimum?  
The answer can be achieved by finding the double de-
rivative of s2

j (i.e. the Hessian).  The Hessian is deter-
mined as 

1
2 ∇∇T s j

2 = 4C j . 

Since the Hessian is positive-semidefinite, the answer 
in Equation 1 is proven to be an absolute minimum. 

 

2.2 Monte Carlo Simulations 

The GDKE method estimator has been shown to be 
biased [31].  Zelniker’s analysis showed that the bias is 
of order of the standard deviation of the measurements.  
This bias is actually not significant enough to warrant 
dismissal of the method.  We conducted Monte Carlo 
simulations of spherical data to confirm our claim.  
Data points were produced uniformly on a sphere with 
a known error introduced to the positions.  The number 
of points were uniformly chosen between 4 and 1000 
inclusive.  The known error was picked with a Log-
Normal(0,10) distribution.  The radius of the sphere 
was chosen with a LogNormal(0.18,1).  The center of 
the sphere was chosen with Gaussian(0,0.5) uniformly 
around the point (0.6,-0.2,0.9).  The simulation was run 
5000 times and GDK estimators were calculated.  The 
bias from the true center was analyzed using the Or-
dered Statistics method [10] of determining the prob-
ability distribution.  The data showed that the bias mag-
nitude is proportional to σ /√N.   The ordered statistics 
method shows a best fit probability of Weibull(2.378, 
3.302) as can be seen in Figure 2. 

Figure 2:  Probability Density for the bias for the 
GDKE center. 
The resultant distribution has an expected value of 2.93 
and a standard deviation of 1.31.  So the final center 
estimator for the sphere can be expressed empirically as 

c − c0 ≈ 2.93
σ
N

                 
(7) 

which is O(σ/√N) where N is typically 100 samples 
during preprocessing. Here, c0 is the true center, σ is 
the true standard deviation of the positions, N is the 
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sample count.  The radius was similarly analyzed to 
find that the value is unbiased when  

σ < 0.1R0 

as shown in Figure 3.  R0 is the true radius.  This situa-
tion occurs for most measurements and makes physical 
sense since one does not want to have an inaccuracy 
anywhere near the radius of the sphere (i.e. σ =R0).  The 
empirical formula for this situation is 

R − R0 ≈ 0 . 

 

Figure 3: Error in GDKE radius estimate 

These experiments and the analysis from Zelniker show 
that the GDKE method is a better replacement for the 
slower linear and non-linear least-squares fitting used 
by most authors, including OBrien et al. [19]. 

2.3. Procedure for Determining Center 

The procedure to determine point of rotation of a joint 
is as follows.  This method automatically determines 
the type of joint, either spherical, cylindrical or not 
moving at all. 

1) Choose one marker with absolute positions x’ji on 
segment. 
2) Make points relative to parent. 
Mj-1 = column matrix of parent axes 
pj-1 = center of parent’s coordinate frame 

x ji = M j −1
T ′ x ji − p j −1( ) 

3) Calculate mean, covariance and third central moment 
of points using Equations 2,3,4. 
4) Using singular-value decomposition, determine the 
condition number, the null-space vector, and the solu-
tion for the best-fit sphere.  Use Equation 5. 
5) If condition number is small then use spherical solu-
tion otherwise find the rotation center for the planar 
motion.  Use Equation 6. 
6) Store the center of rotation and the null-space vector 
for later use of displaying skeleton at each frame. 

2.4. Applying the GDKE to Motion captured Data 

The motion capture data used in this paper comes 
mainly from the very large database (>2GB) of motions 
captured by Carnegie Mellon University Graphics Lab 
(CMU Labs).  The data is freely downloadable at 
http://mocap.cs.cmu.edu/.  The database was created 
with funding from the NSF grant EIA-0196217.  There 
are 1576 trials in 6 categories and 23 subcategories.  
We also analyzed the data from Advanced Computing 
Center for the Arts and Design (ACCAD) at 
http://accad.osu.edu/. 

Motion capture information is acquired on up to forty 
or more markers on the body depending on the motion 
being studied.  The CMU data comes in a few file for-
mats.  The raw Cartesian coordinates of the data are 
stored in the C3D file format [18].  Each time frame is 
stored, with each frame consisting of X,Y,Z for each 
marker on the body.  If any data is missing from a 
frame, that point is zeroed and marked.  The captured 
motion also comes in the form of ASF and AMC file 
formats.  These are created after the VICON program 
has done analysis of the data.  The ASF format stores 
the skeleton and joint information to create an articu-
lated figure on the screen.  The AMC format contains 
every time frame’s translation and rotation for each 
bone.  Our method works with the raw XYZ data and 
therefore does not consider the post-analysis data in the 
AMC files.  A motion capture file (e.g. C3D file) con-
tains the data, as well as a name associated with each 
marker.  For example, a marker is placed on the right 
thigh and is called “JOE::RTHI”.  Usually, the animator 
doesn’t have the same designation so a cross-
correlation must be achieved to identify which segment 
this marker belongs.  Our implementation uses a two-
file process to cross-correlate a C3D data-set with the 
segments on the ATM model.   

2.3. Extracting Joint Information in Our Implemen-

tation 

Most information in motion capture data comes in the 
form of Cartesian coordinates of markers placed on the 
segments of an articulated figure.  Each joint between 
segments has a point of rotation (if purely rotational) 
and joint axes.  Magnetic tracking sometimes comes 
with orientation axes so much of this section can be 
skipped if that is the case.  Usually, and in our case, the 
frames of data must be analyzed during joint motion to 
determine the axes and rotation point.  The center of 
rotation can be calculated for each joint if: 1) The orien-
tation of the parent segment can be evaluated. 2) The 
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child segment has at least one marker. 3) The child 
segment is in motion relative to the parent segment. 

The orientation of a segment can be determined if there 
are at least three non-linear data points fixed to that 
segment.  One of the data points can be the center of 
rotation.  There is a hierarchical dependency for deter-
mining the center of rotation and the orientation.  Thus, 
the orientation can be determined if there: 1) is one data 
point, rotation point, and a rotation axis; 2) are two data 
points and one rotation point, all non-collinear; 3) are 
three non-collinear data points. The information can be 
retrieved if calculated hierarchically from root to leaf.  
First, define the tree.  Then, assign the markers to their 
appropriate segments.  The root must have at least three 
markers.  No center of  rotation for the root can be de-
termined.  The children of the root can determine their 
center of rotation relative to their parent by the above 
mentioned method of GDKE.   
 
The rotation point cjk for the current time frame k is  
determined from 

c jk = x jk + M jkv j  

where vj is the local relative vector as determined from 
GDKE, xjk is the center of the coordinate system, usu-
ally one of the marker points, and Mjk is the 3x3 matrix 
of column vectors that represent the axes of the seg-
ment’s coordinate system. 
The coordinate matrix is composed of three column 
vectors that make the orthogonal coordinate system.  It 
is determined differently for each of the three cases. 
1) One data point is available, use null-vector: 

ˆ x = ˆ n  

2) Two data points are available, use second point and 
center of rotation: 

ˆ x =
p1 × c
p1 × c

 

3) Three data points are available, use second and third 
point: 

ˆ x =
p2 × p1

p2 × p1

 

Then the other two axes can be calculated from the first 
point by 

ˆ z =
p0 × ˆ x 
p0 × ˆ x 

 

and 

ˆ y = ˆ z × ˆ x  

These produce the rotation matrix M by placing them in 
the columns. 

2.6. Generated Motion 

The root segment (hips) motion can be considered 
freely moving and freely rotating.  In order to find the 
motion of such an object (6 DOF), the segment needs at 
least three unique points on the surface tracked.  The 
motion capture data can be used to create a set of orien-
tation axes and produce the center for any particular 
frame of the data.  The axes are fixed relative to the 
root segment and are a 3x3 matrix determined by the 
above equations.  Next we use the motion data set and 
recursively traverse the tree to traverse down the seg-
ments.  Each segment in the tree contains its own time-
dependent position relative to its parent.  To position 
the figure at a specific time-frame involves traversing 
the tree from the root segment to the endpoints.  During 
the analysis phase, data will be collected giving each 
segment a chance to calculate its motion constants.  
Once these constants of the data-set are determined (i.e. 
relative rotation points and null-vectors), skeletons for 
the remainder of a motion capture data are easily drawn 
using these determined constants. This is computation-
ally far efficient than applying the inverse-kinematics 
solution in existing techniques. 

3. Results 

We conducted several experiments comparing GDKE 
method with linear least square method and found that 
the GDKE produces similar answers to the Least-
Squares Method of O’Brien et al. [19] but is computa-
tionally more efficient as discussed in the paper.  In 
addition, this new method can also produce a better 
answer in the cylindrical case.  The error in the calcula-
tion is only of O(σ/√N) [31] and corresponds to the bias 
as explained in the empirical relationship in Equation 7. 

An example of a single time-frame for a karate pose is 
given in Figure 4.  A more complex data-set was ana-
lyzed involving two figures during a salsa dance.  A 
time-frame from that data is given in Figure 5. 
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Figure 4: Karate Pose from ACCAD data “Break 
Dancer 1” 

 

Figure 5: Salsa Dance from CMU data 60-14  

Noise can also contribute to the propagation of errors.  
Noise comes in two flavors, measurement noise and 
process errors.  A look at the problem at hand, i.e. 
measured markers on a body, shows how errors are 
introduced.  The accuracy of capturing the coordinates 
of the marker in time is considered measurement noise.  
This is usually a simple Gaussian noise for each meas-
urement.  Process errors are produced when, for exam-
ple, the marker is placed on loose clothing and subse-
quently moves slightly on the body during motion.  All 
these errors contribute to the accuracy of the rotation 
point calculation whichever method is chosen. 

4. Conclusions and Future Research 

We have presented a GDKE implementation that is 
computationally superior to the method of O’Brien et 
al. [19].  In addition, our method is faster that inverse 
kinematic solutions as the actual joint locations are di-
rectly calculated from the sensor data. These estimates 
are found by using a fast closed form solution.  As our 
method derives the animation from sensor data, anima-
tion sequences preserve the subtle variations of the per-
son used for the motion capture study.  Qualitatively, 
this can be observed while playing the CMU data and 
our animation side by side.  Our algorithm is well 
suited for on-the-fly capture and display of the motion 
capture data, and would allow merging of animation 
sequences with ease.  In the future, we plan to utilize an 
incremental improvement technique, which could fur-
ther provide an order of magnitude speed improvement. 
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ABSTRACT 
The role of shadow is important in cartoon animation. Shadows in hand-drawn animation reflect the expression 
of the animators' style, rather than mere physical phenomena. However shadows in 3DCG cannot express such 
an animators' touch. In this paper we propose a novel method for editing the shadow with both advantages of 
hand drawn animation and 3DCG technology. In particular, we discuss two phases that enable animators to 
transform and deform the shadow tweakably. The first phase is that a shadow projection matrix is applied to 
deform the shape of the shadow. The second one is that we manipulate vectors to transform the shadow such as 
scaling and translation. These vectors are used in shadow volume method. The shadows are edited directably by 
integration of these two phases. Our approach enables animators to edit the shadow by simple mouse operations. 
As a result, the animators can not only produce shadows automatically but also reflect their style easily. Once 
the shape and location of shadow are decided by animators' style in our method, 3DCG techniques can produce 
consistent shadow in object motion interactively.  

Keywords 
Cartoon animation, Shadows, Non-photorealistic rendering, Cel animation, interactive techniques 

 

1. INTRODUCTION 
Since the natural shape and animation of shadow are 
tedious to draw by hand, shadowing in traditional cel 
animation requires a lot of manual labor. However, 
shadows play an important role in cel animation as 
well as various other animations. The shadow is not 
so outstanding as to attract viewer’s attention such as 
facial animations or human motions, but sometimes 
the expression of shadows gives a specific meaning 
to a scene. Especially, in hand-drawn cel animations, 
a shadow is drawn according to animators’ style, 
which may not be physically correct but looks 
natural and fantastic. For instance, when animators 
intend audience to focus on a character’s face, 
animators may edit the shadow covering character’s 
face, may draw simple shadows or may not express 
the shadow. Likewise, animators who want to 
express impressive scene draw shadows as if the 

shadow itself were a lively character or a terrible 
monster.  

However, it is difficult for the animator to express 
their styles interactively by using 3DCG technology. 
Since the shadow in 3DCG is produced automatically 
by calculating physics based illumination, the 
procedure for creating 3DCG shadows has a 

Figure 1. An example of impressive shadow by our 
tool. The shadow becomes a different shape from 
the original object. (in this example, the shadow is 

like a bird) Inset: the original shadow before 
editing the shadow.  
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constraint that depends on the relationship between 
the light source and a 3D model, and this is why 
shadows in 3DCG have been considered difficult to 
edit their shapes, scales, and positions. When 
animators want to change or control shadows in 
3DCG, they only can correct the position of light 
source, modify 3D models indirectly so far. These 
tedious operations might disturb animators’ 
creativeness. 

At the same time, there are many advantages of using 
3DCG methods. For instance, we can check an 
animation result from any kinds of views for 
animatics. Using a 3D model enables animators to 
redraw and recreate scene easily, and all processes 
except setting environmental or modeling parameters 
are automatically performed. These advantages 
reduce animators’ manual labor. Nowadays, in the 
cartoon animation industry, the technique of 
combining 3DCG method and 2D hand-drawn 
animation has been introduced [Kri06a]. 

Therefore, we propose the new world that leads to 
animators to bring out creative mind for editing 
shadow by combining animators’ style and 3DCG 
technique. Figure 1 shows impressive shadow 
created by our proposed tool. 

Our method is divided into two phases, i.e., 
deformation and transformation. First, an applied 
shadow projection matrix is used to deform the shape 
of the shadow. Second, manipulating vectors of the 
light obtained by shadow volume method enables 
transformation of the shadow. By using our method, 
shadows are considered as the 3D model that 
animators can transform and deform. These two 
methods enable animators to hybrid with both 
animators' style and 3DCG technology. By 
combining both advantages, animators can edit 
shadows in 3DCG to apply to their style, and add 
shadows even into the cel animation scene. 
Additionally, our tool can apply to key-frame 
animations. Therefore animators can edit not only 
shadows in an image but also in key-frame animation. 
Our method improves working efficiency and helps 
to express animators’ style by using 3DCG technique. 

2. RELATED WORK 
In this section, we discuss the overall of the 
computer graphics techniques in cartoon animation. 
Moreover we mention related work of light and 
shadow design, and interactive rendering in non-
photorealistic field. 

[Las87a] was likely the first researcher to discuss the 
principles of traditional 2D hand-drawn animation. 
He mentioned these principles applied 3D computer 
animation. In his paper, he described how to make 

the audience entertain and presented this method to 
animators.  

Recently, 3D computer graphics techniques have 
been used in the cartoon animation industry (e.g. 
Ghost in the Shell). The movie “Appleseed” was a 
landmark animation featuring hyper realistic imagery 
and a hybrid 2D and 3D style [Kri06a]. 

[Cor98a] was a method for applying complex 
textures on 3D objects to hand-drawn animation. 
[Rad98a] presented a technique called “View-
Dependent Geometry”. In conventional cel animation, 
characters or objects often have all kinds of view-
dependent distortions that cannot be described with 
3D models. Thus they capture the view-dependent 
distortions as the reference drawing. [Sug06a] 
proposed cartoon-like hair motion creating technique. 
Motion cloning from cartoon hair animation 
sequences enables animators to create cartoon hair 
animation easily. [Jue06a] presented the “Cartoon 
Animation Filter”. This filter converts an arbitrary 
input motion signal to output motion that is more 
“alive” or “animated”. [Chr06a]  provided the re-
using method for traditional animations. First, they 
divide cartoon images from their backgrounds. Then, 
they provide inbetween contours and textures. 

As for light and shadow techniques, [Bar97a] 
described various lighting and shadowing techniques 
for computer cinematography. They described that 
the purposes of lighting for cinematography are to 
contribute to the storytelling, mood, and image 
composition, and to direct the viewer’s eye. These 
factors are important for cartoon animation same as 
cinematography. [Pet00a] proposed to inflate a 3D 
figure based on 2D hand-drawn images to produce 
shadows semi-automatically for cel animation. Our 
method focuses on flexibility compared to their 
method. [Pel02a] proposed interactive interface for 
transforming the shadow directly on shadowed 
region. However, this method did not solve the 
constraint that shadows linked to relationship 
between lights and objects. In our paper, we try to 
solve this problem. [Lak00a] presented several real-
time methods to emulate cartoon styles, but they did 
not describe the shadow technique. 
[Anj03a][Anj06a] proposed intuitive highlighting 
technique. This method enables animators to edit 
stylized highlight directly on a 3D object surface. 
This concept is applied to shadows in our method. 

3. SHADOW EDITING PROCESS 
In this paper, we introduce two phases for editing 
shadows. In the first phase, we create an object that 
represents the shape of a shadow by using shadow 
projection matrix. We call this object shadow object. 
We set the shadow object precisely in the same 
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position where the 3D model is. By manipulating the 
vertex of shadow object directly, we can deform the 
shape of the shadow. This is called the deformation 
phase. In the second phase, a shadow is rendered 
using the shadow volume method. At that time, 
shadow volume is created by the shadow object 
instead of the 3D model. Then, animators edit the 
vector from the light to the 3D model to transform 
the shadow, such as translation and scaling. This is 
called transformation phase. An over view of the 
process is shown in Figure 2.  

In section 4, we describe the deformation phase that 
includes making a shadow object and a deformation 
technique. In section 5, we describe the 
transformation phase that includes how to render the 
shadow and transformation technique. 

4. DEFORMATION PHASE 

4.1 Making a shadow object 
This sub-section explains how to create the shadow 
object that contributes to the deformation. This 
object enables animators to edit the shape of the 
shadow directly. We produce the shadow object by 
using the shadow projection matrix. The matrix is 
denoted as M  in the following Equation 1. We 
calculate M  by solving a ground equation and an 
equation for a straight line in the direction of a light 
source. In this case, the ground is the 2-dimension 
ground that 3D model casts shadow and the line 
indicates direction of light. The shape of shadow 
onto the two-dimension ground surface is created 
using the matrix. The shadow object vertex 
multiplied by the matrix gives new vertex of the 

shadow shape projected onto the ground. We set the 
projected vertex to the position of the 3D model and 
adjust it to the same scale as the 3D model.  

 

Where, ),,( zyx nnn=n  is the ground's normal vector, 
p  is a point on the ground, and ),,( zyx LLL=L  is the 
direction of the light. 

4.2 Shadow deformation 
This sub-section explains how to control the 
deformation. We edit a shape of the shadow by using 
a mouse operation for manipulating each vertex of 
the shadow object directly in the editing window. 
Note that the editing window means the black 
window on the upper left in figure 3. We call this 
window the editing window. First, animators click on 
the part of the shadow object where animators want 
to edit the shape. This region ][εΩ  is specified by 
animators, according to Equation 2. Then, animators 
drag the part along the direction that they want to 

Figure   2.  Process Overview   

Figure 3. A deformation in the editing window. 
Left image is an original shape of the shadow 

object. Right image is a shape of shadow object 
after editing. 
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stretch or compress. In Equation 2, ),( yx VV  denotes 
the vertex of a shadow object, and ε  is a threshold 
that decides the region to move. Animators can move 
vertex ),( zx LL  to vertex )','( zx LL  of a new shadow 
object in the region defined by Equation 3 and 
Equation 4, with ),( zx MM  being the amount of 
movement in proportion to a drag of the mouse 
operation.  

},)()(|),[ 22 εε <−+−{(:=]Ω VyCyVxCxVyVx  

,' MxLxxL +=  

,' MzLzzL +=  

In addition, we provide the fix mode as an additional 
mode of deformation phase that gives animators 
flexibility of editing. In this mode, animators specify 
the parts that should not move during deformation. 
Animators set a region by using Equation 2 to fix a 
vertex with the fix mode. Animators can deform a 
shadow object outside of the region specified in the 
fix mode. This mode enables animators to create a 
shadow object that cannot be achieved by the usual 
deformation. 

Repeating the operation, animators can edit the shape 
of the shadow that they want to express. Figure 3 
shows a deformation example in the editing window. 

4.3 Animation 
 Animators can make the animation such as key-
frame animation using deformed shadow by our 
method. Saving the amount of M  in Equation 3 and 
Equation 4 enable animators to create a key-frame 
animation. For instance, we consider the shadow of 

the human character here. The shadow of character’s 
head can be stretched by animators’ edit. After 
editing the shadow, if the 3D model moves freely, 
the shadow of character’s head stretches along the 
direction that the animators drag. Figure 4 shows this 
example. These operations are performed in the 
editing window. 

5. TRANSFORMATION PHASE 

5.1 How to render shadow 
 To render the shadow onto the ground, we use the 
standard shadow volume algorithm except replacing 
the light vector by a per-vertex vector. The shadow 
volume method is one of the most useful shadowing 
techniques in 3DCG. Recently, the shadow volume 
method is mentioned in a lot of research. For 
instance, [Ass03a] presented the soft shadow using 
shadow volume. However, soft shadow is not 
necessarily required for traditional cartoon animation. 
Therefore, we apply [Eve02a] technique created the 
umbra wedged shadow, not the penumbra wedged 
shadow. To define a shadow volume is the space 
where the light does not illuminate and it is generated 
by extending vectors from the light source to each 
outline vertex of the 3D model. In our method, a 
shadow is transformed by modifying these vectors. 
Then, the shadow on the ground is produced by the 
shadow volume using these vectors and the stencil 
buffer technique [Eve02a]. Figure 5 shows the 
overview of transformation. 

Figure 5. Overview of Transformation. In the top 
row images, the light illuminates the 3D model. In 
the middle row images, the shadow volume created 
using light vectors. In the bottom row images, the 

shadow on the ground is rendered.  
(a) The standard shadow volume steps.  

(b) The shadow volume steps after manipulating 
vectors.  

Figure 4. Simple animation example in the 
editing window(Deformation). We deform the 

shape in the left image, and rotate the 3D model 
in the middle and right images.  

(a) Before editing.  
(b) After editing. 

(3)

(4)

(2)
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5.2 Shadow Transformation: Translation 
and Scaling 
To transform the shadow without changing material 
information, our method focuses on the extension 
vectors ),,( LzLyLx=L  and manipulates them. We 
provide the simple manipulating algorithm below. 
Equation 5 and Equation 6 represent the translation 
process. As for Ly , it is not used in this situation, 
because we edit x-z ground. 

,' α+= LxLx  

,' β+= LzLz  

In Equation 5 and Equation 6, α  is the extent of the 
x-direction, β  is that of the z-direction, and 

)',','(' zLyLxL=L  is obtained as a result of 
translation; α  and β  are inputted by a simple mouse 
operation.  

Likewise, Equation 7 and Equation 8 represent the 
scaling process,  

,' γ×= LxLx  

,' γ×= LzLz  

where γ  is the extent of scaling decided by a mouse 
operation, and )',','(' zLyLxL=L  is also obtained as a 
result of scaling. In these ways, our method can 
easily achieve the desired transformations. 

5.3 Animation 
 In the similar way of section 4.3, we can create the 
animation in transformation phase. We obtain the 
amount of transformation, α , β  and γ  in Equation 
5, Equation 6, Equation 7 and Equation 8 when we 
transform the shadow object. To save these amounts 
enable animators to make a key-frame animation. For 
instance, a shadow is moved from original position to 
right position by the animators’ editing. After editing 
the shadow, if the 3D model moves freely, position 
of the shadow moves right compared with the 
original position. Figure 6 shows a transformation 
example.    

6. RESULT 
In this section, we demonstrate the editing results 
created by our tool. The tool runs in real time on an 
Intel T2600 2.16-GHz platform with NVIDIA 
GeForce Go, and Directx9.0c as the graphics API. 

Figure 7 shows the basic operations provided by our 
tool. The left image is an original shadow. Starting 
from original shadow in the most left image, the 
shadow is first deformed, then translated, and finally 
scaled. We can control the shadow simply by 
clicking and dragging with a standard three-button 
mouse. In usual, animators do not like tedious 
parameter setting with keyboard. Our method enables 
animators to create the exaggerating shadow easily 
by a simple mouse operation. 

Figure 1 and Figure 8 demonstrate exaggerating 
shadow. We make the key-frame animation in the top 
row of Figure 8. Next, we transform the shadow to 
exaggerate. We then create the middle row of Figure 
8 animation. The shadow in the middle left of Figure 
8 is smaller and moves more backward compared to 
the top left of Figure 8. However, the shadow in the 
middle right of Figure 8 is bigger and more forward 
compared to the top right of Figure 8. As a result, the 
attention of the audience would focus on the shadow. 
To make more impressive animation, we then deform 
the shadow. Our method can create the bottom row 
of Figure 8 from the middle row of Figure 8. This 
result shows that our method enables animators to 
spread their expression. 

Figure 6. Simple animation 
example(Transformation). The left image is the 
original shadow. We transform the shadow in 
the middle image, and then translate the 3D 

model in the right image. 

Figure 7. Basic Operation. The left image is the original shadow.  
Then, we deform, translate and scale the original shadow.  

(5)

(6)

(7)

(8)

Full Papers 237 ISBN 978-80-86943-98-5 



Finally, we demonstrate more practical situation 
using our method. In Figure 9, the shadow plays a 
dramatic role. The top row of Figure 9 is an original 
input, and gives the impression of mere shadow. On 
the other hand, in the bottom row of Figure 9, we 
exaggerate the shadow to make more dramatic scene 
in the animation. Traditionally, it is difficult to make 
the dramatic shadow such as this example, because 
the procedure for creating 3DCG shadows has a 
constraint that depends on the relationship between 
the light source and a 3D model. In that case, 
animators are required to adjust the light sources or 
the 3D model to change the shadow. These 
conventional approaches require animators to 
perform tedious trial and error in order to obtain an 
appropriate result. The bottom row of Figure 9 shows 
that other material information without shadows is 
same as information before editing the shadow.  In 
this animation, we intended to emphasize a focus on 
“walking along the wall”. Compared to the original 

animation, the effect is clearly proved by our result. 
So this also proves that our approach is useful for 
this kind of practical situation.   

7. DISCUSSION AND FUTURE WORK 
Unlike photorealistic shadows, the stylized shadows 
in cartoon animation should not be too detailed nor 
obeyed by physics-based reality. They should be 
simpler yet more expressive according to the 
scenario of the animation. As we mentioned in 
Section1, The role of shadows is not outstanding 
expressions in movies or animations such as facial 
animations or human motions. However, in cartoon 
animation, animators sometimes would like to use 
the shadows to foreshadow the successive 
phenomena such as transforming the 3D characters 
or objects. These kinds of expressions can be 
achieved by our approach.  

In this paper, we have proposed a novel method of 
deforming and transforming shadow tweakably 

Figure 8. Exaggerating shadow example. The top row images are original key frame animation. 
The middle row images are transformation of top row animation. The bottom row images are 

deformation of middle row animation.  
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which allows animators to easily create such stylized 
shadows and their animations as desired in cartoon 
animation.  

Moreover, our technique could maintain attributes of 
the edited shadow after transformation or 
deformation of the shadow object. This result shows 
that our approach enables animators to create 
animation intuitively and improves working 
efficiency. 

Of course our final purpose of this research is to 
express 2D-like shadow by 3D models. Meanwhile 
our contribution is also expanding the way of 
expression of 3D shadows. 

However, our method has not only several 
advantages, but also future work. When animators 
try to rotate the 3D object after deforming the 
shadow, the shape of shadow occasionally collapses. 
We improve our method to solve this problem in the 
future. 

This tool is already directable one. However, since 
animators really need to and like to use an intuitive 
operation, we should improve our tool to be 
interactively. For example, animators must deform 
the shadow in the editing window so far. Therefore in 
order to deform shadows more intuitively, we should 
deform the shadow directly in the scene. In addition, 
when we handle easier shapes of shadows or a 
simple animation, we should develop a more simple 
method such as a template morphing. That is, given 

the original shadow and the designed shadow such as 
a circle, an ellipsoid, and a quadrangle, animators 
smoothly interpolate the original shadow into the 
designed shadow in animation. So we can perform 
animations more simply and quickly.  

Treating of self-shadows should also be included in 
our future direction. As editing shadows, of course 
we consider how to edit the self-shadows. In addition, 
we should consider relationship between the shadow 
itself and its self-shadow. 
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ABSTRACT 
Currently, Virtual Environments (VEs) are used within engineering industry: physical prototypes or mock-ups 
are replaced by virtual prototypes. Increasingly, these VEs also allow designers and engineers to carry out 
assembly/disassembly processes and assembly sequences before any physical prototype is built. Moreover, 
different designers or engineers, which may be situated in the same or in geographically dispersed locations, 
often collaborate in the design of products. This allows developing more complex products within a shorter time 
scale and lowered costs. On the other hand, the utilization of haptic feedback has been found to significantly 
enhance task performance, for instance, in assembly tasks. In this paper we describe an assembly simulation 
application on a collaborative haptic virtual environment, where several users interact with virtual models to 
perform assembly operations within the same virtual scene. The paper also summarizes results achieved with 
experiments which evaluated different collaborative architectures. Furthermore, it reports on the goals that can 
be achieved and the limitations for haptic collaborative interaction in each case.  

Keywords 
Virtual reality; Collaborative virtual environment; Virtual prototyping; Haptic feedback; Assembly simulation. 

 

1. INTRODUCTION 
The traditional design systems (CAD, CAM and 
CAE) allow generating 3D designs and simulating 
the behavior of the product and part of the 
manufacturing process, such as 
assembly/disassembly (A/D) processes and 
sequences for training. However, they do not 
integrate all the physical processes of the real world.  
The use of haptic devices (sense of touch) is a 
powerful technology that can enhance and solve 
some of the limitations of the traditional simulation 
systems.  

Haptic devices are generally used to indicate a class 
of mechanical system that is intended to replicate 
forces and local continuous stimuli on specific areas 
of human body: finger, hand or body.  Today, several                   
 

haptic devices with different specifications can be 
available, such as, PHANToM Premium (Figure 1), 
PHANToM Omni and GRAB. PHANToM is 
developed and distributed by SensAble Technologies 
(Cambridge MA, USA). GRAB, which provides a 
larger workspace and two points of contact, was 
developed by PERCRO (Scuola Superiore 
Sant'Anna, Italy). 
These days, haptic technology is an emerging field, 
that is being successfully applied to a wide range of 
applications, for instance, training simulators 
[Bas01a], visually impaired people applications 
[Igl04a], entertainment and gaming [Zho04a], as well 
as industrial design and maintenance [Bor04a], 
[Pet04a], [Igl06a]. In this latter application, the 
utilization of haptic devices has been found to 
significantly improve operation effectiveness in 
assembly tasks [Bas00a], [Sal00a], [Pet04a]. 

On the other hand, nowadays, products are 
increasingly being developed by geographically 
dispersed design teams. These may be located in 
different partner companies, or different offices of 
the same company, perhaps even in different 
countries. On large projects, different design teams 
meet regularly for preliminary reviews, design 
reviews, defect reviews and so on. It is becoming 
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notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute 
to lists, requires prior specific permission and/or a fee.  
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strategically important to be able to link distributed 
design teams, to permit concurrent access and 
modification of design models from different 
geographical locations. 
There are different types of distributed collaborative 
virtual environments (CVEs), for instance, some 
provide collaborative visualization while, others, not 
so many, also consider haptic interaction. The 
developments of Hagsand [Hag96a], Borro [Bor00a] 
and Greenhalgh [Gre00a] are focused on distributed 
visualization: a user interacts with a virtual model 
while others can watch it. Other examples about 
distributed VEs can be found in Mclaughlin 
[Mcl02a] and Burdea [Bur03a]. 

 
Figure 1. A user interacting with PHANToM 

Premium. 

The work presented in this paper provides a helpful 
tool for the design and maintenance teams. The 
designers would be able to check the validity of the 
design, simulate A/D processes in order to simplify 
the process, avoid interferences and define A/D 
procedures with haptic interaction. The procedures 
defined by the design team could also be the base for 
training operators in new or complex assembly and 
maintenance (A/M) tasks. 

This paper describes an application to simulate 
assembly operations on a collaborative virtual 
environment (CVE). This application allows 
different users to analyze in real-time new products, 
A/M operations without using physical models, by 
means of realistic navigation, visualization and 
interaction with the virtual models by means of 
traditional devices (i.e. keyboard, mouse) or haptic 
devices. 

Sections 2 and 3 explain the toolkits in which the 
assembly application is based on.  The main 
challenges on collaborative haptic virtual 
environment are presented in Section 4.  It also 
includes one example and the results that lead to the 
conclusions. 

2. TOOLKITS: DATum AND 
ASSEMBLY SIMULATOR 

The research described later on in this paper requires 
the integration of three toolkits: DATum, an 
Assembly Simulator and a Haptic Assembly 
Simulator. The next section deals with the third 
toolkit. The three toolkits described between this 
section and the following one allows analyzing new 
products in real-time and simulating virtual A/M 
operations via keyboard, mouse or haptic devices.  

DATum is an object oriented variational non-
manifold geometric modeler developed by LABEIN, 
with a STEP translator compliant with ISO 10303-
AP203 (International Standard for the representation 
and the exchange of product data between different 
CAD systems). 

DATum uses a hybrid representation scheme 
between the two most common representations 
within the field of the Geometric Modeling: the 
Constructive Solid Geometry [Req77a] and the 
Boundary Representation [Man84a], exploiting the 
advantages of each one of these representations. In 
this way, a model can be created through Boolean 
operations (union, intersection and difference) 
between other two models, and it has always 
associated a boundary representation. The boundary 
representation of a model provides both geometric 
and topological information. In relation to the 
geometry, DATum supports both basic geometry 
(conics and quadrics) and complex geometry 
(NURBS curves and surfaces). Its topological 
structure is based on the Weiler structure [Wei86a]. 

DATum is a non-manifold modeler [Wei86a]. This 
capability allows to represent solid, surface and 
wireframe models in a unified and simultaneous way 
and to deal with the “region” concept. In this way, a 
model can be composed by several regions 
associated, for example, to different materials. 

It is also a variational modeler. The variational 
geometry is based on the definition and modification 
of geometric models through a set of functional 
restrictions, instead of the classical parameters. In 
this way, the model can include the design intent. 

On top of DATum, LABEIN has developed an 
Assembly Simulator that combines direct 
manipulation techniques, collision detection, 
automatic assembly constraint recognition and 
management within a unified framework to allow 
undertaking maintenance operations of mechanical 
assemblies interactively. It consists mainly of two 
modules: collision detection and assembly constraint 
recognition. 
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The collision detection module detects any collision 
between an object that is being moved by the user 
(through translations and/or rotations) and any other 
object of the working space. In this way, the object 
can not penetrate into another and only real feasible 
movements are allowed. The implemented algorithm 
is based on the ‘RAPID’ library implemented by 
Gottschalk [Got96a]. This is a polygon interference 
detection library for large environments.  The degree 
of performance of this algorithm is quite related to 
the quality of the triangles, so the more regular the 
triangles are a higher performance will be achieved. 
Algorithms to get suitable triangles were developed 
using the basic functionality of DATum. 

When a collision is detected the user is not allowed 
to move in the collision direction, but he must 
change the movement direction in order to avoid the 
collision. Sound aids and changes of colors have 
been implemented to warn the user when a collision 
is produced. 

The Assembly Simulation module allows the 
automatic recognition of the potential constraints 
between a model that is being moved by the user and 
the rest of the components of the mechanical 
assembly. Once the system detects a constraint, the 
movement of the model will be constrained to satisfy 
the active constraint detecting also the collisions with 
the other model of the workspace [Gut98a], 
[Bar98a], [Bar99a]. This module makes use of the 
collision detection algorithms explained above and it 
is based on the information about the adjacency 
relationships of the topological entities of the 
models, for example how the faces are connected to 
detect if a face generates a hole or a protrusion. The 
following A/D constraint methods are depicted in 
Figure 2: objects along a common axis (pin-hole), 
and objects along coincident planar faces. Other 
constraints are pin-multiple holes, hole-pin, pin-pin 
and hole-hole. 

Hole

Pin

Plane-plane

Hole

Pin

Hole

Pin

Plane-planePlane-plane

 
Figure 2. Assembly/Disassembly: pin-hole and 

plane-plane. 

3. TOOLKITS: HAPTIC ASSEMBLY 
SIMULATOR 

The integration of a haptic device within DATum 
allows the user to interact with 3D designs in a new 
and more realistic way than the traditional systems. 
The user can not only view the objects designed, but 
also interact with them: touching, grasping and 
moving them within the virtual scene, detecting and 
feeling the possible collisions and assemblies among 
models. Experiments used different haptic devices: 
the PHANToM device, PHANToM Omni and 
GRAB device (see Section 1). Haptic devices were 
used for the following manipulation tasks: touch, 
move and collide, and Assembly/Disassembly 
operations. 

The user can touch any 3D model and move itself 
along its external surface, detecting its edges and 
corners. The algorithm to touch and interact with a 
virtual object by means of a haptic device is based on 
the analysis of the position of the user’s finger 
(recovered by the haptic device) with respect to the 
object to check if the point is inside or outside of the 
object. In this case, the force sent by haptic device 
will be proportional to the penetration depth of the 
user’s finger into the virtual object and normal to the 
object surface. 

Any object, that can be touched, can also be grasped 
and moved (through translations and rotations, called 
transformations in general) by the user along the 
virtual workspace.  

This utility also detects any collision between the 
object that is being moved and any other object of 
the workspace. A model cannot penetrate into 
another and only real feasible movements are 
allowed.  

The workflow repeats the following steps: 

1) Calculate the transformation described by the 
movement of the user’s finger (movement of the 
end-effector of the haptic device): translation 
and/or rotation. 

2) Study if, in the new position, the object is 
colliding with any other object of the workspace.  

3) If there is not collision, apply the transformation 
of the object. Calculate the force to be sent to the 
user, depending on the result of the collision 
detection. In order to provide a more realistic 
interaction, the object weight has also been 
implemented. This has required the 
implementation of some algorithms to calculate 
the volume and the area of any 3D object. If 
there is not any collision, the force sent by the 
haptic device corresponds to the object weight. 
Whereas if the object is colliding, a force 
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opposing to the movement direction to come 
back to the last position. 

Assembly/Disassembly allows simulating A/M 
operations of a mechanical assembly and it is based 
on the automatic recognition of constraints provided 
by the Assembly Simulator explained above. Most of 
the previous utilities (touch, move, detect collisions) 
are enclosed here. 

The workflow repeats the following steps: 

1) Calculate the transformation described by the 
movement of the user’s finger (movement of the 
end-effector of the haptic device): translation 
and/or rotation. 

2) This transformation is sent to the Assembly 
Simulator to study if, in the new position, the 
object is colliding with any other object of the 
workspace, breaking an existing constraint or 
satisfying a new one.  

3) The Assembly Simulator calculates the adequate 
movement to be applied to the object and 
information about the constraints that are 
satisfied. With this information the force to be 
sent to the user is calculated. 

Three types of sliding forces were implemented to 
support assembly methods: on a surface, on a line 
and on a point. 

1) Sliding forces on a surface allow two objects to 
remain in contact along a common surface. An 
external force can compel the user to move his 
finger, and so the object fixed to it, on a given 
surface. The user can move freely along the 
surface but she can not move away from it 
(unless the user exerts an incremental force to 
break the active constraint). The algorithm to 
calculate this force is based on the computation 
of the point of minimum distance from a point to 
a surface. In this case, the force corresponds to 
the vector defined by the user’s position and the 
point of minimum distance on the surface. 

2) Sliding forces on a line allow two objects to 
remain in contact along a common line. As in 
the previous case, the user can move his finger, 
and so the object fixed to it, on a given line. The 
user can move freely along the line but he can 
not move away from it (unless the user exerts an 
incremental force). The algorithm to calculate 
this force is based on the computation of the 
point of minimum distance from a point to a 
line. In this case, the force corresponds to the 
vector defined by the user’s position and the 
point of minimum distance on the line. 

3) Sliding forces on a point allow two objects to 
remain in contact along a common point. With 
this type of force, the user can only rotate the 
object fixed to her finger about its own axis, 
unless the user exerts an incremental force. In 
this case, the force corresponds to the vector 
defined by the user’s position and the point. 

4. CVEs FOR ASSEMBLY 
SIMULATION 

There are different types of distributed collaborative 
virtual environments (CVEs), for instance, some only 
provide collaborative visualization whereas, others, 
not so many, also consider haptic interaction. This 
section analyses the problem of assembly simulation 
on CVEs where users can simultaneously interact 
within the same scene using traditional or haptic 
devices. First, CVEs are considered, and then a 
practical case is analyzed. The last subsection 
summarizes different system architectures that were 
experimented extending the toolkits described in 
sections 2 and 3. 

4.1 Collaborative assembly application 
A CVE implies a distributed system that allows 
geographically separated users (computers) to 
communicate and/or interact within the same virtual 
scene through connected networks such as, LAN or 
the Internet.  

In our application, mechanical assemblies can be 
designed within DATum, or imported from another 
CAD system through STEP files. 

Each client can interact within the virtual scene, 
either moving freely and touching models or 
grasping a model. In this latter case the user feels 
collisions with other models along their movement 
and the system may guide the user to undertake an 
assembly method. Users can interact with the virtual 
scene using different devices: mouse, keyboard or 
haptic devices (see Section 1). 

Each client replicates the same virtual scene, 
managing their visualization, from a different point 
of view. It is not necessary that all users connect 
themselves simultaneously to the work session.  A 
user can be joined the work group when it is 
considered opportune; when a new user connects to 
the server, this user will receive the state of the 
environment upon connection. 

Several clients may undertake different actions on 
the same CVE. For instance, one client can freely 
move, while other can move a model satisfying a 
constraint (assembly), and another different client 
can collide with a different object. During these 
tasks, consistency, that is virtual scene 
synchronization, must be guaranteed for all clients. 
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Whenever a user tries to move the grasped object, the 
system must validate the movement considering 
potential collisions with the rest of the objects within 
the scene. Constraints must also be considered 
depending on the type of assembly method chosen by 
the client. It is important the way in which 
communications, data and processes are distributed 
between server and clients to provide a realistic 
interaction among users and to compute immediate 
responses as in the case of haptic devices with high 
frequencies. 

Forces applied to the user by the haptic device must 
provide an adequate sensation. This topic has been 
deeply addressed by other authors [Bur03a].  

User interaction on a distributed assembly 
application must be similar to the standalone (not 
networked). However, some restrictions necessarily 
appear, i.e. opening/closing virtual environments, an 
grasped by one user can not be simultaneously 
grasped by another user.  

Problems regarding network communications also 
play an important role in the design of specific 
implementations. However, the inevitable conditions 
of the network (e.g. latency, jitter, background 
traffic) affect distributed applications in a different 
way as it is considered in the next subsection. 

4.2 Practical case 
This subsection describes a specific experiment, 
where the virtual scene was an aeronautical assembly 
(Figure 3) provided by an engineering company, 
SENER. 

This CVE allowed the simulation of assembly tasks 
with simultaneous interaction of several users. This 
was achieved by adopting a client-server 
architecture, as Figure 4 shows. The distributed 
components were developed with ORBacus (an 
Object Request Broker that is compliant with 
CORBA specification). 

 
Figure 3. Aeronautical assembly (an electrical box 

for an aircraft engine) provided by SENER. 

A server administrates all data received from clients: 
new virtual scene, request of grasping a model, 
request of transformation of a model, new client and 
so on. The server manages the selection of models to 
avoid that two different users simultaneously grasp 
the same model. 
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Figure 4. Client-Server architecture. 

The original assembly was done in Pro-E and read 
into DATum through STEP. A distributed session 
was run between two users through a local area 
network simulating the assembly process. A user 
could interact using a haptic device: grasping a 
model, feeling its weight, detecting the collisions 
with other objects along their movement and 
simulating the assembly methods explained above. 
Meanwhile, the other user could interact with the 
shared scene with the keyboard.  

Previously, with this design an assembly problem 
was found [Car03a]. During the assembly path a 
collision with the green box does not allow to finish 
the assembly process (Figure 3). Therefore, a re-
design was needed in order to avoid this problem. 

Using this architecture the application worked 
properly and consistency between clients was 
guaranteed all the time. 

4.3 Architectures for distributed 
environments 

Some research has been done on CVEs where virtual 
scene synchronization (consistency), effective and 
compelling haptic feedback (quality of force 
feedback) and scalability continue to be enormous 
challenges. There are different architectures to 
support distributed systems: peer-to-peer [Cla01a], 
client-server [Sin99a] or a mixture of them [Bor00], 
[Mar06a]. Marsh et al. [Mar06a] analyze different 
architectures supporting haptic interaction on CVEs 
and provide an updated review of the research 
performed to deal with the challenges described in 
the Section 4.1. 
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Iglesias et al. [Igl05a] compare three different client-
server architectures for assembly simulation on a 
CVE described in this paper. That research studied 
how could be distributed the simulation workload 
between server and clients. Two architectures 
provided interesting results. In architecture A3 
clients deal with the validation of movement and 
consistency maintenance is managed at server side. 
On the other hand, in architecture A1 consistency is 
trivially achieved because server sequentially 
validates all movements. When there are more than 
two users, the architecture A3 had a better 
performance. 

With client-server architectures consistency is easily 
achieved, it is calculated once either at server side or 
trivially guaranteed if server validates all 
movements. No complex synchronization mechanism 
is required. However, in such architectures, haptic 
interaction may specially be affected due mainly to 
network conditions (i.e. delay, jitter). This plays an 
important role in situations where force feedback at a 
user depends on the actions of another user 
(dependent interaction). This case happens when two 
users grasp a different object and for instance, a user 
assemble the grasped object into another one being 
held by a different user (remote assembly). Not only 
performing an assembly, but when both grasped 
objects collide and users should feel the 
corresponding collision force feedback (dependent 
collision). 

As a consequence, these client-server architectures 
limit the use of haptic interaction to extremely good 
network conditions between the client and server. If 
that previous condition is not achieved, users should 
avoid working in the vicinity of objects grasped by 
other users. The haptic interaction may be affected in 
case of dependent interaction. Marsh et al. [Mar06a], 
which used the same assembly application proposed 
in this paper, reported on a hybrid architecture that 
only supports haptic interaction for simultaneous 
cooperative haptic tasks over a low delay network 
(between the client and server) and in other case, 
users collaborate by taking turns. 

As a result of the impact of network conditions on 
haptic interaction with client-server architectures, in 
Iglesias [Igl06a] a peer-to-peer architecture is 
presented. This paper aims to achieve a higher degree 
of collaboration, at least between two users: to 
achieve nearby collaboration, such as, to carry out 
remote assemblies and maintain consistency even 
when network conditions get worse. A new 
consistency-maintenance scheme was proved to 
maintain consistency. Results were satisfactory with  
different network conditions. 

5. CONCLUSIONS 
In recent years, VEs are used within engineering 
industry: physical mock-ups are being replaced by 
virtual prototypes. Increasingly, these VEs allow 
designers and engineers to carry out 
assembly/disassembly processes before any physical 
prototype is built. On the other hand, several users 
often collaborate in the design of a product, 
evaluating assembly sequences, which may be 
situated in the same or in geographically dispersed 
locations. 

Moreover, the utilization of haptic devices allows 
users to have physical interaction with digital mock-
ups. And the haptic feedback (sense of touch) has 
been found to significantly enhance task 
performance, such as these assembly tasks.  

We describe an application to carry out assembly 
operations on a collaborative virtual environment 
with the use of keyboard, mouse or haptic devices. 
The Haptic Assembly Simulator recognizes 
automatically collisions, assembly constraints and 
replicates properly forces on user’s fingers to provide 
an effective interaction.  

Section 4.3 shows which collaborative interaction 
goals can be achieved using different network 
topology architectures and strategies. Client-server 
architectures provide good results if network 
conditions are good enough and objects managed by 
users are sufficiently separated.  A peer-to-peer 
architecture has been proposed in order to support a 
collaborative assembly task with certain network 
delay. With this architecture, a remote assembly (a 
user assembles an object into another object grasped 
by a different user) can be performed even with the 
worsening of network conditions. A consequence is 
that, although there is not a global solution to the 
problem yet, different network topologies may be 
adopted to build applications with specific goals. 
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ABSTRACT 
In this paper, a new viewpoint-based simplification approach is proposed for polygonal meshes. This approach 
is driven by an information-theoretic metric, viewpoint entropy, which measures the amount of information from 
a scene or object that arrives at a certain viewpoint. Our algorithm applies the best half-edge collapse as a 
decimation criterion and uses the variation of viewpoint entropy to measure the edge collapse error. Compared 
to pure geometric-based simplifications, the models produced by our method are closer to the original model 
according to visual similarity. Our approach also achieves a higher simplification in hidden interiors, by being 
able to remove them all and to leave the visible areas of the mesh intact. Models generated by CAD applications 
can benefit from this feature, since these models are usually constructed by assembling smaller objects which 
can become partially hidden during joining operations. The main application of our method is for video games 
where models come from CAD applications and are geometrically not very complex, a few thousand polygons at 
the most, and in which visual similarity is the most important requirement. 

Keywords 
Simplification, level-of-detail, viewpoint selection, Information Theory. 

 

1. INTRODUCTION 
Most common simplification methods use some 
technique based on a geometric distance as a quality 
measure between an original mesh and the one 
obtained from simplification. With these methods we 
can achieve meshes that are very similar to the 
original. On the other hand, image-based 
simplification methods carry out a simplification 
guided by differences between images more than by 
geometric distances. That is, their goal is to create 
simplified meshes that appear similar according to 
visual criteria. Thus, the applications that can benefit 
from image-based methods are those in which the 
main requirement is visual similarity. Examples of 
such applications are video games, vehicle 
simulations, walk-throughs, etc. A reduced number 
of applications, however, require exact geometric 
tolerances with regard to the original model. For this 
type of applications it would be better to consider 

some simplification method based on a pure 
geometric measure. Examples of such applications 
include collision detection and path planning for part 
insertion and removal.  

Geometric methods are suitable for scanned models, 
which are composed of thousands of polygons. 
However, in video games models usually come from 
CAD applications and it is very useful to simplify 
models that are not very complex to a lower level, 
typically a few hundred polygons. This is where our 
approach could be taken into consideration. 

In this paper, we introduce a new viewpoint-based 
simplification method which uses viewpoint entropy 
[Vaz01], a measure of the geometric information of a 
scene or object seen from a certain point of view. 
This method uses the best half-edge collapse as a 
decimation criterion and measures the variation of 
viewpoint entropy to quantify the cost of collapse. 
Experimental results show our method yields better 
visual performance than QSlim-based simplifications 
[Gar97]. Our algorithm also offers very good results 
even at early stages of simplification, where achieves 
a higher simplification in hidden interiors. 

Permission to make digital or hard copies of all or part of 
this work for personal or classroom use is granted without 
fee provided that copies are not made or distributed for 
profit or commercial advantage and that copies bear this 
notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute 
to lists, requires prior specific permission and/or a fee.  
Copyright UNION Agency – Science Press, Plzen, Czech 
Republic. 

This paper is organized as follows. In Section 2, we 
survey the previous work and basic information-
theoretic measures. In Section 3, we define the 
simplification error metric based on viewpoint 
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entropy to measure the cost of an edge collapse. In 
Section 4, we describe our simplification algorithm. 
In Section 5, we show the results of our experiments 
and finally, in Section 6, conclusions and future work 
are presented. 

2. BACKGROUND 
In this section we review related work, basic 
information-theoretic measures and information-
theoretic viewpoint selection measures. 

Related Work 
The most important improvement in geometry-
oriented simplification methods in recent years was 
the incorporation of mesh attributes such as color, 
normals and textures. For example, Hoppe extended 
his initial work [Hop96] by proposing a new quadric 
metric that incorporates colors and texture 
coordinates [Hop99], and the QSlim algorithm 
[Gar97] was also extended with those attributes in 
[Gar98]. Cohen et al. [Coh98] developed an 
algorithm based on edge collapses that samples the 
vertex position, normal and color attributes of the 
original mesh and then converts them to normal and 
texture maps. This algorithm is based on a texture 
deviation metric. 

Lindstrom et al. [Lin00] addressed the problem of 
visual similarity by developing a pure image-based 
metric. Basically, their method determines the cost of 
an edge collapse operation by rendering the model 
from several viewpoints. The algorithm compares the 
rendered images to the original ones and adds the 
mean-square error in luminance across all pixels of 
all images. Then it sorts all edges by the total error 
induced in the images and chooses the edge collapse 
that produces the least error. They used 20 
viewpoints in their implementation to compute that 
error. The main advantage of their method is that the 
metric provides a natural way to balance the 
geometric and shading properties without requiring 
the user to perform an arbitrary weighting of these 
attributes. On the other hand, its main disadvantage 
is the low speed it achieves. 

Luebke et al. [Lue01] presented a method to perform 
a view-dependent polygonal simplification using 
perceptual metrics. These metrics derive from a 
measure of low-level perceptibility of visual stimuli 
in humans. Later on, Williams et al. [Wil03] 
extended this work for lit and textured meshes. 
Zhang et al.[Zha02] proposed a new algorithm that 
takes visibility into account. Their approach defined 
a visibility function between the surfaces of a model 
and a surrounding sphere of cameras. The number of 
cameras increases both accuracy and calculation 
time. They used up to 258 cameras. In order to guide 
the simplification process, they combined their 

visibility measure with the quadric measure 
introduced by Garland et al. [Gar97]. 

Recently, Lee et al. [Lee05] introduced the idea of 
mesh saliency as a measure of regional importance 
for graphics meshes. This measure was incorporated 
into mesh simplification. Basically, their approach 
consists in generating a saliency map, and then 
simplifying by using this map in the QSlim algorithm 
as in [Zha02]. The new edge collapse cost is that of 
the quadric times the saliency of this edge. 

Information-Theoretic Measures 
Let X be a finite set, let X be a random variable 
taking values x in X with distribution p(x)=Pr[X=x]. 
Likewise, let Y be a random variable taking values y 
in Y. The Shannon entropy H(X) of a random 
variable X is defined by 

).(log)()( xpxpXH
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This is also denoted by H(p) and measures the 
average uncertainty of a random variable X. All 
logarithms are base 2 and entropy is expressed in 
bits. The convention that is used. 00log0 =

The mutual information (MI) between X and Y is 
defined by 
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This is a measure of the information shared by X and 
Y. It can be seen that I(X,Y)=I(Y,X)≥0. 

The relative entropy or Kullback-Leibler distance 
between two probability distributions p and q defined 
over the same set is given by 
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where the convention that , 00log0 = ∞=0
)(log)( xpxp  

if p(x)>0, and ∞=0
0log0  is used. The relative 

entropy KL(p|q) is a measure of the inefficiency of 
assuming that the distribution is q when the true 
distribution is p [Cov91]. 

Information-Theoretic Viewpoint 
Selection Measures 
Information-theoretic-based viewpoint selection 
metrics have been successfully applied in computer 
graphic areas, such as scene understanding and 
virtual exploration [Vaz01, Vaz03, Sbe05] and 
volume visualization [Bor05, Tak05]. In this section, 
we review the viewpoint entropy [Vaz01, Vaz03] and 
the viewpoint Kullback-Leibler distance [Sbe05] 
which have been used to compute the best 
viewpoints of a scene. Recently, the viewpoint 
mutual information has been introduced to select the 
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best views in volume rendering [Vio06] and for 
polygonal meshes [Fei06]. 

Viewpoint entropy, based on the Shannon entropy 
(1), has been defined [Vaz01] from the relative area 
of the projected polygons over the sphere of 
directions centered at viewpoint v. Thus, the 
viewpoint entropy was defined by 

,log
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where Nf is the number of polygons in the scene, ai is 
the projected area of polygon i over the sphere, a0 
represents the projected area of background in open 
scenes, and  is the total area of the sphere. 

The best viewpoint is defined as the one that has 
maximum entropy. 

∑ =
= fN

i it aa
0

In [Sbe05], a viewpoint quality measure based on the 
Kullback-Leibler distance (3) has been defined by 
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where ai is the projected area of polygon i, 
, A∑=

= fN

i it aa
1

i is the actual area of polygon i and 

 is the total area of the scene or object. In 

this case, the background is not taken into account. 
The minimum value 0 is obtained when the 
normalized distribution of projected areas is equal to 
the normalized distribution of actual areas. Thus, 
selecting high quality views means minimizing KL

∑=
= fN

i iT AA
1

v. 

3. SIMPLIFICATION ERROR 
METRIC BASED ON VIEWPOINT 
ENTROPY 
In this section, we present a new error metric based 
on the viewpoint entropy that can be used to evaluate 
the cost of an edge collapse and hence to drive the 
simplification process. 

Viewpoint entropy (4) is based on the distribution of 
polygon areas seen from a viewpoint. Thus, if a 
polygon is not seen from any point of view its 
contribution to the formula is zero and the geometry 
that is hidden will initially be removed. 

Given a particular viewpoint, we can consider the 
following: if a simplification is produced near the 
silhouette and increases the whole area seen, the 
overall value of viewpoint entropy will have been 
changed. So if we want to keep the silhouette of the 
model we must try to reduce this change. Note that 
the area of the background is included in the formula 
as polygon 0. This allows viewpoint entropy to 
preserve the silhouette better. 

Due to the above seen characteristics of viewpoint 
entropy and the fact that it expresses the accessible 
information about the object from a given viewpoint, 

the variation of this measure for each viewpoint can 
provide us with an error metric to guide the 
simplification process. Taking into account these 
facts, the simplification error metric is defined by the 
sum of variations of viewpoint entropy for all 
viewpoints V: 

∑
∈

−=
Vv

vv HHc ,' (6)

where Hv is the viewpoint entropy before an edge 
collapse and H’v is the viewpoint entropy afterwards. 
With respect to its computation, several techniques 
have been analyzed in [Cas06]. More specifically, 
the OpenGL histogram, the hybrid SW-HW 
histogram and the occlusion query were studied. The 
best technique was found to be the hybrid SW-HW 
histogram in current hardware. This technique takes 
advantage of the PCI Express bus symmetry. A 
different color is assigned to each polygon and the 
whole object is sent for rendering. Next, a buffer 
read operation is performed, and then this buffer is 
analyzed pixel by pixel to retrieve data about its 
color. Using an RGBα color codification with a byte 
value for each channel, up to 2564 polygons can be 
calculated with only one single rendering pass. We 
used this technique during the simplification process. 

4. SIMPLIFICATION ALGORITHM 
The simplification process, like many other 
simplification algorithms, is based on the edge 
collapse operation. However, we use the half-edge 
collapse operation. According to this, the remaining 
vertex for an edge collapse e(u,v) is vertex u or v 
(Figure 1). By using half-edge collapses it is possible 
to reuse the simplification process in order to 
generate multiresolution models. These models can 
use the current hardware in a more efficient way 
because no new vertices are added to the original 
model. The main disadvantage is a slight loss of 
quality of the final mesh, although the complexity of 
the simplification algorithm is reduced because we 
do not have to compute the position of the new 
vertex v' resulting from the edge collapse. 

Figure 1. The half-edge collapse operation. In this 
example the edge e(u, v) is collapsed into vertex u, 

but could also be collapsed into v 
We only take into account the edges that have at 
most two adjacent polygons, that is to say 2-manifold 
edges. And we also consider boundary edges, i.e. 
edges that have one single adjacent polygon. 

e 

v 

u u 
e(u,v) 

Half edge collapse 
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Figure 2. Edges adjacent to vertices adjacent to 

vertex v 
Th
d  

ion, we defined the error induced 
sum of the differences in 

ewpoint entropy can be iteratively 

important to determine some 

 just a few, although 

v where  
initial priority queue of edge 

is allows us to keep the shape of the mesh better 
uring the simplification process. In addition, we

-edge collcompute the best half apse. To do this, we 
use the approach developed by Melax [Mel98], 
which takes into account polygon normals. We 
calculate the two possibilities e(u,v) and e(v,u) and 
finally we apply the direction that produces a minor 
change in the curvature of the local region around the 
edge collapse. 

Edge Collapse Error 
In the previous sect
by an edge collapse as the 
viewpoint entropy before simplifying and after 
simplifying. 

To speed up its calculation, we can make use of the 
fact that vi
calculated. Viewpoint entropy is a calculation from 
the projected areas, and only a few polygons change 
after an edge collapse. So viewpoint entropy can be 
computed at the beginning for the entire object and 
then this initial viewpoint entropy can be 
successively updated. In our implementation we have 
exploited this feature. 

We choose the edge collapse that has the least 
deviation c (6). It is 
parameters, since the quality of the results could 
change. We have performed measurements with 20 
regularly distributed viewpoints and rendered 
256x256 resolution images. Higher values increase 
quality, but also significantly raise the temporal cost. 

In [Cas05] different hardware techniques were 
analyzed for geometric visualization using standard 
OpenGL running on current GPUs. In this study it is 
shown that the vertex buffer objects technique is the 
best suited to dynamic geometry. So we used this 
technique to render our images. 

We found that more accurate results are obtained 
with many viewpoints than with
the computational cost is obviously higher. At each 
iteration the edge cost has to be evaluated for the 
entire set of remaining edges. An edge collapse in 
our algorithm could, in principle, affect the cost of 
any remaining edge. But this does not always happen 

to each edge. At each iteration we only choose a 
small group of edges that are affected by an edge 
collapse and then the cost for these edges is 
recalculated. These edges are the ones that are 
adjacent to the vertices adjacent to the vertex v 
resulting from a half-edge collapse (Figure 2). In our 
experiments, if we consider the whole set of edges of 
the model, the temporal cost is increased around 20 
times, but we obtain results that are not significantly 
better. In Figure 3 we show a summary of this 
algorithm. 
/* Compute Viewpoint Entropy for the 
original mesh M */ 
Compute H v={1,..,n}
/* Build 

v

collapses */ 
for( Me∈ ) 
Perform collapse e 
Compute H’v where v={1,..,n} 

pute llCom co apse cost ∑ =
−=

n

v vv HHc
1

'  

Insert the duple (e, c) in queue q 

e
/
w

lowest 

 
 edge in the 

e

Fi ropy-

U
In order t
need the project  this 

s in the pixel-to-

llapse and then we project this bounding 

ality. This is mainly due to the 

Undo collapse e 
nd for 
* Update the mesh */ 
hile (queue q not empty) 

e q the edge e with Delete from queu
c 
Perform collapse of e
Recalculate cost of every
neighborhood of the transformation of e 
and update their location in queue q 
nd while 
gure 3. Pseudo-code of our viewpoint ent

driven simplification algorithm 

pdating Projected Areas 
o compute the entropy of a viewpoint we 

ed areas of every polygon from
viewpoint. The bottleneck reside
pixel analysis performed by the hybrid SW-HW 
histogram [Cas06] to obtain these areas, due to the 
memory transfer cost. Therefore, we can reduce this 
overload if instead of analyzing the whole image we 
restrict the area of reading to a window that only 
includes the polygons surrounding the edge collapse 
(Figure 4). 
To obtain this window, first we determine the 
bounding box that includes the polygons surrounding 
the edge co
box onto the screen. 
This method allows us to reduce the temporal cost of 
the algorithm by around 10 times, but it can lead to 
some slight loss of qu
fact that after an edge collapse some hidden polygons 
may appear and we could not measure their 
contribution to the formula. 
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(a) 

 
(b) 

Figure 4. Image (a) shows the Octopus model, the 
triangles surrounding the edge collapse are 
marked in blue. Image (b) shows in red the 

window which is used to obtain the new projected 
areas for blue triangles 

5. RESULTS 
We carried out our tests with low complexity models 
from CAD programs. All models were simplified 
from 20 viewpoints on a Pentium Xeon 2GHz with 
1GB RAM and an NVIDIA 7800 GTX 512MB 
graphics card. We compared the results obtained at 
the same simplification level to the results with 
QSlim [Gar97], a well-known geometric-based 
method and freely available, using the best half-edge 
collapse. The images shown were obtained using 

different viewpoints from those used during the 
simplification process. 

Model Triangles Error 
 Original Final Hv QSlim 
Fish  815  100  0,05  0,09 
Galleon  4 698  500  0,11  0,22 
Fracttree  4 806  1 200  0,08  0,12 
Galo  6 592  500  0,03  0,05 
Octopus  8 468  500  0,09  0,16 
Big_porsche  10 474  1 000  0,04  0,10 
Unicycle  13 810  1 000  0,03  0,07 

Table 1. Errors measured with Metro for all 
models 

Model Triangles Error 
 Original Final Hv QSlim 
Fish  815  100  11,40  22,83 
Galleon  4 698  500  17,74  36,84 
Fracttree  4 806  1 200  30,19  34,10 
Galo  6 592  500  9,03  12,40 
Octopus  8 468  500  17,35  25,84 
Big_porsche  10 474  1 000  7,48  8,28 
Unicycle  13 810  1 000  10,32  11,06 

Table 2. Errors measured with RMSE for all 
models 

Model Triangles Time 
 Original Final Hv QSlim 
Fish  815  100  11.16  0.02 
Galleon  4 698  500  92.64  0.06 
Fracttree  4 806  1 200  96.30  0.08 
Galo  6 592  500  152.29  0.08 
Octopus  8 468  500  224.89  0.09 
Big_porsche  10 474  1 000  299.47  0.13 
Unicycle  13 810  1 000  451.76  0.20 
Table 3. Simplification times measured in seconds 

for all models 

 
(a) Original Fish model 

 
(b) Hv. C=20. T=100 

 
(c) QSlim. T=100 

 
(d) Original Galleon model 

 
(e) Hv. C=20. T=500 

 
(f) QSlim. T=500 
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(g) Original Fracttree model 

 
(h) Hv. C=20. T=1 200 

 
(i) QSlim. T=1 200 

 
(j) Original Galo model 

 
(k) Hv. C=20. T=500 

 
(l) QSlim. T=500 

 
(m) Original Octopus model 

 
(n) Hv. C=20. T=500 

 
(o) QSlim. T=500 

 
(p) Original Big_porsche model 

 
(n) Hv. C=20. T=1 000 

 
(o) QSlim. T=1 000 

 
(s) Original Unicycle model 

 
(n) Hv. C=20. T=1 000 

 
(o) QSlim. T=1 000 

Figure 5. Results for all models. C indicates the number of viewpoints and T the number of triangles
In Table 1 and 2 we present the error committed in 
our experiments. Table 1 analyzes the visual error 
and Table 2 shows the geometric error. We have 

implemented the root mean square error (RMSE) of 
the pixel-to-pixel image difference defined in 
[Lin00] to measure the mean visual error between the 
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original and the simplified model. This error was 
taken using 24 viewpoints and 512x512 resolution 
images. We must emphasize that each viewpoint was 
different from the one used during the simplification 
and the resolution was higher. Clearly, the visual 
error committed in our method is quite low compared 
to QSlim, and can even be 50% lower, as shown in 
the case of the Fish model. We have also measured 
the geometric error using the mesh comparison tool 
called Metro [Cig98], and our results are rather better 
than the geometric method used for comparison 
purposes. This makes us highly confident about our 
approach. For example, the geometric error 
committed in the Galleon, Big_porsche and Unicycle 
models using Hv are 50% less than with QSlim. 

In Table 3 we show an analysis of the temporal cost 
of our method. This cost is proportional to the 
complexity of the model and the final number of 
triangles demanded. However, the QSlim algorithm 
is extremely fast. Its times for these models are less 
than a second. 

In Figure 5 we show the results for all the models 
analyzed. The Hv achieves much better simplification 
than QSlim. For example, in the Fish model the tail 
and the mouth shape is kept better, and in the 
Galleon model the same can be said for the sails and 
the masts. In the Fracttree model there are more 
branches, while in the Galo model the crest and the 
tail, in the Octopus model the tentacles, in the 
Big_porsche model the headlights and the aerial and, 
finally, in the Unicycle model the spokes are all far 
better represented. 
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Figure 6. RMSE errors for the Galleon model 

In Figures 6 and 7 we show how Hv acts at several 
degrees of simplification for the Galleon model. We 
have measured the RMSE and the geometric error. In 
Figure 6 we show that as we increase the level of 
simplification the difference between Hv and QSlim 
becomes larger and the visual quality of Hv is much 
higher. In Figure 7 we show that the geometric error 
of Hv is also lower than QSlim, except during the 
very first stages. This can be accounted for by the 
fact that Hv is a global measure, and it is possible 

that, in these stages, QSlim could often be better 
because it evaluates the error locally. 
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Figure 7. Metro errors for the Galleon model 

(a) Original Unicycle model on the left and simplified with Hv 
(C=20. T=8 958) on the right 

(b) Original Unicycle model on the left and simplified with Hv 
(C=20. T=8 958) on the right, both without rim  

Figure 8. Close-ups of Unicycle model simplified 
with Hv at very early degree of simplification 

Finally, in Figure 8 we show how the Hv acts at very 
early simplification levels for the Unicycle model. In 
this case we analyze the Unicycle model since it 
presents hidden interiors on the inner part of the tire 
which is in contact with the rim. As shown in this 
figure, Hv achieves a great level of simplification in 
this region (see 10(b) on the right). The model is 
simplified by around 35% and is visually the same. 
At this level, most simplifications focused on hidden 
interiors. 

We also have conducted some experiments with 
more viewpoints and our results slightly improve but 
the temporal cost increases substantially. Therefore, 
we think that with 20 viewpoints we already have 
excellent results, and thus it is a good compromise 
between quality and efficiency. 
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6. CONCLUSIONS AND FUTURE 
WORK 
In this paper, we have presented a new mesh 
simplification method based on viewpoint entropy. 
Our method performs a simplification with lower 
visual and geometric error than QSlim. In addition, it 
achieves very good results with CAD models. These 
models are composed of different pieces that are 
assembled together, thus presenting a lot of hidden 
zones and this is where our algorithm hits harder. In 
general, the main drawback of image-based methods 
is the high temporal cost. Our approach, based on 
viewpoints, also has a high cost compared to 
geometric-based simplifications. However, we have 
shown that our method achieves better 
simplifications by taking into account visual 
similarity and even it improves geometric error in 
most cases. 

Finally, it could be very interesting to make a study 
with other metrics based on information theory such 
as Kullback-Leibler distance and mutual information, 
which can also be applied to the simplification 
framework. And it could also be useful to 
incorporate mesh properties such as color and 
texture. 
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Abstract

Understanding when a cloud of points in three-dimensional space can be, semantically, interpreted as a surface,
and then being able to describe the surface, is an interesting problem in itself and an important task to tackle in
several application �elds. Finding a possible solution to the problem implies to answer to many typical questions
about surface acquisition and mesh reconstruction: how one can build a metric telling whether a point in space
belongs to the surface? Given data from 3D scanning devices, how can we tell apart (and eventually discard)
points representing noise from signal? Can the reached insight be used to align point clouds coming from di�erent
acquisitions?
Inside this framework, the present paper investigates the features of a new dimensional clustering algorithm.
Unless standard clustering methods, the peculiarity of this algorithm is, using the local fractal dimension, to
select subsets of lower dimensionality inside the global of dimension N .
When applied to the study of discrete surfaces embedded in three dimensional space, the algorithm results to
be robust and able to discriminate the surface as a subset of fractal dimension two, di�erentiating it from the
background, even in the presence of an intense noise. The preliminary tests we performed, on points clouds
generated from known surfaces, show that the recognition error is lower than 3 percent and does not a�ect the
visual quality of the �nal result.

Keywords: Surface representations; Point-based representation; Geometric algorithms.

1 INTRODUCTION

In the last few years, the di�usion of 3D data ac-
quisition devices and scanning systems, boosted the
use of huge volumes of point samples to model and
represent real world objects [18]. At the same time,
a big e�ort has been done, from the computational
point of view, to improve algorithms and analytic
techniques for point clouds processing, surface re-
construction, and semantic interpretation [11, 17].
In this context, the contribution of this paper re-

gards the relations between a surface and the points
cloud de�ning it. Particularly, we investigate on
the possibility that there is some intrinsic feature of
a points cloud, allowing us to discriminate a dataset
de�ning a surface from the acquisition noise or any
other uncorrelated point subset. We de�ne intrin-
sic feature something that is independent from any
particular reconstruction we can arrange, and can

be evaluated directly on the points set. Some im-
portant topics are strictly related to this problem:
given a points cloud de�ning a surface, can we �g-
ure out whether a new point belongs to the same
set of the others or not (is a point on the surface
or not)? Can we select, and discard, mismatched
points (error outliers)? How many points can we
remove from a surface, without damaging its in-
trinsic existence (decimation)?

As a research starting point, we can observe that
the essential peculiarity of a surface is to be a sub-
set of intrinsic dimension two. Several clustering
methodologies has been proposed lately for the de-
tection, inside a higher-dimensional dataset, of sub-
sets of points whit lower intrinsic dimensionality
[10, 4, 16]. These techniques are then capable to
discover, into the global set, points arranged along
lines (1D subsets), over surfaces (2D subsets) or
hypersurfaces (nD subsets).

A recently proposed algorithm, the Dimensional
Induced Clustering algorithm (DIC), appears to be
very e�ective at doing this [10]. Based upon the
evaluation of the intrinsic fractal dimension and
the local point density, it is able to discriminate
between subsets of di�erent dimensions, and also
of the same dimension but di�erent density.

1
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In this paper, we investigate on the use of DIC
for the discrimination of points clouds in three di-
mensional space, and on its consequences. The rest
of this work is organized as follows: in Section 2
we brie�y go over the previous work done in points
clouds processing and clustering techniques; in Sec-
tion 3 we illustrate the Discrete Induced Cluster-
ing Method; then, we describe the use of DIC for
the study of surface points clouds, introducing the
general investigation framework and going into de-
tails in Section 4; in Section 5 we show the results
obtained using the algorithm on several meshes
widely used in literature; �nally in Section 6 we
draw our conclusions and describe the future evo-
lutions of this work.

2 PREVIOUS WORK

Several techniques have been proposed for the re-
construction of surfaces from oriented point sam-
ples.
The problem of reconstructing a surface obtained

from 3D scans is mainly reduced to the registration
of the set of regular maps (the points are placed on
the vertices of a regular grid) since the relative po-
sitions of the single maps is known by the acquisi-
tion planning [9]; under normal conditions there is
low digital noise and it is interesting to understand
where the map superpositions are.
The most di�used approaches when dealing with

a set of really1 unorganized points are based on
topology. They use alpha shapes [12] or three-
dimensional Voronoi diagrams of the point set, and
then use the facets of the tessellation for the recon-
struction of the surface [2]. The latter technique
was recently reformulated to be also able to �lter
out small perturbations (noise) near to the target
surface [7].
Density-based clustering methods uses local den-

sity information in order to partition a dataset (it
could be a point set). In this context, Hierarchi-
cal Single Linkage is a widely di�used technique,
implemented in common packages as DBSCAN [8],
OPTICS [3] and CLIQUE [1].
The intrinsic fractal dimension has been success-

fully used in numerous database selection prob-
lems, as the nearest-neighbor queries [19] and spa-
tial query selective estimation [5]. Recently, also
some partitioning and clustering methods based
upon this technique have been proposed [4].

3 THE DIC ALGORITHM

Clustering methods search for patterns and reg-
ularities in data, to perform partitions in homo-
geneous sets. The Dimension Induced Clustering

1 We mean that there is no implicit information on the adja-
cencies as in 3D scanning.

algorithm (DIC) [10] carries this out computing
the intrinsic dimension and the point density. It
is therefore designed to detect, inside a higher-
dimensional dataset, subsets of points whit lower
intrinsic dimensionality, such as lines (1D subsets)
or surfaces (2D subsets). Moreover, the use of local
point density information makes the method being
able to discriminate between subsets of the same
intrinsic dimension.

3.1 Fractal Dimension

Behind the word dimension of a set there are actu-
ally two di�erent meanings that may not be coin-
cident. The �rst one is the number of independent
coordinates used to locate, in unambiguous way, a
point of the set. The second one is the relative
growing rate of the point set, that is to say, the
speed the point set �ll the space with. This is in
fact the fractal dimension. This concept can be ex-
plained using the drawing of Figure 1. Consider
the seed A and count the number of points of the
set inside the ball of radius R: doubling the ball ra-
dius, we expect to �nd twice the number of points,
so the �ll rate grows linearly with the radius and
thus the fractal dimension of the point set around
A is one. If we consider, instead, the seed B, we
expect to have a quadratic �ll rate and thus the
fractal dimension of the point set around B is two.
We can also have a non-integer fractal dimension:
using, for instance, as seed the point C we obtain
a fractal dimension of 1.5.

Figure 1: Fractal dimension interpreted as the relative
growing rate of a point set.

Consider now the dataset X ⊂ Rm and assume
that the number of points n of X tends to in�nity.
Let choose a distance function on X and let B(x, r)
be the ball of radius r centered at x; let |B(x, r)|
be the number of points inside the ball. We de�ne
the local growth function for the point x as:

Gx(r) = lim
n→∞

1
n
|B(x, r)|

The local growth function represents the density
of the subset B ⊂ X for a �xed r; it contains in-
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Figure 2: The DIC algorithm is able to discriminate between: (i) datasets of di�erent dimensions; (ii) datasets
of the same dimension but di�erent densities.

formation about the growth rate of the number of
neighbors of x. The local fractal dimension dx of a
point x is de�ned as:

dx = lim
r,r′→0

log Gx(r)
Gx(r′)

log r
r′

Since we deal with �nite sets, to evaluate the frac-
tal dimension dx we de�ne the local growth curve
as the fraction of points inside the ball for a cho-

sen radius, Gx(r) = |B(x,r)|
n , and compute dx of a

point x as the slope of the curve Gx(r) in log-log
scale. Practically we can do that assuming a linear
model for the curve, and �nding the line that �ts
it best, using a least squares method. To obtain
a correct local �t we need to consider the function
Gx(r) in a region not too much distant from the
center x (for details see [10]). Using the symbol Lx

to denote the curve, our linear model produces a
�tting curve of the form:

Lx(log r) = dx log r + bx

3.2 Local Density

For any value of x there is a particular value r∗ for
the radius leading to the de�nition of the coe�cient
cx:

cx = Lx(log r∗x) = dx log r∗x + bx

We can take cx as a measure of the density of the
dataset in a ball of radius r∗ centered on x and thus
the radius r∗, varying from point to point, is the
unique value minimizing the correlation between dx

and cx and therefore maximizing the information
contained in the couple of coe�cients. It is possible
to prove that this condition is obtained choosing:

log r∗x =
∑

(dx − d)(bx − b)∑
(dx − d)

where d and b are the arithmetic means of the co-
e�cients dx and bx computed on the whole dataset.

3.3 Local Representation

Using this procedure, we can thus de�ne a mapping
f : X → R2 from the m-dimensional dataset X to
the plane: we call it the Local Representation (LR)
of X. This mapping projects each element of the
set into the 2D plane using the couple of coe�cients
(d, c), that are, respectively, the fractal dimension
and the local points' density. Once projected the
starting dataset X to its LR, the partitioning task
becomes de�nitely easier: we can, in fact, analyze
and partition the LR and then project back the ob-
tained results to the original dataset. The partition
on the LR can be automatic, applying some stan-
dard clustering algorithm like Expectation Maxi-
mization (EM) [13], or interactive by visual inspec-
tion.

3.4 DIC Trials

Using the co-operating descriptors (d, c), DIC ap-
pears to be very e�ective since it is able not only
to discriminate between subsets of di�erent dimen-
sion, but also to distinguish subset of the same
dimension but di�erent densities. An example is
given in Figure 2. The starting 2D dataset (left)
is a mixture of three di�erent types of regions: a
1D line (region A) a 2D dense cloud (B) and di�use
ground noise (C). B and C have the same dimension
while A and B have the same density.

As a result of the application of the DIC algo-
rithm, the set is projected to its LR (right). Notice
the presence of 3 well separated clouds of points:
two of them show a fractal dimension d ≈ 2 while
the third shows d ≈ 1. The back projection shows
that the clouds correspond, respectively, to the sub-
sets A, B and C in the original point set. Using only
the fractal dimension information, it is not possible
to tell B and C apart; instead, using only a measure
for the density, subsets A and B are not separable.
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4 SURFACE RECOGNITION

Now we want to focus our attention on the main
contribution of this paper: how to use the DIC
algorithm for surface recognition and decimation.
One possible scenario is as follows: consider to

have to deal with a 3D points dataset of possible
unknown origin sampling a surface in space, that
can also be a�ected by a high experimental error or
be completely intermixed with ground noise points.
You want to be able, �rst, to reconstruct the sur-
face, then to capture its saliencies using possibly
unsupervised methods. Another alternative sce-
nario can instead be the alignment of several range
maps coming from 3D scans. We will see how we
can use DIC for both these purposes.
To experiment on the use of the DIC algorithm

we �rst modi�ed well known benchmark datasets
adding arti�cial noise to them. We embedded the
datasets in a space region in which is present white
noise constituted by a set of points, without any
special regularity, randomly distributed with ho-
mogeneous density. The noise was produced using
a standard random number generator.
To represent a correlate set of points, as for ex-

ample a surface, a subset of the dataset should have
some intrinsic features allowing us to distinguish it
from the ground noise. Particularly, using the DIC
approach, we want:

• DIC to be able to separate the data set from the
ground noise, using dimension and/or density;

• The local fractal dimension of the data set points
be correct (for a surface, d ≈ 2).

This point of view is analogous to a signal-noise
ratio evaluation. The starting data set being the
signal, that we suppose to be two-dimensional,
and the added points being the background noise,
three-dimensional by construction.
Let now step over the di�erent tasks performed

on the dataset.

4.1 Surface Finding

In Figure 3 we represent a point set embedded in
a noisy 3D space region. We constructed the point
set using the vertices of a triangle mesh commonly
used as a benchmark mesh (Oilpump, on the left).
Starting from a surface, we know for sure that the
points cloud does de�ne a surface. We then in-
troduced random noise, adding a number of points
equal to half the points on the surface, chosen at
random inside a box twice the volume of the sur-
face's bounding box (on the right).
The global set of points, (surface + noise), has

been processed with DIC, producing its Local Rep-
resentation LR (in Figure 4). The possibility to

Figure 3: The Oilpump data set. The original surface
on the left, the point set with white noise added on
the right.

separate the signal from the noise, and the com-
putational techniques used to do it, depends on
the features of LR. In the diagram we can notice
the presence of two well separated clusters, and of
some outliers. The cluster named N, with a lower
value of c, is centered around d ≈ 3; the cluster S,
with greater c, is centered around d ≈ 2. S and N
have spheroidal shape, are well separated from each
other and overlap just in the outlier region. Under
these conditions, it is possible to subdivide the LR
plot in clusters, project them back on the 3D points
generating them, and then use the clusters to parti-
tion the original 3D dataset. This procedure can be
completely unsupervised using a standard partition
method. We adopted, in this case, the K-Medoids
algorithm [14].
A backtrace check for clusterization procedure is

possible, because the membership for the points,
surface or noise, is known by construction. It shows
that DIC discriminates correctly the noise cloud
(N) from the surface point set (S). In fact, N has a
mean fractal dimension d ≈ 3 and lower density c
and it is contains almost only noise points. S has
dimension d ≈ 2 and higher density and it is mainly
constituted of surface points. In our experiments,
as it will be explained in further detail in Section 5,
uncorrect assignments are bounded by less than 3
percent for false negatives and by 6 percent for false
positives.

4.2 Noise Raising

The surface �nding procedure has been applied on
datasets with di�erent noise levels, changing the
noise density. The back projections show a remark-
able capability of DIC to discriminate the surface
point set, also in challenging environmental condi-
tions.
It's worth to remember that the signal stabil-

ity, when the level of background noise raises, is
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Figure 4: The Local Representation for the Oilpump
dataset: in red the medoids M (d = 2.156, c =
−2.038, signal) and H (d = 2.764, c = −5.025,
noise).

a measure of the consistency and the reliability of
the signal itself. Applied to our problem, it means
that the likelihood that the point set de�nes a sur-
face is directly correlated to the background noise
level. We can evaluate this property for every sin-
gle point of the data set. Embedding the data set
in 3D white noise, some points will be mingled with
the ground jelly, these points will be easily not clas-
si�ed as belonging to the surface by a reconstruc-
tion algorithm. On the contrary, the points that
are classi�ed as surface points even for high level
of ground noise are the subset of strongly attached
points, that is the intrinsic skeleton of the surface.

4.3 Points Decimation

In the last years, modelling and visualization tech-
niques using points as primitives, emerged as in-
teresting alternatives to traditional triangle mesh-
based processing [22, 23, 15, 21]. In this frame it
becomes important to set up algorithms capable
to conveniently reduce the number of point sam-
ples while keeping the underlying shape features
unchanged. Recently some methods has been pro-
posed, based upon the intrinsic feature of the points
cloud, mainly related to sample distribution and
density [2, 6, 20].
We investigated the use of the DIC algorithm as a

tool to perform a point selection based on intrinsic
features like the fractal dimension d and the local
density c.
To do this we adopted the following scheme: the

clusterization method K-Medoids, used to separate
the clouds on LR plot, works selecting a seed for
each cluster, named medoid, that is representative
of the cluster itself. The method assigns each el-
ement to the right medoid, minimizing the expec-
tation value of the distance, with respect to some
metric functions [13]. We can then select, for a
cluster in the LR plot, a set of points closer to the

relative medoid; for instance, inside a ball of some
radius r.
Performing this procedure for the cluster repre-

senting the signal, the points we select by construc-
tion are:

• Representative of the surface;

• Homogeneous in density;

• Homogeneous in intrinsic dimension;

• Well separated from the noise.

We show an example for the Oilpump dataset
in Figures 4 and 5. Using the information from
the LR plot, we select a set of points of the signal
by �tting a ball around the medoid M. The point
density, as function of the distance from M (in Fig-
ure 5), shows that the most part of the surface, over
99%, is contained inside a ball of radius r = 1.5.

Figure 5: The normalized relative density of the points
plot in Figure 4, as function of the distance from M.

In Figure 6 there are four examples of point sub-
sets obtained using balls of di�erent radius to select
points from the dataset.

4.4 Superposition and Alignment

While reconstructing surfaces from 3D scans, dif-
ferent views need to be correctly aligned and over-
lapped in the common borders regions [9]. This
task is complicated by the acquisition errors that
are a further unknown of the problem.
Even if the type of error introduced by the acqui-

sition process is not the random white noise that
our method is best suited for, the DIC algorithm
can still provide a support to existing techniques.
Consider the really trivial example shown in Fig-
ure 7. Two planar surfaces orthogonal to z, with
the same point density, are embedded in a 3D noisy
region. Initially the surfaces are partially over-
lapped on xy, but distant in z (top left). Modi-
fying the position in z of one plane, we generate a
clouds overlap (top right). The LR plots relative
to the two di�erent cases are shown in the same
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Figure 6: Oilpump points decimation, obtained using
the medoid distance technique. From left to right
and top to bottom, the subsets are generated using,
respectively, r = 0.3, r = 0.5, r = 0.8, and r = 1.1.

picture (down left), where red means the overlap
case and blue the non-overlap one. When there is
no overlap the LR shows just two clusters since the
planes have the same intrinsic dimension and the
same density. In this case, DIC can discriminate
them from the background noise but cannot create
any link from one to another.

In the second case, instead, the points density in
the overlapping region is twice the density of each
plane. In this situation, DIC is capable to �gure
out if there is a superposition and also to �gure
out where the overlapping region is, as one could
expect when they represent the same swatch of sur-
face scanned twice. As one can see in the two di-
agrams, the LR plot for overlapping surfaces (red
points) shows a third cluster, with the same fractal
dimension of the blue signal cloud but higher den-
sity. As the analysis points out, this cluster is made
of points in the superposition region. Being able to
separate the signal from the noise, this mechanism
correctly characterize the overlapping region tak-
ing into account just the points on the surfaces,
and discarding the values a�ected by errors.

In this case the cluster separation is not simple
using the K-Medoids method and user intervention
is needed. It is, anyway, the only case we found in
which the method needs to be supervised.

Figure 7: Two planes embedded in background noise.
Not overlapped (top left), overlapped (top right).
The related LR (in the middle, red for overlapped
and blue for non overlapped) and a detail of the boxed
region (bottom).

5 RESULTS AND DISCUSSION

In Table 1 we summarize the results of the dis-
crimination between surface and noise, performed
for di�erent meshes. Noise was randomly generated
adding points in an amount of 50% the number of
points of the original mesh, inside a box eight times
the volume of the mesh bounding box. We list, in
the order, the name of the mesh, the number of
its points and the number of added points. With
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Table 1: Noise/Surface discrimination for eight dif-
ferent datasets: in column V there is the number of
points from the surface and in column N the number
of added points.

Dataset V N α α% β β%

Screw 904 452 14 1.5 55 6.0
Bunny 1015 507 2 0.2 155 1.5
Face 2278 1139 0 118 5.1
Ahead 3123 1561 89 2.8 124 3.9
Teapot 4255 2127 56 1.3 163 3.8
Cat 4539 2269 0 198 4.3
Fandisk 6475 3237 0 293 4.5
Oilpump 10274 5137 97 0.9 276 2.6

α we indicate the false negatives (surface points
assigned to the noise set) and with β the false pos-
itives (noise points assigned to the surface). In
columns α% and β% we list the error percentages.
We can notice that the number of uncorrect as-

signments is small for both error types. It is very
important that the number of false negatives is
bounded by 3% and is, on average, much less. This
implies that almost all the points to be used for
the surface recognition are selected. The false posi-
tives are much more, because while dropping points
at random in the bounding box the probability to
choose spatial locations very close to the surface is
not negligible.
In Table 2 we listed α% and β% as function of the

noise points density, for the Oilpump and Teapot
datasets. The noise (�rst column) is expressed in
a relative way: we start putting in a box, linearly
twice the mesh bounding box, an amount of 50%
the points of the mesh; then, we shrink the noise
box to increase its density. Assuming 1 as a ref-
erence starting density value, the other values rep-
resent the relative growth. We can notice that α%

is not related to the noise density; this means that
the e�ciency of the method is high also in chal-
lenging conditions. On the other hand, β% grows
more than linearly with the density. This is due to
the fact that, reducing the noise box, the probabil-
ity to generate random points located on, or very
close to, the surface increases. In some sense then,
a part of β% is not really an error!

6 CONCLUSIONS AND FUTURE

WORK

We presented in this work the application of a clus-
terization method to the recognition of surfaces
from point clouds. The algorithm is based on the
computation of the fractal dimension and local den-
sity for each point in the cloud (its LR map).
The main advantages of the method are: it can

be used in an unsupervised mode using a standard

Table 2: Variations of α% and β% when changing the
noise density.

Noise Oilpump Teapot
density α% β% α% β%

1.00 0.96 1.22 1.39 1.57
1.18 0.98 1.47 1.27 2.11
1.42 0.98 1.94 1.29 2.84
1.72 0.94 2.69 1.32 3.83
2.12 0.94 3.51 1.36 4.61
2.65 0.91 5.53 1.18 6.56

clustering algorithm; it can be used interactively
allowing for visual inspection of the characteristics
of the dataset; based on the LR map a point dec-
imation is direct and simple; a straightforward ex-
tension of the technique can be used for computing
the superposition of di�erent range maps coming
from a 3D object scan.

The results, even if preliminary, are very promis-
ing, especially those regarding the point decimation
aspect. We still need to work on several aspects
of the method, the most important being: rework
the implementation to be able to deal with larger
datasets; make experiments on real sets of unor-
ganized points instead of benchmarking on points
clouds derived from meshes.

Nevertheless we are con�dent that it can already
be useful for the purposes exposed.
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ABSTRACT

In this paper, we present a benchmarking suite that allows a systematic comparison of pairwise static collision detection
algorithms for rigid objects. The benchmark generates a number of positions and orientations for a predefined distance. We
implemented the benchmarking procedure and compared a wide number of freely available collision detection algorithms.

Keywords: Collision Detection, Benchmarking

1 INTRODUCTION

Fast algorithms for collision detection between polygo-
nal objects are needed in many fields of computer sci-
ence, e.g. in physically based simulations, computer
games, or robotics. In many of these applications, colli-
sion detection is the computational bottleneck. In order
to gain a maximum speed of applications, it is essential
to select the best suited algorithm.

There are a number of algorithms for collision de-
tection between rigid objects. Unfortunately, it is ex-
tremely difficult to evaluate and compare collision de-
tection algorithms, because in general they are very sen-
sitive to specific scenarios, i.e. to the relative size of the
two objects, the relative position to each other, the dis-
tance, etc.

The design of a standardized benchmarking suite
for collision detection would make fair comparisons
between algorithms much easier. Such a benchmark
must be designed with care, so that it includes a broad
spectrum of different and interesting contact scenarios.
However, there are no standard benchmarks available
to compare different algorithms. As a result, it is non-
trivial to compare two algorithms and their implemen-
tations.

In this paper, we propose a simple benchmark pro-
cedure which eliminates these effects. It has been kept
very simple so that other researchers can easily repro-
duce the results and compare their algorithms.

The user only has to specify a small number of pa-
rameters, namely: The objects he wants to test, the
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number of sample points, and, finally, a set of distances.
Our algorithm then generates the required number of
test positions and orientations by placing the object in
the given distances.

Our benchmarking suite is flexible, robust, and it
is easy to integrate other collision detection libraries.
Moreover, the benchmarking suite is freely available
and could be downloaded together with a set of objects
in different resolutions that cover a wide range of pos-
sible scenarios for collision detection algorithms, and a
set of precomputed test points for these objects 1.

2 RELATED WORK
There does not exist much work about special bench-
marking suites for collision detection algorithms. Most
authors simply choose some objects and test them in a
not further described way, or they restrict their explo-
rations just to some special scenarios. A first approach
for a comprehensive and objective benchmarking suite
was given by [Zac98]. The code for the benchmark is
freely available. However, it does not guarantee to pro-
duce results with practical relevance, because the ob-
jects interpenetrate heavily during the benchmark, but
collision detection is mostly used to avoid interpen-
etrations. In many simulations, objects are allowed
to collide only a little bit, and then the collision han-
dling resolves the collision by backtracking or a spring-
damping approach.

[OL03] chose a set of physically based simulations to
test their collision detection algorithms. This scenarios
are a torus falling down a spiral peg, a spoon in a cup,
and a soup of numbers in a bowl. [vdB97] positioned
two models by placing the origin of each model ran-
domly inside a cube. The probability of an intersection
is tuned by changing the size of the cube. The problem
here is that it is stochastic, and that a lot of large and
irrelevant distances are tested.

1 http://cg.in.tu-clausthal.de/research/colldet_benchmark/
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[CRM02] presented a comparison with the special fo-
cus on motion planing. They used different scenes in
their probabilistic motion planner for the benchmark.
However, such a benchmarking suite compares the col-
lision detection algorithms only in a special scenario.
In this paper, we present a more flexible and general
benchmarking suite which produces more reliable com-
parisons.

3 THE BENCHMARKING ALGO-
RITHM

Nearly all collision detection libraries for static col-
lision detection between rigid objects are based on
bounding volume hierarchies (BVHs). If the bounding
volume (BV) of an object does not intersect a volume
higher in the tree, then it cannot intersect any object
below that node. So, they are all rejected very quickly.
If two objects overlap, the recursive traversal during the
collision check should quickly converge towards the
colliding polygon pair. So, it is most time consuming
if the BVHs overlap, but the objects do not.

Therefore, in most collision detection algorithms, the
testing time depends mainly on the configuration of the
two objects and their shapes, i.e. the positions, orien-
tations and distance, and to a lesser amount on their
complexity. Therefore, it seems to be reasonable for a
well-balanced benchmarking procedure to test as many
configurations for a given distance as possible.

3.1 The Search Space
Without loss of generality, it is sufficient to rotate only
one of the objects in order to get all possible configura-
tions, because we can simply transform one of the ob-
jects into the coordinate system of the other. This does
not change the relative position of the objects. There-
fore, our search space has 6 dimensions.

As even a 6D search space is too big to be tested, we
have to reduce it by sampling. In order to find a large
number of sampling points, we propose two different
methods in our benchmarking suite. We call them
sphere method and grid method. The sphere method is
faster, but could miss some interesting configurations,
while the grid method is more accurate. Both methods
start with a fixed rotation. After a cycle of method-
specific translations, the moving object is rotated and
the next cycle can start until a user specified number of
rotations is reached.
The Grid Method The first method uses a simple
axis-aligned grid to find the translations. The center of
the moving object is moved to the center of all cells.
For each of these, the object is moved towards the fixed
object until the required distance is reached. Then, the
configuration is stored. Unfortunately, it is not possi-
ble to know the number of configurations found by this
method in advance.

Figure 1: Our sphere-method uses a fixed rotation for
every cycle. The moving object is rotated around the
fixed object. After a cycle is finished, the rotation is
changed.

The Sphere-Method The main idea of this method is
to reduce the time for finding possible configurations.
To this end, the 3D search space is reduced to 2 dimen-
sions by using spherical coordinates. Nevertheless, it
might happen to miss some interesting configurations.
Within this method, we place the moving object on a
sphere around the fixed object. The sphere should be
bigger than the required distance. In the next step, we
move the object towards the fixed object on a straight
line through the center of the sphere until we reach the
required distance. Because there could be several points
that match the required distance on the straight line, it
is possible to miss some configurations. In addition to
the higher speed of this method, it is possible to de-
fine the number of located configurations in advance,
because every straight line leads to exactly one config-
uration (see Fig. 1).

At the end of this procedure, we have got a large
number of configurations for a user specified number of
object-object-distances. This has to be done only once
as preprocessing step, even if we add another collision
detection library to the set later, or if we move to other
platforms.

3.2 Benchmarking
The bulk of the work has been done in the previous step.
In order to actually perform the benchmark, we just
load the set of configurations. For each object-object
distance we start the clock, set the transformation ma-
trix of the moving object to all the configurations asso-
ciated with the distance, and perform a collision test for
each of them. After that, we can compute an average
collision detection time for this distance.

3.3 Distance Computing
One method to determine the distance between two ob-
jects is to use the collision detection algorithms itself.
We can build an offset object from the fixed object
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where the offset equals the specified distance. Then,
we can conduct a binary search until we find a point
where the moving object is just touching the offset ob-
ject. However, offset objects can get very large for com-
plex objects.

That is why we propose another method: The PQP-
library offers the possibility to compute the distance be-
tween two objects by using swept spheres. With a given
distance, we can also do a binary search until we find a
point which matches the specified distance.

However, distance computing is more complicated
than collision detection. Thus, this method is more time
consuming. On the other hand, it is more accurate and
less memory intensive than the offset object method.
Therefore, we prefer this method for our benchmark.
Another advantage of this method is that we know the
exact distance between the objects during the binary
search. We can use this information to delete cells in
the grid method with a higher distance than the speci-
fied one. This accelerates the search for configurations.

Indeed, our benchmarking suite supports both meth-
ods for distance computing, because PQP is not Open
Source software and, therefore, it is not possible to de-
liver it directly with our benchmarking suite.

Another problem that arises during distance compu-
tation concerns numerical stability. Because we are
forced to floating point accuracy, it is not possible to
find configurations with an exact distance while doing
binary search. On account of this, we use an accuracy
of 0.001% relative to the size of the fixed object in our
benchmark. Of course, this accuracy can be changed by
the user.

4 IMPLEMENTATION
Most collision detection libraries use proprietary inter-
nal data structures for data representation. Therefore,
it is not possible to pass all kinds of objects directly to
the algorithms. We chose OpenSG, a freely available
scenegraph system for object management, because it
offers support for many file formats, it is portable to
many operating systems and, its data structures are well
documented and easy to use. We wrote a wrapper for
every collision detection library in order to convert the
OpenSG data to the specific required data structures of
the collision detection libraries. During initialization,
our benchmark simply checks if the dynamically linked
libraries are available and, if so, loads them.

We tested a wide variety of freely available collision
detection libraries, precisely:

V-Collide: V-Collide, proposed by [HLC+97], is a
wrapper with a simple interface for I-Collide and the
RAPID library. In a first step, a sweep-and-prune algo-
rithm is used to detect potentially overlapping pairs of
objects. In a second step, the RAPID library is used for
the exact pairwise test between a pair of objects. It uses

an oriented bounding box test to find possibly colliding
pairs of triangles.
PQP: PQP [GLM96] [LGLM99] is also based on
the RAPID library. As with RAPID, PQP uses oriented
bounding boxes. Furthermore, PQP is also able to com-
pute the distance between the closest pair of points. For
distance and tolerance queries, a different BV type, the
so-called swept spheres, is used.
FreeSolid: FreeSolid, developed by [vdB99], uses
axis-aligned bounding boxes (AABBs) for collision de-
tection. For a fast collision test between the AABB hi-
erarchies, the acceleration scheme described in [vdB97]
is used. FreeSolid could also handle deformations of
the geometry.
Opcode: Opcode, introduced by [Ter01], is a col-
lision detection library for pairwise collision tests. It
uses AABB hierarchies with a special focus on mem-
ory optimization. Therefore, it uses so-called no-leaf,
i.e., BVHs of which the leaf nodes have been removed.
For additionally acceleration it uses primitive-BV over-
lap tests during recursive traversal, whereas all other
libraries described in this paper only use primitive-
primitive-tests and BV-BV-tests. Like Freesolid, Op-
code also supports deformable meshes.
BoxTree: The BoxTree, described in [Zac95], is a
memory optimized version of the AABB trees. Instead
of storing 6 values for the extents of the boxes, only two
splitting planes are stored. For the acceleration of n-
body simulations, the libraries offers support for a grid.
Dop-Tree: The Dop-Tree [Zac98] uses discrete ori-
ented polytopes (k-DOPs, where k is the number of ori-
entations) as BVs. k-DOPs are a generalization of axis
aligned bounding boxes. The library supports different
numbers of orientations. In [Zac98] it is shown that
k = 24 guarantees the highest performance. Therefore,
we also chose this number for our measurements. The
set of orientations is fixed. This library also supports
n-body simulation via grids.

When running the configuration space exploration
(see section 3), the user simply specifies the objects he
wants to test, the size of the grid, if he wants to use
the grid-method or a step size for the spherical coordi-
nates of the sphere-method. Moreover, a step size for
the rotation of the moving object must be given and, fi-
nally, a distance. Then, our benchmark automatically
generates a set of sample points for these specified pa-
rameters and benchmarks all available algorithms. It
measures the times with an accuracy of 1 msec. More-
over, our benchmarking suite also offers scripts for the
automatical generation of diagrams to plot the results of
the benchmark.

5 RESULTS
Besides the distance between the objects, the perfor-
mance of collision detection libraries mainly depends
on the complexity and the shape of the objects. We used
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Figure 2: Some of the objects we used to test the collision detection libraries: A model of a castle, a helicopter
and a laurel wreath

20 different objects in several resolutions in order to
cover a wide range of use cases. All of the objects are in
the public domain and can be accessed on our website.
In particular, we used models of the Apollo 13 capsule
and the Eagle space transporter, because they are nearly
convex but have a lot of small details on the surface. To
test the performance of the libraries on extremely con-
cave objects we chose models of a helicopter, a luster,
a chair, an ATST-walker and a set of pipes. Moreover,
we used a laurel wreath to test intricate geometries. A
Buddha model, a model of the Deep Space 9 space sta-
tion, a dragon, and the Stanford Bunny were tested as
examples of very large geometries. A model of a castle
consists of very small, but also very large triangles. We
used it to test the performance at unequal geometries.
Accurate models of a Ferrari, a Cobra, and a door lock
represent typical complex objects for industrial simula-
tions. Finally, synthetic models of a sphere, a grid, a
sponge, and a torus were used. Figures 2 and 3 show
some of these objects.

Within our benchmarks, we simply tested a model
against a copy of itself. However, our benchmark also
supports the use of two different objects, but the first
method is sufficient to make conclusions about the per-
formance of the libraries.

We tested the libraries on a Pentium D CPU with 3
GHz and 1 GB of DDR2-RAM running Linux. All
source code was compiled with gcc 4.0.2. We used the
sphere-method with PQP for distance computing. We
chose a step size of 15◦ for the spherical coordinates
and a step size of 60◦ per axis for the rotations of the
objects. With these values, we generated a set of 38000
sample configurations for every distance. We computed
sample configurations for distances up to 40% of the
object size in 1% steps, because in all example cases,
there was no significant time spent on collision detec-
tion for larger distances. All these configurations can
be downloaded from our web site2.

The first reasonable finding of our measurements is
that those algorithms, which use the same kind of BVH,
behave very similar. Our second finding is that all algo-

2 http://cg.in.tu-clausthal.de/research/colldet_benchmark/

rithms have their special strength and weakness in dif-
ferent scenarios. E.g., the AABB-based algorithms like
FreeSOLID, Opcode and the BoxTree were very well
suited for regular meshes like the grid or the lustre, but
also for meshes with very unequal triangle sizes, like
the castle (see Fig. 7). In these cases, they were up to
4 times faster than the OBB-based libraries or the Dop-
Tree. This is because in these test cases, AABBs fit
the objects very well and therefore, the algorithms can
benefit from their faster collision check algorithm.

When we used extremely concave and sparse ob-
jects, like the lustre or the ATST, or objects with lots
of small details, like the Apollo capsule, the situation
changed completely and the OBB-based algorithms,
namely PQP and V-Collide, performed much better
than the AABB-based libraries (see Fig. 5). This is,
because with these kinds of objects, a tight fitting BVH
seems to gain more than a fast BV test.

A special role played the Dop-Tree which combines
the fast BV tests of the AABB-based algorithms with
the tight BVs of the OBB-based libraries. As expected,
this BVH is placed between the other two kinds of al-
gorithms in most of the test scenarios.

Another interesting aspect we wanted to benchmark
is the dependency on the complexity of the objects.
Therefore, we tested all our models in different reso-
lutions. The surprising result was, that there was no
general dependency on the complexity for the algo-
rithms we tested. E.g., in the lustre scene, the times
increase nearly linearly with the number of polygons,
for the AABB-based libraries, whereas it is nearly con-
stant for the OBB-based algorithms. In the grid sce-
nario, the increase is about O(n logn) for all algorithms
(see Fig. 6). In the castle scene, the collision detec-
tion time seems to be independent from the complex-
ity and in the chair scene, the collision detection time
decreased for all algorithms with an increasing object
complexity (see Fig. 7).

Summarizing, there is no all-in-one device suitable
for every purpose. Every algorithms has its own
strength in special scenarios. Therefore, the users
should check their scenario carefully when choosing a
special collision detection algorithm. A good compro-
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Figure 3: Some more of the test objects: A model of the Apollo 13 capsule, a set of pipes and a lustre.
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Figure 4: The results of the benchmark for the castle scenario in resolutions with 127 131 vertices and in the grid
scene with 414 720 vertices. The x-axis denotes the relative distance between the objects, where 1.0 is the size
of the object. Distance 0.0 means that the objects are almost touching but do not collide. The abbreviations for
the libraries are as follows: bx=BoxTree, do=Dop-Tree, pqp=PQP, vc=V-Collide, op=Opcode, so=FreeSOLID. The
AABB-based algorithms perform best in this kind of scenarios.
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Figure 5: The results of the benchmark for the Apollo capsule with 163 198 vertices and the ATST walker with
20132 vertices. In these test cases, the OBB-based algorithms are much faster than the AABB-based libraries.
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Figure 6: The results of the benchmark for the lustre scene and the grid scene for a distance of 1% relative to
the object size. The x-axis denotes the number of vertices divided by 1000. The time for collision detection in the
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for all algorithms in the grid scene.
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Figure 7: The dependency of the collision detection time from the complexity of the models in the castle and the
chair scenes. The distance is fixed to 1% of the object size. In the castle scene, the collision detection time seems
to be independent of the complexity, while in the chair scene, the time for collision detection even decreases with
increasing complexity.

mise seems to be the Dop-Tree, because it combines
tight BVs with fast BV tests. Moreover, in some
cases, it could be helpful to increase the complexity of
the model in order to decrease the time for collision
detection, but this does not work in all cases. However,
in nearly all test cases, all libraries are fast enough
to perform real time collision checks even for very
complex objects.

6 CONCLUSIONS
We presented an easy to use benchmarking method
and a representative suite for benchmarking objects for
static collision detection algorithms for rigid objects.
Our benchmark is robust, fast, flexible, and it is easy
to integrate other collision detection libraries. We used
our benchmarking suite to test several freely available
collision detection libraries with a wide variety of ob-
jects.

Our benchmarking suite is helpful for users to figure
out the best fitting collision detection scheme to meet
their specific requirements. The comparison of several
algorithms yields a simple rule for choosing the optimal
algorithm.

In the future, we plan to extend our benchmarking
suite also for penetrating objects. Therefore, we will
have to determine the penetration depth of a pair of ob-
jects. Another promising future project is the design of
a benchmarking suite for more than 2 objects and for
continuous collision detection algorithms. Moreover,
a standardized benchmarking suite for deformable ob-
jects is still missing and could be very helpful for users.
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Triangulation of uniform particle systems:
its application to the implicit surface texturing
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ABSTRACT

Particle systems, as originally presented by Witkin and Heckbert [32], offer an elegant solution to sample implicit
surfaces of arbitrary genus, while providing an extremely regular distribution of samples over the surface. In this
paper, we present an efficient technique that uses particle systems to rapidly generate a triangular mesh over an
implicit surface, where each triangle is almost equilateral. The major advantage of such a triangulation is that
it minimizes the deformations between the mesh and the underlying implicit surface. We exploit this property
by using few triangular texture samples mapped in a non-periodic fashion as presented by Neyret and Cani [16].
The result is a pattern-based texturing method that maps homogeneous non-periodic textures to arbitrary implicit
surfaces, with almost no deformation.

Keywords
Geometric Modeling, Implicit Surfaces, Particle Systems, Texturation

1 Motivation
Starting from the seminal work by Blinn [2] at the
beginning of the eighties, implicit surfaces have been
recognized as an elegant and powerful representation
for 3D modeling. Although the several hundreds of
paper that have been published on the subject during
the last 25 years, a standard 3D modeling software en-
vironment that uses implicit surface as a general geo-
metric paradigm is still not common practice in indus-
try [18, 24]. So even though much work has shown
that implicit surfaces combine different mathematical
properties that make them very appealing, they are not
widely used for real-scale applications in the computer
graphics industry. There are mainly two reasons that
may explain such a rather confidential use. First, im-
plicit surfaces are not well adapted to the rendering
pipeline used in current graphics hardware. Indeed, a
rather expensive tessellation step is required to con-
vert the surface into a polygonal mesh that can be ef-
ficiently processed by the hardware. Second, conven-
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fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
Copyright UNION Agency–Science Press, Plzen, Czech Re-
public.

(a) (b)

Figure 1: Pattern-based texturing of two different
models.

tional texture mapping based on 2D texture patterns,
which is by far the most ubiquitous solution to vi-
sually enhance geometric models, is really awkward
to apply to implicit surfaces as there is no underlying
parametrization.
Of course, 3D texturing techniques, such as solid tex-
tures [19, 34, 21] or octree textures [1, 12] can always
be applied to implicit surfaces as they do not require
any 2D parametrization. 3D textures represent a pow-
erful solution to generate visual appearance of objects
carved out from heterogeneous material such as mar-
ble or wood, for instance. Unfortunately, the visual
complexity of most real life objects is much better
simulated by 2D pattern-based texture mapping rather
than 3D texturing. The main reason is that the normal
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vector of 3D textures does not align with the normal
of the underlying surface.
Several authors have previously addressed the prob-
lem of tuning conventional 2D pattern-based texture
mapping techniques for implicit surfaces. Most of
these approaches will be briefly recalled in Section 2.
The technique presented in this paper belongs to this
stream of work. More precisely, the basic idea of this
paper is to use the intrinsic features of uniform parti-
cle systems to drive a homogeneous non-periodic tex-
ture mapping on implicit surfaces with almost no de-
formation. The process is to rapidly generate a set of
particles, apply a limited number of relaxation steps
to achieve uniform sampling, and triangulate this set
by taking into account the specific characteristics of
the sampling. The resulting mesh, where each tri-
angle is almost equilateral, is then used to support
the parametrization of a pattern-based texture mapping
scheme, similar to the one presented by Neyret and
Cani [16].
The remainder of the paper is organized as follows.
Section 2 recalls some related previous work on sam-
pling and texturing of implicit surfaces. Section 3 in-
troduces our algorithm to rapidly generate an almost-
uniform set of particles over an arbitrary implicit sur-
face. Section 4 focuses on the triangulation of this
particle set, while Section 5 shows how to use this
triangulation to get a local parametrization of a tex-
ture mesh that is then applied to the surface. Section 6
presents several experimental results obtained with our
texturing process, and finally, Section 7 concludes and
presents some directions that we are currently investi-
gating.

2 Previous work
2.1 Particle systems
The first time that particles were used to sample a sur-
face was in a complete modeling tool based on ori-
ented particle systems developed by Szeliski and Ton-
nesen [26], but in their work there was no underlying
implicit surface. Figueiredo et al. introduced [5] a sys-
tem to sample implicit surfaces using particles. The
authors used a similar relaxation process that [26] in
order to achieve a uniform distribution of the sample
points which are then used to compute a polygonal ap-
proximation of the implicit surface. Turk [30] used a
reaction-diffusion method in order to re-tile polygonal
surfaces according to the curvature, to get more points
in regions of high curvature.
Witkin and Heckbert [32] developed a powerful mod-
eling application by defining an adaptive repulsion and
a split/death condition so that particles could either
split or be removed from the surface. The technique
generates a nice isotropic sampling of the implicit sur-

face. Unfortunately, the convergence of the algorithm
is rather slow, even for moderately complex surface,
despite the improvement later proposed by Hart et
al. [8] for automatic and numerical differentiation of
the underlying surface.
Most improvements of particle systems addressed the
problem of adaptive sampling of implicit surfaces ac-
cording to curvature. Crossno and Angel [3] extended
the work of Witkin and Heckbert by estimating a dif-
ferent repulsion radius for each particle according to
its curvature. Similarly, Rosch et al. [23] used cur-
vature information to sample unbounded surfaces and
singularities. Meyer et al. [15] introduced a new class
of energy functions for distributing either uniform or
non-uniform particles on implicit surfaces. Levet et
al. [14] presented an anisotropic sampling of implicit
surfaces that locally takes into account the direction
and value of principal curvatures.
Other works have presented ideas for sampling im-
plicit surfaces for animation [6]. Some particle sys-
tems have also been used to polygonize implicit sur-
faces [5] or as a comparative quality technique for
polygonizing implicit surfaces [11]. Su and Hart [25]
presented an object-oriented particle framework de-
signed to rapidly create new particle systems and ap-
plications.
Recently, some researches have focused on generating
first the particles and, then, performing the relaxation
process in order to get a uniform distribution of the
particles. So, Galin et al [7] have developed a tech-
nique which takes into account the characteristics of
the BlobTree [33] in order to realize a very fast uni-
form sampling of implicit surfaces. Even if a little
slower, the method presented by Levet et al. [13] al-
lows to generate a fast sampling of an implicit surface
in order to perform a limited number of relaxations.
This method works for any type of implicit surface
and manage to generate uniform and non-uniform par-
ticles.

2.2 Texture mapping on implicit surfaces
Several authors have previously addressed the problem
of tuning conventional 2D pattern-based texture map-
ping techniques for implicit surfaces. Note that most
of the approaches are based on particle systems.
Turk [29] proposed to use particle systems to generate
natural pattern directly on a generic surface by using
a reaction-diffusion process. This approach becomes
very expensive for high frequency details that require
a huge number of particles.
Pedersen [20] described a texturing method for im-
plicit surfaces by defining a set of patches over the
surface. Each patch acts as a local parametrization
and can be textured and interactively manipulated. The
drawback of this approach is to require laborious and
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Figure 2: Triangulation of a uniform particle set.(a) Neighboring particles of P are ordered around it. (b) After
the neighbors gathering some triangles intersect each others. (c) The simplification step discards all these triangles
in order to create a good polygonization. The three problematic configurations are given in (d-f-h) while their
solutions are given in (e-g-i).

sometimes tricky hand-tuning by the user to avoid de-
formation of 2D texture patterns.
Zonenschein et al. [35] proposed a simple texture map-
ping technique for implicit surfaces that uses a sim-
ple parametric support surface (e.g., sphere, cylinder).
The mapping from the implicit surface to the support
surface is done by a particle system. More precisely,
particles are initialized on the implicit surface and then
moved towards the support surface through an interpo-
lation of the gradient fields of the two surfaces. While
the original technique was rather limited, it has re-
ceived several further extensions: to offer better con-
trol of local mappings [36], to account for composite
implicit shapes [37] and for composite skeleton-based
support surfaces [27, 28]. Despite this generalization,
the technique is still not very robust in the case of im-
plicit surfaces with complex topology or high-order
genus.

3 Triangulation of the particle set
Crossno and Angel [4] have developed an algorithm
that triangulates non-uniform particle set. Because it
is not possible to predict the neighbors number of a
particle, they have to deal with a lot of special con-
figurations that makes their technique very complex to
implement. Because we want to triangulate uniform
particle systems, our algorithm is simpler.
The starting point of our technique is a set of uniform
particles (which can be obtained by using the particle
systems described in [32, 15, 13]). These uniform par-

ticle systems have some interesting characteristics. In
the ideal scheme, each particle has six neighbors and
the distance between each pair of them is 2r (r being
the global repulsion radius for all the particles). The
problem is that this ideal scheme can not be achieved
easily. Indeed, as shown in [14], the detection of
the convergence of particle systems is a difficult task.
Thus, when the sampling of the implicit surface by the
particles is stopped, each particle pair is not exactly at
a distance of 2r. Instead, the system has minimized
the particle set energy in order that the average parti-
cle’s number of neighbors is six and that the distance
of each particle pair is around 2r.
A naive solution would be to gather, for each particle,
all the particles located at a distance of 2r and triangu-
late them. The problem is that, as said above, because
of the last relaxation, the distance between neighbor-
ing particles can be a little more than 2r. With this
naive solution, we can thus miss some neighboring
particles leading to uneven triangles. Besides, these
configurations are difficult to identify. Our solution is
to gather more particles than really needed because,
in this case, the identification of the problematic con-
figurations is easier. Thus, in our implementation, the
following two-pass process is used: we first triangu-
late the particles with a simple neighboring search, and
second, we simplify the mesh by discarding the inter-
secting triangles.
In the first step, we gather more neighboring particles
than needed by using a 3r instead of 2r neighborhood,
as it avoids some pathological configuration during the
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Figure 3: Triangulation of two models.

simplification step. The gathered particles have then to
be ordered around P (see Figure 2(a)). All the neigh-
boring particles of P are projected on its tangent plane
which allows us to do all the remaining computation in
2D. We select a neighbor of P as the reference parti-
cle P r (in the Figure 2(a), the particle P 0 is defined as
the reference particle P r). For all the other ones, we
compute the dot product between the reference vector
−→
V r = pr − p and the vectors

−→
V i = pi − p,

∑

n

i=1
.

Finally, the ordering is done on the 2D cross product

between
−→
V r and

−→
V i. A simple triangle fan can now be

created.
This results in a mesh with some intersecting trian-
gles (see Figure 2(b)). Three different criteria are used
to identify these triangles. First, for the configuration
shown in Figure 2(d): p3 is not a neighbor of p0 but
there is a triangle that links them. This configuration
arises because we gather a 3r neighborhood instead of
a 2r one. We can have now triangles between particles
that are not neighbors. In order to identify such trian-
gles, we have just to gather all triangles that have p0 as
a vertex, and keep those that have p3 as well. Thanks
to the characteristics of the particle systems, we are
sure that the three other triangles exist ((p0,p3,p2),
(p0,p1,p2), (p3,p2,p1)), and that we recover them.
Once we have the four triangles, we just have to dis-
card the (p0,p1,p3) and (p0,p3,p2) as P 0 and P 3

are not neighbors (see Figure 2(e)).
After having applied this first criteria, some inter-
secting triangles still remains. To identify them,
we have to look at the neighborhood of a particle.
This configuration arises when there is a triangle be-
tween three successive neighboring particles(see Fig-
ure 2(f)). Contrary to the configuration shown in Fig-
ure 2(d), P 0 and P 3 are neighbors. We still gather the
four triangles, but this time we discard (p0,p1,p2)
and (p1,p2,p3). Moreover, we have to cancel the
neighborhood relation between P 1 and P 2 since they
are not neighbors anymore (see Figure 2(g)).
The last configuration is slightly different: this time,
the problem occurs because the particle set misses one
particle. For instance, in the configuration shown in
Figure 2(h), the ideal scheme is achieved by adding a

(a) Original triangle. (b) Resulting tessellation.

Figure 4: Level 3 tessellation of a triangle.

particle at the star’s gravity center. Thus, we discard
all triangles that belong to the star, add a new particle
P 5 located at its gravity center and generate all the
corresponding triangles (see Figure 2(i)).
After the application of these three criteria, all the in-
tersecting triangles (see Figure 2(b)) have been dis-
carded leading to a polygonization with near-equilateral
triangles. Figure 3 shows the results of our polygo-
nization algorithm on two models. Table 1 shows the
efficiency of our algorithm with various number of
particles.

4 Tessellation of the triangulation
With the algorithm detailed above, we can rapidly gen-
erate a triangulation from a uniform particle set. So,
the initial requirement is to efficiently get such a set of
uniform particles. Unfortunately, because of their ex-
pensive relaxation process, particle systems proposed
in the literature can not easily manage to sample a sur-
face with thousands of particles in order to get the kind
of triangulation shown in Figure 3.
As an alternative, we propose a two-step process, in
which the implicit surface is first sampled with a small
set of particles (this number is later increased by sub-
division). The only need is that the general topology of
the surface is not missed even if its geometric approx-
imation is not sufficient because of the low number of
particles. Thanks to the energy minimization of the
particle system, the particles will be placed in order to
catch as much details of the surface as possible. One
nice characteristic of using the triangulation of the par-
ticle set given by the algorithm of Section 3 is that we
still have the underlying implicit surface. Thus, we
can further tessellate each triangle of the polygoniza-

# particles Triangulation time # triangles
682 0.010 1,360

2,813 0.045 5,622
17,178 0.263 34,292
36,464 0.685 72,915
73,379 1.175 146,671

Table 1: Times taken by the triangulation of uniform
particle sets. All times are in seconds.
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(a) High-detailed (b) Direct visualization (c) Low-detailed (d) Direct visualization (e) Visualization of the
texture mesh of the texture mesh texture mesh of the texture mesh parametrized implicit surface

Figure 5: The scaling of the texture patterns is directly related to the texture mesh resolution. (a) Dense texture
mesh (b) Texture patterns applied on dense texture mesh (high frequencies of the patterns are lost) (c) Coarse
texture mesh (d) Texture patterns applied on coarse texture mesh (e) Coarse texture mesh mapping on the implicit
surface (high frequencies of the patterns are preserved).

tion of the particles in order to get a good geometric
approximation of the model.
Based on [9, 10], we subdivide each triangle as shown
in Figure 4. But, contrary to them, we do not repro-
ject the newly inserted vertices on the implicit surface
by applying one step of the Newton-Raphson iteration.
Indeed, we decided to reproject them by using an im-
provement of the geodesic reprojection of [13]. The
idea is to reproject a newly inserted vertex pi on the
geodesic of the circle Ci centered on p (an original
vertex of the triangle) which has a radius of |p − pi|.
But, contrary to [13], we use a dichotomic process. In-
deed, because the evaluation of the implicit surface en-
ables us to know if the vertex is inside or outside it, we
can apply the iterative process shown in Figure 6(a).
At the beginning, the vertex pi is outside the surface.
During the first reprojection step, a π/4 rotation is ap-
plied on pi and the implicit equation is evaluated at
this new position. If the vertex is still outside we do
not change the direction of rotation. But, if the vertex
is now inside, this direction of rotation is inverted (see
Figure 6(a)) and its angle is divided by two. This pro-
cess is repeated until the new vertex lies on the surface
(see Figure 6(b)) according to a user-provided thresh-
old on the implicit equation.

(a) (b)

Figure 6: Geodesic reprojection of a vertex: a di-
chotomic process is used. (a) Successive iterations of
the reprojection are applied. (b) Final position of the
vertex.

(a) (b)

Figure 7: Example of the tessellation of a model. (a)
The implicit surface was sampled with a very low
number of particles (74) leading to a polygonization
with big triangles. (b) After applying a level 15 tes-
sellation (the final model has 30,600 triangles), all the
details of the surface are visible.

5 An application: the texturation
of implicit surfaces

Neyret and Cani [16] have designed a pattern-based
texturing of triangular meshes. Its principle is to cre-
ate, over an existing arbitrary mesh, a triangular tex-
ture mesh composed of a small number of almost-
equilateral triangles. The original mesh is used as a
local parametrization of each triangle of the texture
mesh. Patterns are then mapped on the texture mesh
and the parametrization in a non-periodic way with no
visible repetition of the patterns.
Thanks to the characteristics of our polygonization and
tessellation, this technique can be directly adapted to
the texturation of implicit surfaces. Indeed, the poly-
gonization of the particle set (see Section 3) can be
used as the texture mesh since each triangle is quasi-
equilateral. Nevertheless, care must be taken on the
size of the triangles (and thus the number of particles
which sample the implicit surface). Indeed, patterns
are mapped on the texture mesh. So, a large number
of particles generated a good geometric approximation
of the surface, but dramatically reduces the size of tex-
ture patterns which becomes hardly recognizable (see
Figure 5(a)-(b)). On the other hand, a small number of
particles, generates recognizable patterns, but does not
provide a good geometric approximation of the surface
(see Figure 5(c)-(d)).
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Triangulation, tessellation and texturation of different models
Model # particles Triangulation Time # triangles Tessellation Total # of triangles Total Time

in sec. Level Time
Sphere 76 0.002 148 15 0.344 33,300 0.346
Igea 117 0.002 230 10 1.545 23,000 1.547
Rabbit 257 0.004 509 5 0.708 12,725 0.712
Bunny 1,216 0.017 2,425 5 3.358 60,625 3.375

Table 2: Times for the texturing of different implicit surfaces with changing configurations (all given times are in
seconds). We give the generation number of uniform particles which is the starting point of our algorithm. The
number of triangles of the resulting texture mesh is shown as the time needed to triangulate and simplify this mesh.
Finally, we give the time and the level of tessellation leading to the parametrization of these implicit surfaces.

The solution is to use the tessellation of the Section 4
as the parametrization of the texture mesh [16]. The
patterns are then mapped from the texture mesh to the
triangles resulting of the tessellation. Thus, the geo-
metric density of the texture mesh can be improved
as much as desired. The result of using the tessella-
tion this way can be seen in Figure 5(e) which shows
similar sized patterns as Figure 5(d), with the same
geometric accuracy as Figure 5(b). This indirection
between the texture pattern resolution and the geomet-
ric density of the texture mesh, offers a very flexible
scheme to easily adjust the apparent size of the pattern
on the implicit surface.

6 Results and discussion
All example models shown in this paper were built by
using a PC with an Intel Pentium IV 3GHz processor
and 1GB of main memory.
The sphere model shown in this paper was defined
analytically, while the bunny, the Santa and the Igea
models were reconstructed using Radial Basis Func-
tions (RBF) [31]. These three models were recon-
structed with a limited set of 200 to 500 initial points,
because we used the original implementation of RBF
with global support functions. But the technique can
be easily adapted to more elaborated implicit recon-
struction techniques, such as [17, 22] that reconstruct
implicit surfaces from several millions of points. Note
that our approach scales well since it only depends
on the efficiency of the evaluation of the function that

(a) Texture mesh. (b) Textured parametrization
of the implicit surface.

Figure 8: A closer view of the bunny ears.

Figure 9: Texturing of the Santa model: the four pat-
terns used (right) and the mapping result (left) are
shown.

defines the implicit surface. This evaluation can be
tuned using some efficient spatial subdivision struc-
tures. Note also that we removed some points that be-
long to the bunny ears, in order to increase the genus
of the resulting surface, and thus better illustrate the
genericity of our texturing technique (see Figure 8).
Once the texture pattern has been selected, our tech-
nique allows the user to finely tune two important pa-
rameters. First, changing the radius of the particles
provides a full control of the number of desired parti-
cles and, thus, of the apparent size of the resulting tex-
ture patterns over the implicit surface. Second, chang-
ing the tessellation level provides a full control of the
geometric accuracy used by the rendering step of the
textured surface.
In Table 2, we show some timings taken by our tech-
nique to texture implicit surfaces with various level of
sampling and tessellation. With our method, simple
models can be textured in less than a second with-
out loosing detail of the underlying surface since they
can be textured well with only a poor detailed texture
mesh (Figure 5(e) shows the texturing of the model
presented in Table 2). With more complex models as
the bunny, the texture mesh must be a little more de-
tailed in order to not miss topology of the model. So
more particles are needed and the overall time of the
texturing is larger.
Figure 10 is a good example of our technique. Fig-
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(a) Texture mesh (b) Direct visualization (c) Parametrization of (d) Texturing of
of this texture mesh the implicit surface this parametrization

Figure 10: Texturation of the Igea model. The texture mesh is very low-detailed. Note how the parametrization
adds details on the model geometry with the same texture support.

(a) Texture mesh (b) Direct visualization(c) Parametrization of (d) Texturing of (e) Closer view of
of this texture mesh the implicit surface this parametrization the bunny ears

Figure 11: Texturation of the bunny: the texture mesh and the parametrized implicit surface are shown. Note how
our method manage to texture the bunny ears even if the genus of the model has been increased.

ure 10(a) shows the support texture mesh for the ren-
dering of the implicit surface. It is composed of 74
triangles. At this time we can hardly recognize the
Igea model. We give the parametrization of the im-
plicit surface on which the texturing will be applied
in Figure 10(c) (it’s a level ten tessellation). In Fig-
ure 10(b) and Figure 10(d) the same texture mesh is
used. But, while it is directly rendered in Figure 10(b),
it is the parametrization of the implicit surface that is
visualized in Figure 10(d) which enable us to recog-
nize the Igea model.

7 Conclusion and future works
In this paper, we have presented a new very efficient
algorithm to triangulate a uniform particle set. Based
on the intrinsic characteristics of these uniform parti-
cle systems, our algorithm can triangulate more than
30,000 particles in less than a second. A second con-
tribution of this work is an on-the-fly mesh refinement
technique, driven by the underlying implicit equation,
that allows to further tessellate each triangle of the
polygonization. Finally, this triangulation combined
with the tessellation can be directly used in order to
map homogeneous non-periodic textures to arbitrary

implicit surfaces thanks to a 2D pattern-based textur-
ing method.
Based on this initial technique, we are currently inves-
tigating several extensions: for instance, the applica-
tion of the method to generate out-of-core rendering
of huge textured implicit surfaces reconstructed from
scanned objects, as well as a local edition of the parti-
cle system in the case of animated skeleton-based im-
plicit surfaces.
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Abstract 
 

This paper proposes an extension to the existing automatic pencil drawing generation technique based on Line 
Integral Convolution (LIC). The original LIC pencil filter utilizes image segmentation and texture direction 
detection techniques for defining outlines and stroke directions, and the quality of a resulting image depends largely 
on the result of the white noises and the texture directions. It may fail to generate a reasonable result when the white 
noises and the texture directions are not consistent with the texture structure of the input image. To solve this 
problem, we propose in this paper to improve the existed LIC-based method. First, a more accurate and rapid graph-
based image segmentation method is introduced to divide the image into different regions. Second, we present a 
new region-based way to produce white noises and texture directions. We also demonstrate the enhanced LIC pencil 
drawing is closer to the real artistic style. 

 
KeyWord   pencil drawing, line integral convolution, image segmentation, Non-photo-realistic rendering 

 
 
 
1. Introduction 
 

Recently, Non-Photo-Realistic rendering (NPR) 
has become one of the most important research topics 
of computer graphics. A number of techniques have 
been developed to simulate traditional artistic media 
and styles, such as pen and ink illustration[Win94a, 
Win96a, Sal94a, Sal97a], graphite and colored pencil 
drawing[Tak99a, Sou99a, Sou99b], impressionist 
styles[Lit97a], paintings of various materials including 
oil[Her98a], water color[Cur97a] and so on. The 
existing researches on painterly image generation 
mainly take two different approaches. The first 

approach is to provide physical simulation to the 
materials and skills, and has been mainly combined 
with interactive painting systems or 3D non-photo-
realistic rendering systems for generating realistic 
painterly images. The second approach is the painterly 
filtering, which involves taking an image and applying 
some kind of image processing or filtering techniques 
to convert it into an image of a painterly look. While 
many excellent painterly filtering techniques have been 
developed for generating brushstroke based paintings 
[Goo01a], relative few publications can be found on 
converting a source image into line stroke based 
drawings. In case of drawing, geometric information 
such as the outline of regions, the direction and shape 
of strokes becomes more critical, while it is usually 
difficult to extract such information from 2D raster 
images automatically. Instead of modeling line strokes 
geometrically, Mao etc [Mao01a] have developed a 
pencil drawing filter using Line Integral Convolution 
(LIC), a texture based flow visualization technique 
[Cab93a]. The technique utilized the similarity between 
the appearance of LIC images and pencil strokes, and 
succeeded in generating line stroke like images with 
pixel-by-pixel image filtering. It employs image 
segmentation and texture analysis technique to 
automatically detect the outlines and decide the stroke 
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orientations for the images. Then for each region, if it 
contains directional textures, the texture directions are 
used as the stroke directions, otherwise a randomly 
chosen stroke direction is assigned. It may fail to 
generate a reasonable result when the white noises and 
the texture directions are not consistent with the 
texture structure of the input image. To solve this 
problem, we propose in this paper to improve the 
existed LIC-based method. First, a more accurate and 
rapid graph-based image segmentation method is 
introduced to divide the image into different regions. 
Second, we present a new region-based way to 
produce white noises and texture directions.  

We realize automatic generation pencil drawing 
from 2D images. There are several advantages of our 
method comparing to the existed. First, according to 
the characteristics of the pencil drawings produced by 
the artists, different areas have different texture 
expressions. General speaking, some areas might have 
very complicated textures and others might be faint in 
textures, and that we are desire to achieve this kinds of 
artistic effects. Through controlling the noises of the 
different areas, we can not only express the shade areas 
of the texture but also hold some subtle area and 
necessary blank area in the image. The result is more 
similar to the artistic style.  

The remainder of this paper is organized as the 
follows: Section 2 gives a short survey on related work. 
Section 3.1 introduces the original LIC-Based pencil 
filter method. Section 3.2 describes the algorithm 
graph-based image segmentation and Section 3.3-3.4 
introduces our region-based pencil filter method. 
Section 4 concludes the paper and gives some 
examples. 
 
2. Related Works 
 

Pencil drawing has been an important topic since 
the beginning of painterly image generation research 
history. In an early 2D painting system called Pencil 
Sketch [Ver89a], a mouse based virtual tablet is 
provided for allowing users to interactively specify a 
set of parameters, such as the hardness of pencil, the 
pressure applied to a pencil, and the orientations of 
strokes. Recently, Sousa and Buchanan developed 
several pencil drawing rendering techniques based on 
an observation model of pencil drawings [Sou99a, 
Sou99b]. They built the models of pencil, paper and 
how lead pencils interact with drawing paper through a 
careful investigation of the real pencil drawings using 
scanning electron microscope. When the parameters of 
those models and the strokes are specified, a 2D image 
can be converted into a pencil drawing. 3D polygon 

models can be automatically rendered into pencil 
drawings by referring to the tone value lookup table 
for the parameter values of the models. Takagi and 
Fujishiro proposed to model the paper microstructure 
and color pigment distribution as 3D volume data and 
use volume ray-tracing for rendering color pencil 
drawings [Tak99a]. Other existing painterly image 
generation techniques closely related with our work 
are probably those successful works on pen–and-ink 
illustrations [Win94a, Win96a, Sal94a, Sal97a]. In their 
interactive systems, pen-and-ink illustrations can be 
generated either from 3D models or 2D images by 
using a set of pre-stored stroke textures. The largest 
difference between our technique and all these existing 
techniques is that our technique can generate a pencil 
drawing from a source image in a completely 
automatic way while all these existing techniques rely, 
to certain extent, on user interventions, for specifying 
the attributes and directions of strokes. Several 
commercial packages provide some filters for creating 
pencil drawing effects. For example, Jasc Paint Shop 
Pro software supports a black pencil filter. However, 
to obtain a satisfactory result with those filters, a user 
usually needs to combine the effects of many other 
filters and explore the best generation process 
experimentally through trial and error for many times. 

 
3. LIC Pencil Filter 
3.1. LIC Algorithm 

Line Integral Convolution (LIC) is a texture 
based vector field visualization technique [Cab93a]. As 
shown in Figure 1, it takes a 2D vector field and a 
white noise image as the input, and generates an image 
which has been smeared out in the direction of the 
vector field through the convolution of the white noise 
and the low-pass filter kernels defined on the local 
streamline of the vector filed.  

 
Figure 1 Line Integral Convolution (LIC) (a) Input vector 

field; (b) Input white noise; (c) Output result 
The images in figure 2 show the basic algorithm 

of the LIC. The inputs are the vector fields and white 
noises. 
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Figure 2 the basic algorithm of the LIC 

P is the output pixel, ( )τρ  is stream line
（ LL ≤≤− τ ），L is the half length of the stream 
line。 ( )( )τρT is the noise texture value in the stream 

line, ( )τK  is a convolution kernel. So the pixel value 

in P is ( )( )0ρT ′ : 
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The idea of using LIC for pencil drawing 
generation was inspired by the visual similarity of LIC 
images and pencil drawings. As an LIC image is 
obtained by low-pass filtering a white noise along the 
local streamlines of a vector field, we can observe the 
traces of streamlines along which intensity varies 
randomly. Such traces have a similar appearance of 
pencil strokes where the variance of intensity is caused 
by the interaction of lead material and the roughness of 
paper surface. Figure 3(a) is a digitized sample of a 
typical imitative tone used in real pencil drawings. 
Figure 3(b), presents the very similar features as the 
tone image by LIC processing. 
 

 
Fig.3: Comparison of a real pencil drawing (a) and an LIC 

texture (b). 
 

3.2. The existed LIC pencil drawing method 
 

In general, for producing a pencils drawing 
from a 2D source image, several steps are done. First 
we generate a white noise from the source image, then 
the original image is divided into different region and 
the boundary is extracted. Next we generate the vector 
field representing the orientation of strokes, and 
produce pencil drawing by applying LIC to the white 
noise and the vector field. Figure 4 depicts the 
algorithm of original LIC pencil filter. It converts a 2D 
source image into a pencil drawing in the following 
seven steps: 
1. Generate a white noise (Figure 4(b)) from the source 
image (Figure 4(a)). 
2. Segment the input image (Figure 4(a)) into different 
regions (Figure 4(c)). 
3. Extract region boundary (Figure 4(d)). 
4. Generate the vector field (Figure 4(e)) representing 
the orientation of strokes. 
5. Generate stroke image (Figure 4(f)) by applying LIC 
to the white noise (Figure 4(b)) and the vector field 
(Figure 4(e)). 
6. Add the boundary (Figure 4(d)) to obtain the 
drawing with outlines (Figure 4(g)). 
7. Composite the resulting image (Figure 4(g)) with 
the paper sample (Figure 4(h)) to obtain the finished 
pencil drawing (Figure 4(i)). 
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Figure4. The existed LIC algorithm (the image comes from 

[Mao01a]) 
 

4. Enhanced Region-based LIC Pencil 
Filter 
4.1. Graph-Based Image Segmentation 

A well used technique in pencil drawing for 
conveying the 3D shapes of objects and spatial 
relationship among different objects in a scene is to 
emphasize the boundary between two different regions 
by drawing outlines or changing the appearance of 
strokes in the two regions. To create such effect, we 
propose to divide the input image into different regions 
using existing image segmentation technique. In our 
current implementation, a Graph-Based image 
segmentation technique [Fel04a] is used for the region 
extraction. Contrasting to the method in [Mao01a], this 
method can dramatically promote the performance of 
our pencil filter. As shown in figure 5, the left image is 
segmented into many areas which represent the 
respective color distributions for each region. 

 

 
Figure 5. Graph-Based image segmentation 

 
Graph-based image segmentation techniques 

generally represent the problem in terms of a graph G 
= (V;E) where each node vi ∈  V corresponds to a 

pixel in the image, the edge set E is constructed by 
connecting pairs of pixels that are neighbors in an 8-
connected sense (any other local neighborhood could 
be used). A weight is associated with each edge based 
on some property of the pixels that it connects, such as 
their image intensities. Neighbor edges are clustered 
into a forest, and each tree in the forest is related to a 
minimum spanning tree (MST). Finally each MST is a 
sub-area. To judge whether two trees can be merged 
into one tree, a predicate is defined. The predicate 
expression is showed as follow. 

 

⎩
⎨
⎧ >

=
otherwiseFalse

CCMinTCCDififTrue
CCD

:
),(),((:

),( 2121
21

 

 
),( 21 CCD means the merging predicate of the 

areas of C1 and C2, Dif (C1, C2) means the difference 
between the area C1 and the area C2. MinT (C1, C2) is 
the minimum internal difference. 

The advantage of the method is that the accuracy of 
the image segmentation can be adjusted by users and 
some details of the certain regions can be ignored. This 
will improve on the effect of the pencil drawing. In 
addition, this results in a graph with O(n) edges for n 
image pixels, and an overall running time of the 
segmentation method of O(n log n) time. 

 
4.2 Region-based Noise Production 

 
The white noise image is generated in a way that 

the probability a white value is set for a pixel is 
proportional to the intensity level of the corresponding 
pixel in the input image. The gray-scale tone of a 
resulting pencil drawing is mainly decided by the 
white noise image. To match the tone between the 
input image and the resulting pencil drawing, we use 
the tone of the input image to guide the distribution of 
noise. 

An important characteristic of the pencil drawing 
is its ability to preserve detail in low-variability image 
regions while ignoring detail in high-variability 
regions.  The input image is then divided into many 
small regions which have corresponding meanings. 
The method mentioned in [Mao01a] dealt with the 
noise according to uniform criterion. The result noises 
would be failure to distinguish the important elements 
and the unimportant elements, when the range of the 
intensity of the image is small. Our region-based 
method solves the question through dynamic adjusting 
the threshold value of different areas. It is very 
important to pencil drawing. We simply introduce the 
algorithm. 
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Because the processing of LIC is global, so some 
local regions with exquisite texture will be destroyed. 
In addition to, as a kind of sketch drawing, pencil 
drawing should keep some blank areas from the point 
of aesthetics. So we need to segment the original 
image into different region through above graph-based 
method, then we deal with the each area through 
giving certain threshold value. Commonly we select 
the average gray intensity of the certain regions as the 
threshold values. 

Our method improves the producing way of white 
noise. We deal with the original gray image according 
to different gray intensity range in the respective 
regions. So the contrasts between light and shade in the 
results are more eminent and more similar to the 
artistic style. The formulation of white noise is showed 
as follows. 

Let Iinput be the intensity of a pixel in the input 
image, and P is a floating-point number generated with 
a pseudo-random function; Ri is the average intensity 
in the ith regions, and it is selected as the threshold to 
control the distribution of the noise. Then the intensity 
Inoise of the corresponding pixel in the noise image is 
decided in the following way: 
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Here max1 and max2 are the maximum gray 

values of the output pixels, which usually are 255; and 
min1 and min2 are the minimum gray values of the 
output pixels, which usually are Ri. However, we can 
adapt these values to fit for the whole tone of the 
pencil drawing. 
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According to our method, 1λ  and 2λ  are two 

experiential values. Our initial experiment result 
suggests that a default value of 0.7 and 0.3 produce a 
visually acceptable result for most scenes. We also 
allow users to interactively adjust the values of 1λ  

and 2λ . 

Through above method, the noise of each area can 
be controlled to match the features of the pencil 
drawing to a great extent. As shown in figure 6, the 
picture (a) show the noise produced by old way, and 
the picture (b) is produced by our method. Obviously, 
the result noise dealt with by our method can reflect 
the nature of the pencil drawing. Some areas need to 
be emphasized corresponding to more dense noises, 
and some areas need to be fade out corresponding to 
sparse noises. 

 

 
(a) 

 
(b) 

Figure 6 The existed noise algorithm (a), and 
Region-Based noise method (b). 

 
4.3.Stroke Orientation 

When using imitative tone, the direction of 
strokes is an important factor contributing to the 
impression of a pencil drawing. The stroke direction is 
also important for conveying the shapes and textures of 
objects. If a texture presents a directional feature, then 
strokes should be oriented in a direction matching that 
of the original texture. For example, when we paint 
human hair, we would have our pencil follow the 
direction of hair strands. To produce such effect, Mao 
etc [Mao01a] implemented a Fourier texture analysis 
technique for extracting the local texture directions. 
The basic principle of the technique is that if a texture 
presents a specific direction, then after transform the 
texture into frequency domain, the power spectrum 
should have large values in the direction orthogonal to 
the direction of the texture. They deal with each pixel 
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in the input image and compute respective texture 
direction by the analysis of the FFT. 

 The method mentioned above is very time-
consuming, and they don’t consider the local structure 
features of the image. Usually, some regions have 
similar directions of the strokes, and these areas can be 
dealt with the uniform direction according to artistic 
style. On the other hand, the directions of the strokes 
vary dramatically in some regions, so we keep the 
results of the respective directions, and then the details 
features in the area should be represented. As shown in 
figure 7, the direction of hair strands is important in (a) 
and the details of the cloud should be depicted in (b). 

 
(a) 

 
Figure 7 the direction of hair strands (a), and the details of 

the cloud (b). 
 

Here we propose a method to produce the 
direction of the stroke according to the features in the 
regions. First, the orientation vectors of the pixels are 
calculated by sobel operator. Then a criterion is 
presented to decide the direction of the stroke. 

 Let  be the field vector of 

the jth pixel in the ith area. It is computed by sobel 
operator. Here  is the numbers of the pixels in the 

jth area. 

jiV , ),...2,1,0( imj =
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Then the mean of the field vectors in each area is 
calculated. At the same time, the CV (Coefficient of 
Variation) is computed to reflect the orientation’s 
distribution. 
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The final field vector of the each pixel is 
determined through the following criterions: 
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Here T is a given threshold. Experiments suggest 

that a default value of 0.7 produce a visually 
acceptable result for most scenes.  

 

 
(a) 

 
(b) 

 
(c) 

Figure 8.  The contrasts of the stroke directions  
 

Figure 8 (a) is original image, and (b) is the result 
in [Mao01a]. The picture (c) is our result. Obviously, 
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our result not only reflects the details in some areas but 
also embody the style of the pencil drawing. 
 
5. Experiment results 

We have implemented all the techniques 
described above and built an automatic pencil 
drawing generating system on Windows 
environment. Basically, after the input image is 
specified, a pencil drawing style image will be 
generated automatically with a set of default value 
and other information derived by the system from 
the input image. Users are also allowed to 
interactively specify some parameters, such as the 
parameters for controlling the region tone of the 
output image, the threshold used for graph-based 
image segmentation and the length of convolution. 

Comparing to the existing method in [Mao01a], the 
new algorithm is much faster than the existing one and 
more similar with the artistic style of the pencil 
drawing. The existing LIC pencil filter took about 60 
seconds to generate an image of size 350*280 on a 
Pentium IV PC. Our method only require about 5 
seconds. For an image of size 1024*768, our method 
takes about 20 second, and the more important feature 
contrasting to the method in [Mao01a] is that our 
method dynamically analyzes the texture structure of 
the regions. So it is effective and lifelike. Several 
results of the pencil drawing as shown in figure 9. 

 

 
 
 

 
 

 
 

Figure 9. Several results of the pencil drawing 
 
6. Conclusion 
 

We propose in this paper to improve the existed 
LIC-based method. First, a more accurate and rapid 
graph-based image segmentation method is introduced 
to divide the image into different regions. Second, we 
present a new region-based way to produce white 
noises and texture directions. The new algorithm is 
much faster than the existing one and more similar 
with the artistic style of the pencil drawing. We 
believe the purpose of NPR systems is not to replace 
artists, but rather to provide a tool for users with no 
training in a particular medium. Potential 
application fields of our technique include 
producing posters from photo graphs, processing 
videos into pencil drawing style animations, 
obtaining the preparatory sketches for creating 
paintings of other styles, and so on. 
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The major future research directions include the 
realization of abstraction and focusing, establishment 
of the curved strokes, extension to colored pencil 
drawing and application to non-photorealistic 
rendering of 3D models and scenes. 
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ABSTRACT
   Modeling and rendering realistic ocean scenes has been investigated by many researchers in the past few years, 
providing different models of ocean waves, fine­scale details, and light­water interactions. This paper describes 
a  practical  data  structure  for  accelerating ray­marching for  a  well­known wave model  defined as  a  sum of 
trochoids waves. This data structure exhibits nice properties that allow to take into account spatial and temporal 
coherence as well as reducing aliasing effects. In addition to this, it offers a unified framework in which fine­
scale details, such as scattering phenomena due to spray, foam or particles suspended in the water, can be added 
easily.   Finally,   we   present   some   benefits   of   the   model,   which   can   handle   physically­based   light­water 
interactions and glare effects.

Keywords
Physically based modeling, ocean scenes, graphics data structures, ray­marching, sphere tracing

1. INTRODUCTION
Realistic ocean scenes are more and more present in 
computer­generated   films,   motion   pictures   and 
electronic   games,   but   creating   such   scenes   is   a 
difficult   task   because   a   lot   of   modeling   and 
rendering aspects need to be addressed. Furthermore, 
as the ocean surface is usually very large, raytracing 
is   computationally   intensive.   The   most   important 
aspect  in this  context  is   the surface model used to 
represent   realistic   waves;   it   should   allow   realistic 
waves shape and motion at the lowest possible cost. 
Remaining   issues   are   light­water   interactions   and 
complex phenomena occurring at the surface, which 
usually depend on atmospheric conditions:
­   foam,  appearing   through advection  and   turbulent 
diffusion phenomena during the simulation, modifies 
radiance at the surface
­   sprays,  i.e.  small   droplets   created   by   foam 
interacting   with   wind,   involve   attenuation   and 
diffusion of light above the surface

­   second­order   scattering:   the   attenuation   and 
diffusion   of   light   within   the   water   body,   due   to 
particles in suspension
Taking   these   phenomena   in   consideration   greatly 
enhances the realism of ocean scenes as long as they 
rely   on   physical   parameters   and   are   approximated 
with sufficient accuracy. In a raytracing environment 
we also wish  to   reduce computations  and memory 
requirements.
This paper addresses all these issues, by proposing a 
new method based on a set of spheres that combines 
an   efficient   surface   model   and   physically­based 
complex phenomena,   integrated   into  a  unique  data 
structure.  After   reviewing  different   surface  models 
and complex phenomena proposed in the literature in 
section 2,  we choose a parametric model based on 
real   measurements   that   gives   realistic   results   and 
present   an   efficient   method   for   computing   ray­
surface   intersections   based   on   sphere   tracing   in 
section 3. This approach is then extended to include 
complex phenomena as  described above,  using  the 
same simple and efficient data structure (section 4). 
Finally, results are presented in section 5 along with 
considerations   about   implementation   and 
performances of our approach.

2. RELATED WORK
Modeling  and   rendering   realistic  ocean  scenes  has 
been investigated by many researchers in the past few 

Permission to make digital or hard copies of all or part of 
this work for personal or classroom use is granted without 
fee  provided   that   copies  are  not  made  or  distributed   for 
profit  or commercial  advantage and that copies bear this 
notice   and   the   full   citation   on   the   first   page.   To   copy 
otherwise, or republish, to post on servers or to redistribute 
to lists, requires prior specific permission and/or a fee. 
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Republic.
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years.   We   focus   mainly   on   papers   dealing   with 
scenes  depicting  the  ocean far   from the  shore,   i.e. 
where   breaking   waves   do   not   appear.   Real­time 
methods are also briefly reviewed although our work 
is more oriented towards ray­tracing. A more general 
state­of­the­art report can be found in [Igl04].

2.1 Ocean surface models
Models  that  attempt to represent  the ocean surface 
accurately can usually be classified in two different 
approaches:   parametric   or   spectral.   Parametric 
approaches [FR86, Pea86, TB87, CGG01] represent 
the   ocean   surface   as   a   sum   of   periodic   functions 
which describe waves as a circular motion of water 
particles. This procedural model is very efficient but 
does not  yield realistic   results.  On  the other  hand, 
spectral   methods   [MWM87,Tes01]   are   based   on 
oceanographic   measures,   synthesized   by   spectral 
analysis and hence represent the ocean surface as a 
height   field  computed  from a  sum of  sinusoids  of 
various   amplitudes   and   phases;   small­scale   waves 
and   ripples   are   modeled   directly   by   adding   noise 
perturbation. This approach ensures high realism, but 
is not easily controllable.
To   overcome   these   problems,   hybrid,   procedural 
models   were   proposed   [PA01,   TG02].   The 
parameters can be obtained automatically from real 
oceanographic   spectra,   which   allows   realistic 
animations of the ocean surface. Another advantage 
of the model is its implicit definition, which is well­
adapted to ray­tracing. Real­time representations of 
hybrid models can also be obtained by generating an 
optimized surface mesh only where necessary, thus 
reducing both the sampling and the number of waves 
on the fly [HNC02, Mit05, HVT+06]. But real­time 
methods   can   hardly   handle   complex   phenomena 
reviewed in the next section.

2.2 Light­water interactions and complex 
phenomena
The   model   proposed   in   [PA01]   includes   the 
apparition  of   foam on   waves   crests,  which   locally 
modifies   the   optical   properties   of   the   ocean.   The 
surface is discretized and rendered by a Monte Carlo 
path   tracer,   which   also   takes   into   account   the 
turbidity of the ocean, i.e. the opacity of the surface 
depending on particles suspended in the water. This 
parameter  allows  to  determine  the  amount  of   light 
scattered towards the surface, and provides realistic 
simulations of several types of water. Second order 
scattering is also taken into account in [IDT03] by 
computing   radiance   at   sampled  points  on   a   set   of 
horizontal   slices   within   the   water   volume   using 
volume rendering graphics hardware.

Complex   phenomena,   such   as   foam,   spray   or 
splashes   are   usually   modeled   and   rendered   using 
particle systems [JG01,TFK+03,HW04]. In [TRS06], 
animation of drops and small­scale interactions such 
as ripples or splashes are obtained by combining a 
two­dimensional   water   surface   simulation   and   a 
three­dimensional   fluid   simulation   along   with   a 
physically based model.
As   a   conclusion,   among   these   methods   only   one 
[PA01] seems able to provide realistic ocean scenes, 
by   combining   an   efficient   surface   model   and 
physically­based   complex   phenomena.   Our   work 
follows the same goal, by integrating these different 
aspects into a unique data structure.

3. RAY­WAVES INTERSECTIONS

Figure 1. (a) Trochoid example (b) Sphere tracing

Our implementation uses the ocean surface model of 
[TG02], where the reader can find more details. The 
model is based on a summation of elementary waves 
called  trochoids  (see Fig. 1a), which yields realistic 
waves shapes varying from a smooth profile  in the 
case of calm ocean, to a sharpened crested shape in 
case of an agitated ocean surface due to greater wind 
activity. Each trochoid is defined as a displacement 
function applied to a reference plane, parameterized 
by its amplitude Ai, its frequency fi, its wavelength λi, 
its  direction of  propagation in   the  plane  θi  and  its 
phase ϕi. Several methods are proposed in [TG02] to 
extract  correct parameters from real measurements. 
All   the  pictures   in   this  paper  were  obtained  using 
Pierson­Moskowitz   spectrum;   high­frequency 
trochoids were amplified to represent capillary waves 
created by the wind.
Realistic ocean waves are obtained using 50 different 
trochoids or  more. The counterpart   is   that a  lot  of 
evaluations of trigonometric functions (or access to a 
precomputed,   lookup   table   storing   trochoids)   are 
needed   to   compute   the   displacement   of   a   single 
point;   this   is   particularly   critical   when   rendering 
ocean  scenes  using  ray marching,  since  it   involves 
computing   many   intersections   between   rays 
originating from the camera and the ocean surface.

3.1 Original sphere tracing formulation
Consider   the   zero­set   of   an   implicit   function 
F: R3 R→   ,  i.e.  the   set  of  points  p ∈ R3  that   satisfy 
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F(p) = 0. Brute­force ray marching attempts to find 
the   intersection  between  a   ray   and   such   a   surface 
using a fixed, constant increment ∆. Let p be a point 
along the ray such that  F(p) > 0, and let  p' = p + ∆ 
be another point along the ray such that F(p') < 0; in 
that   case,   the   ray   crosses   the   surface   somewhere 
between  p  and  p'.  Otherwise the process continues 
for p' and p''= p' + ∆. The choice of ∆ is critical: if it 
is   too   small,   the   whole   process   requires   a   huge 
amount of evaluations of the implicit function, if it is 
too large intersections can be missed. A solution to 
this  problem is   the  sphere   tracing  method  [Har96, 
HW96], applicable for implicit surfaces that exhibit a 
Lipschitz bound  L  such that  |F(p)­F(q)| ≤ L||p­q||, 
∀ p,q ∈ R3. In that case, the brute­force algorithm can 
be enhanced by computing ∆ at each evaluation step 
by:  ∆ = F(p) / L. This guarantees that the next point 
along the ray p' = p+ ∆ satisfies F(p) ≥ 0, making it 
possible to converge very quickly to the intersection 
(see  Fig.  1b).  The  term ”sphere” refers   to  the fact 
that  ∆  represents the radius of a sphere guaranteed 
not to intersect the zero­set of the implicit surface.
Suppose that F is defined as a sum of N functions:

                  F p =∑
i=1

N

ni p  1

Unenhanced  sphere  tracing  in   that  case  would  use 
the global Lipschitz bound L of function F; but this 
would also require to evaluate each individual term 
at   every   step   along   the   ray.   The   solution   is   to 
maximize  L  by computing an “efficient”  bound  Le  

such that Le < L without evaluating each term; this is 
summarized in Algorithm 1.
Require: components sorted by decreasing ni(p)/Li

Require: minimum mi of each component
Le = 0; dene = 0; nume = m0+m1+...
for all component i in the sorted list
  nume += ni(p) ­ mi  ;   dene += Li;
  if (Le > (nume / dene)) then return Le;
  else Le = nume / dene;

Algorithm 1: computation of Le for a point p

It  can be noted  that   the sorting step still  seems to 
require   the   evaluation  ni(p)  of   each   component; 
actually an approximated value based on the previous 
iteration   is   used   instead.   Experiments   using   this 
method   show   speedups   by   at   least   a   factor   10 
compared   to   brute­force   raytracing,   for   fractal 
surfaces defined by about 10 individual components.

3.2 Sphere tracing the ocean surface
In   the   case   of   our   ocean   surface   model,   and 
assuming   that   the   equation   defining   the   reference 
plane is y=0, the displacement ni at a point p:(x, y, z) 
at time t is defined as:

ni p = y−At /N −Ai

trochoid  ki  x∗cosiz∗sin i−i∗ti 2 
where N is the total number of waves, At is a global 
amplitude term, i = 2fi   , ki  = 2 / λi and trochoid 
describes the motion of a  water particle.  Thus,   the 
implicit function has the same form as in Eq. 1. 
In   order   to   apply   Algorithm   1,   we   still   need   to 
address several issues:
­  choice   of   a   minimum   mi  for   each   component: 
since each component   is  bounded,   its   lowest  value 
occurs  when  (y­At)/N=­Ai  and  the   trochoid  reaches 
its maximum value. In that case, the global minimum 
is given by mi=­2Ai (see Fig. 1a).
­  choice   of   a   Lipschitz   bound   Li  for   each  
component:   in  the case of a  displacement function 
applied to a reference plane (such as a trochoid), we 
can   simply   use   its   maximum   derivative.   For   our 
model,   this   maximum   slope   is  obtained   when   the 
term trochoid(ki(x cosθi + z sinθi) – wit + ϕi) = 1
­  antialiasing:   as   in   [TG02],   a   simple   antialiasing 
technique   consists   in   progressively   reducing   the 
amplitudes of high­frequency components depending 
on the projection of the corresponding pixels on the 
screen   (see   Fig.   2).   In   our   case,   unnecessary 
components are neglected during the computation of 
the   global   efficient   bound  Le,   thus   reducing   the 
overall computation cost.

Figure 2. Simple antialiased scene

3.3 Coherence and data structure
As   noted   in   [HW96],  spatial   coherence  can   be 
exploited since the evaluation ni(p) is bounded:

ni p '−Li∥p− p'∥ni p ni  p 'Li∥p− p'∥
where  Li  is   the   Lipschitz   bound   and  p'  is   a 
neighboring point. We can now estimate the value of 
ni(p), provided that  ni(p') was evaluated before. This 
estimation is used to perform the prerequisite sorting 
stage   of   Algorithm   1,   thus   avoiding   numerous 
function   evaluations;   as   a   counterpart,   the   global 
Lipschitz   bound  Le  may   not   be   a   maximum 
depending   on   the   distance  ||p­p'||.   In   our 
implementation, we use estimates if  ||p­p'||  is lower 
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than a maximum distance, which is larger than the 
distance between successive points along the ray.
Image  coherence  can  also  be  exploited  directly  by 
the sphere tracing algorithm since, for a given frame, 
a sphere computed along a ray is guaranteed not to 
contain an intersection with the surface.  Thus,  if  a 
ray intersects a sphere computed for a previous ray, 
then it  may progress safely to the next intersection 
with   this   sphere.   Otherwise,   the   sphere   tracing   is 
performed as usual (see Fig. 3a).

Figure 3.  (a) Image coherence
(b) Quadtree structure

It   is   noticeable   that   exploiting   image   coherence 
requires storing successive spheres along rays.  Our 
data   structure   is   a   quadtree,   aligned   with   the 
reference   plane,   which   stores   successive   spheres 
along   rays   indexed   by   their   intersection   with   the 
surface   (see   Fig.   3b).   Any   accelerating   structure 
could be employed, but a quadtree seems a natural 
choice   since   fluid   surfaces   usually   have   regular 
shapes (especially ocean waves) which adapt well to 
axis­aligned partitioning. Following [HW96], image 
coherence   is   thus   implemented   by   searching   for 
previously   computed   spheres   in   a   breadth­first 
manner, recursively investigating the neighbors of a 
ray at the same level in the quadtree. It is also worth 
noticing, as shown on Fig. 3b, that this data structure 
is   well­adapted   to   antialiasing:   subdivision   simply 
depends on the distance to the camera.

Figure 4. Starting from spheres traced at frame t  
(dotted), intersection at frame t+1 can be closer 

(left) or further (right)

Our data structure is also useful to exploit  temporal  
coherence  between   two   successive   frames   if   the 
camera does not move. In this  case, spheres stored 
for a single ray at frame t, as well as the ray­surface 
intersection point pt, can be re­used for the same ray 
at frame t+1 (see Fig. 4): 
1. Existing spheres from frame t are marked as old;

2. Sphere tracing is performed backwards (i.e. toward 
the camera) by re­computing the radius of existing 
spheres and marking them as new, until the maximal 
amplitude of the surface is reached. New spheres are 
also added to fill the gaps that may result;
3. The algorithm stops if the last intersection found is 
closer to the camera than pt (Fig. 4, left);
4.  Otherwise, sphere tracing is performed forwards 
starting from pt (Fig. 4, right).
This   strategy   can   also   be   adapted   for   image 
coherence: if a sphere intersecting a ray was marked
as ’old’, its radius is simply recomputed and marked 
as ’new’.

3. LIGHT­WATER INTERACTIONS 
AND COMPLEX PHENOMENA
4.1 Foam
We are interested in rendering foam which appears in 
ocean scenes far from the shore, also called passive 
foam,   due   to   advection   and   turbulent   diffusion   of 
bubbles   near   the   surface   under   determined 
conditions   (i.e.  wind   speed   greater   than   13km/h). 
Fig. 5 shows a real picture of this phenomenon.

Figure 5. Real ocean scene with passive  foam

We do not address in this paper active foam due to 
breaking   waves,   which   has   shorter   lifetime   and 
surface coverage, since our surface model does not 
represent this type of waves.
One   approach   to   foam   rendering   in   computer 
graphics makes use of  particle systems [HW04] to 
simulate   life   and   death   of   bubbles   at   the   surface. 
Realistic results are obtained, but this solution can't 
be applied in the case of large ocean scenes. Another 
solution is to compute the amount of foam at a point 
on the surface according to different criteria: height 
variation between its neighbors [JG01], or amplitude 
of   waves   propagating   around   it   [JBS03],   which 
yields   more   foam   in   high­frequency   areas. 
Unfortunately foam does not move in a realistic way 
between   successive   frames   of   an   animation. 
Therefore, as in [PA01], we prefer another approach 
which   considers   different   atmospheric   conditions 
occurring in the process of foam apparition based on 
oceanographic results [MM86]. 
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4.1.1 Position
The amount of foam s covering the surface at a given 
point   depends   on   wind   speed  U10  measured   at   10 
meters above the surface, and the difference between 
water temperature Tw and air temperature Ta:

s=1.59∗10−5
∗U 10

2.55
∗e0.086∗Tw−Ta 3

This empirical formulation is used in oceanographic 
research; but experiments show that it does not take 
into account the apparition of foam in regions more 
exposed to wind, especially on waves crests, nor in 
perturbed regions.  Therefore, we propose to extend 
Eq. 3 in order to  include the height of the considered 
point, and its local slope, thus obtaining the amount 
of foam s':

s '=s∗
y−ymin

y−ymax



n

∗∥N∥ 4 

where ymin (resp. ymax) is the minimal (resp. maximal) 
height   and N is   the   (non   normalized)   normal 
vector   at the considered point. Parameter  n  allows 
the   user   to   control   the   spread   of   foam   on   waves 
crests;   based   on   empirical   experiments,   our   most 
visually   convincing   results   were   obtained   with 
n ∈ [6, 9].  To   avoid   noticeable   foam   patterns 
repetitions at the surface, a noise function is added, 
filtered according to the distance to the viewer in the 
same way as the antialiasing technique described in 
section 3.2.

4.1.2 Radiance
Here   again,   an   empirical   formula   for   the   radiance 
Lfoam  is suggested by oceanographers [Koe84]:

L foam=s '∗ f ef∗Re

where  Re  is   the   radiance  of  pure  white   foam.  The 
efficiency   factor  fef  is   originally   defined   as 
0.4 +­ 0.2; to account for the foam's age, we modify 
it   into  0.4 ­ 0.2.t.10­2  (truncated   to  0  if   negative) 
where  t  is the time parameter. Total radiance  at the 
surface Ltot is then:

Ltot=L 0 1−k rLr 0 
L 0 =L skyL sun cossunL foam

where  L(0)  is the radiance on the surface computed 
by taking account the luminance of the sky Lsky (resp. 
sun  Lsun),  kr  is the Fresnel reflexion coefficient and 
Lr(0) is  the refracted radiance (see section 4.3).
To take into account the motion of foam during an 
animation, we use a texture in image space to store 
positions and ages of foam on the surface. For each 
new   frame,   a   preprocessing   step   consists   in 
incrementing   age   and   displacing   positions   using 
formulas similar to Eq. 2. Then, for each pixel, the 
distances between its projected point on the surface 
and the neighboring points from the previous foam 
texture are considered:

1. if the distance is lower than a given threshold, the 
corresponding texel is used
2. if all the distances are greater than the threshold, a 
new texel is created in the foam texture using Eq. 4.
These   distances   are   computed   as   soon   as   an 
intersection point between the corresponding ray and
the  ocean surface   is   found,   thus   the  integration  of 
this computation in our sphere tracing algorithm is 
straightforward.

Figure  6. Foam obtained with U10 = 13 km/h

Foam obtained with this method is shown on Fig. 6 
for U10 = 13 km/h, Ta = 20°C and Tw = 12°C.

4.2 Sprays
Oceanic   spray  can  be   seen  as  a  gaseous   exchange 
between the ocean and the atmosphere. It is mainly 
due to bubbles bursting at the surface, which release 
drops   of   diameter   approximately   one   magnitude 
lower than bubbles'.  Depending on their size, these 
drops can either go back in the water or evaporate. In 
the latter case, organic or gaseous molecules carried 
by   the   drops   are   left   in   the   atmosphere,   and   thus 
form oceanic sprays.
In   computer   graphics,   most   existing   methods 
simulate   sprays   using   a   particle   system   generated 
according   to   the   surface   height   [JG01,   HW04]   or 
surface variations [JBS03]. But these methods do not 
take   into   account   the   different   atmospheric 
conditions,   and   do   not   simulate   the   path   of   light 
going   through   sprays   (as   a  participating  medium). 
On the other hand, participating media in computer 
graphics   is   the   subject   of   numerous   papers   (see 
[PCPS97]   for  a   survey).  A  method   is  proposed   in 
[PSB99]   to   characterize   light   attenuation   and 
diffusion due to different atmospheric molecules in 
daylight. We propose to extend this work to the case 
of oceanic sprays.
Size   distribution   of   sprays   of   radius  r  can   be 
empirically computed as [MM86]:

dF r 
dr

=1.373U10
3.41 r−3101.19

10.0057r1.05
e−B2

5

B=0.380 log r /0.65
To   take   into   account   different   atmospheric 
conditions, we modify this equation into:
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dF r '
dr
=

dF r 
dr
∗s ' 6

where s' is the amount of foam computed from Eq. 4 
at the orthogonal projection on the surface.
Furthermore,   the   vertical   profile   of   sprays   is 
described by [SF79]:

dF r
dr

=
dF r ,0

dr
e

−z
Hmax

where  dF(r,0)  is   the   size  distribution  at   the  ocean 
surface   computed   from   Eq.   6,   and  Hmax  is   the 
maximal   height   where   sprays   disappear.   We   now 
have   a   complete   description   of   sprays   distribution 
above the surface.
According to Beer­Lambert’s law, the intensity of a 
light  path going through a participating medium is 
diffused and attenuated.  In the case of  sprays,   this 
attenuation   is   due   to   the   sprays’   optical   thickness 
(AOD), defined by [PSB99]:

aod=∫
0

z max

k e z dz , ke=∫
r min

r max

kr  dF r 
dr

k r =Qer 2

where zmax is the maximal height above which sprays 
are negligible.  Parameter  ke  is called the extinction 
coefficient, and k(r) is the efficient section of a spray 
of   radius  r.  Parameter  Qe  is   called   the  attenuation 
efficiency   (Qe  ~=   2  for   oceanic   sprays).   The 
attenuation is then defined as:

L ' 0 =L 0 e
−aod

Figure 7. Light attenuated by sprays

During sphere tracing, every time a new step is taken 
along a ray, the corresponding point is projected onto 
the   surface   and   the   amount  of   foam  is   computed, 
yielding   to   an   attenuation   coefficient   defined   for 
each sphere below  zmax  (since our algorithm makes 
use of spatial coherence as described in section 3.3, 
some spheres can be reused).  The diffuse radiance 
for   a   given   ray   is   obtained   by   integration   of   the 
diffuse radiance in all M spheres along this ray:

L 0=L foamLskyL sun cossun∑
i=1

M

e
−ke

i
 z  z

where  ∆z  is   the   vertical   distance   between   two 
successive spheres.

The  influence of  sprays  on  the  scene   is  shown on 
Fig. 7 for U10 = 18.5 km/h, Ta = 20°C and Tw = 12°C,  
and is noticeable only because light is attenuated.

4.3 Second order scattering
As in the previous section for the atmosphere, light is 
also greatly attenuated when going through water (a 
very small amount of light reaches 100m under the 
surface). This phenomenon is called second order (or 
sub­surface) scattering. Light diffusion in that case is 
mainly due  to  particles   in   suspension  in   the water 
volume, which can either be organic (phytoplancton) 
or formed of water molecules of different densities, 
and characterize the water’s turbidity. Different water 
types   (resp.   A,   B   or   C)   correspond   to   different 
turbidities (resp. clear, turbid or very turbid).
Due  to   its  complexity,   second order   scattering  can 
only be simulated using hierarchical data structures: 
illumination   volumes   [IDT02],   octrees   [JB02]   or 
horizontal planes [IDT03] were proposed. But these 
methods   do   not   take   particles   in   suspension   into 
account. Another approach [PA01, CS04] consists in 
computing the diffuse radiance according to the type 
of   water   and   its   concentration   of   phytoplancton 
particles; we propose to simplify and adapt this idea 
to our data structure.
Following [PA01], the directional radiance  L(0, , )θ φ  
in   direction  ( , )θ φ     re­emitted   to   the   surface   is 
defined as:

L 0, ,=L z , , e−cR
L df  z

Ldf  z=Ldf 0 1−e−c−K dcosR


8

where  L(z, , )θ φ   is the radiance at the bottom of the 
sea,  Ldf(z)  is   the   total   diffuse   radiance,  c  is   the 
extinction   coefficient  of  water,  Kd  is   the  diffusion 
coefficient, and R = z/(cos  ).θ
Ldf(0) is the diffuse radiance at the surface:

Ldf 0 =0.33∗bb∗E d0 /a 9
where  bb  is the backscattering coefficient, inversely 
proportional to the phytoplancton concentration C, a 
is the absorption coefficient, and Ed(0) represents the 
downwelling   irradiance  at   the   surface,   which 
depends   on   atmospheric   properties   (interested 
readers should refer to [PA01] for more details).
We replace the term  Ed(0)    in Eq. 9 by the diffuse 
radiance L(0) computed by Eq. 7:

Ldf 0 =0.33∗bb∗L 0/a
In   that   case,     the   ray   is   pointing   downwards;   the 
bottom of the sea is modeled as a set of trochoids, 
which allows to apply the sphere tracing algorithm to 
compute its intersection with a refracted ray. As in 
the previous section, a diffuse radiance is computed 
for each sphere by simplifying Eq. 8:

Ldf z =Ldf 0 1−e
−c−Kdz  10
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with  z  the vertical distance between the surface and 
the   center   of   the   sphere.  Finally,   the   total   diffuse 
radiance for a refracted ray is obtained by integrating 
the diffuse radiance of all M spheres along the ray:

Lr 0=Z bottome
−cZ bottom∑

i=1

M

L df i
 z l 11

where ∆l  is the distance along the ray and Ldfi is the 
diffuse radiance of each sphere computed by Eq. 10. 
In   this   case   again,   spatial   coherence   allows   us   to 
reuse   diffuse   radiance   for   previously   computed 
spheres. Fig. 8 shows images obtained for clear and 
turbid   waters   and   constant   phytoplancton 
C = 1.0mg/m3.

Figure 8. Clear and turbid water

5. RESULTS
5.1 Implementation
Our   method   is   implemented   as   a   plugin   for 
Autodesk's   Maya   6.5.   In   order   to   obtain   more 
realistic results,  a post­processing step is  added for 
each frame  to include glaring which is  particularly 
frequent   in   ocean   scenes,   due   to   high   contrasts 
between specular neighboring surfaces.

Figure 9. Glaring effect
Our   implementation   is   an   extension   of   a   method 
proposed in [Tho01]: the most specular points on the 

surface   are   considered,   and   a   ”glare   texture”   is 
mapped on   these  points,  whose  size   is  determined 
according to the distance from the viewer. A minimal 
distance   between   two   specular   points   is   also 
introduced  to avoid a concentration of glare points 
within   a   region,   which   would   yield   unrealistic 
results.  An example  is  shown on Fig.  9,  where all 
complex   phenomena   treated   by   our   algorithm   are 
also enabled (foam, sprays and light scattering).

5.2 Performances
Performances   of   our   method   were   evaluated   on 
different   ocean   surfaces   defined   by   an   increasing 
number   of   trochoids   waves;   the   other   parameters 
were constant. As expected, our method guarantees a 
significant   speedup   compared   to   brute­force   ray­
marching and unenhanced sphere tracing to compute 
intersections   between   a   ray   and   the   surface   (see 
Table 1), increasing with the number of trochoids.

N W. ray tracing W. sphere tracing
30 45% 26%

40 49% 32%

50 50% 34%
Table 1.  Speedup compared to brute­force ray­

tracing (middle) and unenhanced sphere  tracing 
(right) for 30, 40 and 50 trochoids (N)

Spatial coherence was evaluated on a single 640x480 
image; temporal coherence was evaluated on a single 
640x480 frame of an animation (see videos attached 
to the paper). Both comparisons were also significant 
(see Table 2). The total rendering time for a single 
image listed on the same table shows an interesting 
result:  our method gives better  results  for a higher 
number of trochoids. This better convergence is due 
to   our     maximization   approach,   which   tends   to 
neglect most of the small amplitude waves with high 
frequencies. 

N SC TC Time
30 21% 24% 4:05mn

40 23% 30% 3:38mn

50 27% 39% 2:50mn
Table 2.  Speedup obtained with spatial coherence 

(SC) and temporal coherence (TC)

Ray­surface intersections 62.5%

Sprays 18.3%

Second order scattering 12.4%

Glaring effects 3.7%

Foam 3.1%
Table 3. Repartition of different steps

Full Papers 293 ISBN 978-80-86943-98-5 



Table 3 shows the computations repartition between 
the different parts of the algorithm. Unsurprisingly, 
most   of   the   time   is   spent   to   find   intersections 
between   rays   and   the   surface,   whereas   foam   is 
computed   very   quickly   since   most   of   this   part   is 
performed using textures.

6. CONCLUSION
This  paper  presents   an   efficient   method   to   render 
realistic ocean scenes. A sphere­based data structure 
allows   to   accelerate   ray­surface   intersections 
computations   by   heavily   relying   on   spatial   and 
temporal coherence which are well­adapted to ocean 
scenes. To increase the realism of generated scenes, 
we   also   propose   new   formulations   to   integrate 
physically­based   phenomena   such   as   second   order 
scattering, foam and sprays into our data structure, 
without   significantly   reducing   performances.   The 
limitations   of   our   method   are   mainly   due   to   the 
surface   model,   which   can   not   represent   breaking 
waves and physically­based foam and spray induced 
by this phenomenon; we are currently studying how 
to integrate this type of waves.
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Abstract

In this paper, we present our experience implementing shadows in Scene Graph based Virtual Reality systems. Shadows
are an important part of the human perception of both shape and depth and, yet, are a largely missing component in Virtual
Environments. In this work, we investigate extending standard Scene Graphs to automatically produce shadowed scenes.
This paper presents our experience embedding two popular real-time shadow methods, Shadow Mapping and Stencil Shadow
Volumes, in a popular Scene Graph system, OpenGL Performer. Our experience has shown both ways in which they can be
used and also a number of weakness in the current state of both Scene Graph systems and shadow methods. Based on our
experiences, we present suggestions for the user desiring to include shadows in their Virtual Environment and highlight areas,
where further development would benefit users significantly.

Keywords: Scene Graph, Virtual Reality, Stencil Shadow Volumes, Shadow Mapping

1 INTRODUCTION

A well known German figure of speech says: "There is
shadow where there is light." This omnipresent effect of
light occlusion makes "the shape and relative position
of objects in such scenes more comprehensible" [11]
and helps us to identify the distribution of light sources.
However, in the realm of computer graphics, this figure
of speech does not necessarily apply, because this fa-
miliar effect doesn’t appear automatically, but must be
imitated. The extra effort is useful, because the usual
uniform illumination of computer graphics is easy to
identify as artificial, amongst other things due to "fly-
ing" objects.

The perceptual cues provided by shadows are pre-
sumably even more important in the field of Virtual
Reality (VR). VR focuses on both immersive environ-
ments and providing the illusion of depth; Shadows
deliver important information about depth to the user.
Given these foci, it is remarkable that shadows are un-
usual to find in the most VR environments. Perhaps,
the biggest reason for this is the lack of integrated sup-
port in the graphics generation tools that VR systems
typically use, Scene Graphs; Scene Graph(SG) systems
used have only just begun to support shadows.

In recent years, two techniques have emerged as stan-
dards in the real-time computer graphics community
for shadows generation. The first, used in the major-
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ity of cases, is Shadow Mapping. [11] Shadow Map-
ping uses a texture of the scene generated from the
lights point of view, in combination with a special al-
gorithm, to determine the portions of the scene that are
not visible from the light and, therefore, in the shadow.
The second shadow technique is Stencil Shadow Vol-
umes. [2] This method marks objects as lying within
the shadow if they are contained within a volume pro-
duced by extending the silhouette of a shadow caster
with respect to a light.

In this paper we present the results of our investi-
gation of integrating automatic shadow generation into
Scene Graph based VR. In our work we have focused
on SGI’s OpenGL PerformerTM [6] - a popular SG,
used in numerous VR systems - and the VR system,
AVANGO. [10] We present here how shadows, both
Shadow Mapping and Stencil Shadow Volumes, are in-
tegrated into AVANGO and describe the implementa-
tion of them briefly. However, a large portion of this
work’s importance lies rather in the experience col-
lected during this exploration. We present much of that
experience here, in the form of a number of suggestions
for the user of such a system. In this discussion we
also bring to the forefront many of the shortcomings of
the shadow techniques for general usage and describe
a number of points, where improvements to the tech-
niques would be advantageous.

In the next sections, we present background informa-
tion on Virtual Reality and Scene Graphs, followed by
a small overview of the Shadow Mapping and Stencil
Shadow Volume methods. In Section 4 we present de-
tails on the implementation of both shadow techniques
in a SG-based VR system. In Section 5, we present the
outcomes of this work, including giving advise how to
use automatic generation of shadowing and discussion
of the shortcomings of both the SG implementation and
the shadow techniques. Section 6 discusses future di-
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rections for research we have identified that would im-
prove shadow usage in the VR context.

2 VIRTUAL REALITY

In this section we provide some necessary background
information on Virtual Reality, by contrasting it with
other, more standard computer graphic areas. A special
focus is placed on the generation of graphics in VR sys-
tems, performed by underlying Scene Graph (SG) sys-
tems. Finally, we give a brief overview of the related
work in VR and similar areas on shadows.

VR, like computer games, builds highly upon the
real-time computer graphics community. VR and com-
puter games share many similarities; However, VR dif-
ferentiates itself on a number of fronts. VR is highly
focused on immersion, roughly the illusion of being
present in the virtual environment. This is achieved
through various means. For this feeling of presence,
one factor is a high quality image. The "connectedness,
continuity, consistency, and meaningfulness of the per-
ceptual stimuli presented" [5] is denoted as "Pictorial
Realism" and this realism can be increased by shadows.

The hardware normally used in VR can also increase
this feeling of presence. Common components include
surrounding (immersive) displays, such as large pro-
jection systems or Head Mounted Displays (HMDs),
stereoscopic imagery. Another component that differ-
entiates VR from computer games is that the user’s
position is usually tracked, having the user’s physi-
cal movement affect the display of virtual environ-
ment. The resulting motion parallax effect "’provide
important information about the depth of objects in the
field." [5] Stereoscopic imagery and the paralax effect
enabled with head tracking have significant effects on
depth perception. These also have impacts on VR sys-
tems’ structure. Large scale projection systems require
multiple projections, implemented either with special
multi-piped systems or implemented using distributed
systems. Head-tracking leads most VR to use a "the
world moves" metaphor instead of the common camera
movement metaphor.

In contrast to computer games, VR exhibits two big
disadvantages in regards to the modeled 3D environ-
ment. Among the VR community, it is uncommon to
have dedicated modelers. Commonly, available mod-
els and models created by programmers and students
with little or no experience must be used. A further fac-
tor is that many games, particularly those with shad-
ows, take place within closed environments, such as
buildings with small rooms. Conversely, the environ-
ments of VR are often very large and quite often consist
of open spaces, both of which become critical factors
when dealing with shadows.

2.1 Scene Graph Based Systems

A Scene Graph is used by most VR systems for
organizing the scene. A Scene Graph (SG) is a
directed, acyclic graph consisting of a hierarchical
structure of nodes designed for the simplification of
the display and management of graphical environ-
ments. SGs are typically tree structures, where the
root node is a "scene node," on which the rest of
the scene is hung. The nodes of the graph specify
information about the scene and its properties, such as
transformations, state properties, material properties
and geometrical primitives. In this work we have
focused specifically on OpenGL PerformerTM, referred
to throughout simply as Performer. However, the
work we present here is largely applicable, outside
of implementation details, to the two other popular
SGs in the VR community. A large majority of the
VR systems use one of the three. OpenSceneGraph
(OSG: http://www.openscenegraph.org/) is a large
community project and has an API very similar to
OpenGL Performer. OpenSceneGraph (OpenSG:
http://opensg.vrsource.org/trac) is built on the same
principles, but presents a highly different API.

To render the scene, the scene graph is traversed, ren-
dering all visible objects. A traverser traverses the
scene graph, typically originating from the scene node
and proceeding to the leaf nodes, which contain the ac-
tual geometry. In between the root node and the leaf
nodes are nodes that transform and change the scene
layout. In Performer, the leaf nodes are of type pf-
Geode and contain one or more pfGeoSets, which hold
the actual geometry primitives. To be able to position
the geometry in the scene, the pfGeode is hung on a
transform node, the pfDCS node. The final major com-
ponent, pfGeoState, is responsible for influencing the
graphical state of an object and is attached to individual
pfGeoSet’s.

The AVANGO VR system is built as a layer on top
of Performer. AVANGO is an object oriented frame-
work for creating distributed, interactive VR applica-
tions, with an interface that is similar to Open Inven-
tor. [10] It supports using many different input devices
and also supports various types of displays. As with
most VR systems, AVANGO handles this by abstract-
ing from the underlying devices. This abstraction is a
boon to application writers, but also makes implemen-
tation of some advanced concepts difficult as access to
necessary components may be denied.

The main components of AVANGO are the scene
graph and an orthogonal dataflow Field Container con-
cept. The state of a node or object is encapsulated
in Fields. Fields can be connected to other fields to
synchronize values between them. In this manner a
dataflow graph is constructed, combining Performer
derived nodes with pure AVANGO Field Containers.
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To get the best performance possible, all classes in
AVANGO are coded in C++. To achieve increased flex-
ibility and run-time coding capabilities, a binding to
scheme is built in, including an interpreter for run-time
command execution.

2.2 Related Work
Literature in regards to shadows in VR is very limited.
The only paper directly related to our work is early
work from Slater et al. [7] Their research was based on
a custom Shadow Volume system and was focused on
presence research. Unfortunately, the results were dis-
couraging, but presumably are due to the very primitive
technology they used.

The related areas of Augmented Reality and Mixed
Reality have been more focused on shadows, particu-
larly dealing with mixed real and virtual content casting
shadows. Both shadow generating method were used
to in the related literature. For example, in [3] Stencil
Shadow Volumes are used, while in [9] Shadow Map-
ping is used to create the shadows. These works focus
highly on the underlying graphical manipulations. Prior
work could not be found, in which shadows were inte-
grated into scene graph systems. However, all three of
the major SG systems have created some implementa-
tion of Shadow Mapping.

The gaming community is the one area that uses both
Shadow Mapping and Stencil Shadow Volumes. Ex-
amples are commercial game engines and also state-of-
the-art graphic engines, for example the popular Ogre
(http://www.ogre3d.org/). Unfortunately, these engines
are difficult to adapted to usage in VR systems, most
notably because of multi-threading issues.

3 SHADOW TECHNIQUES
In this section, we briefly present the theoretical foun-
dations of the two main shadow techniques used in real-
time graphics, Shadow Mapping and Stencil Shadow
Volumes. This overview is purposely general and im-
plementation details will be handled as required in Sec-
tion 4. Where appropriate, references to more thorough
resources are provided.

3.1 Shadow Mapping
The most popular shadow technique, used by a large
number of today’s games and simulation applications,
is Shadow Mapping. [11] It is based on the idea that
all geometry visible from the light must be lit, and all
geometry that can not be seen from the light’s point of
view lies in the shadow. Shadow Mapping is capable of
casting shadows on arbitrary surfaces and also supports
self-shadowing and inter-object shadows.

For Shadow Mapping, a two-pass algorithm must be
used. In the first pass, the scene is rendered from the
light’s point of view. The depth values are then written

to an already prepared depth texture. To use this tex-
ture in the second pass, which is from the view of the
camera, it must be projected onto the scene from the
light’s point of view by calculating appropriate texture
coordinates.

Using the generated texture coordinates, created us-
ing OpenGL’s automatic texture coordinate generation,
the distance between the fragment and the light source
can then be compared with depth stored in the r compo-
nent of the corresponding texel(s) of the shadow map.
If both values are equal, then the corresponding frag-
ment is the same as the one seen from the camera’s
point of view. However, if the r component of the
fragment’s texture coordinate is greater than the corre-
sponding texel, then the fragment can not be seen from
the lights point of view. This indicates that there is an-
other object between the fragment and the light source.
Therefore, this fragment lies in a shadow.

3.2 Stencil Shadow Volumes
The idea to use volumes to calculate shadows was in-
troduced by F. Crow. [2] The volume that the shadow
encloses is calculated for each light and object combi-
nation. It can then be used to determine what geometry
is located inside the shadow. The silhouette of an ob-
ject is formed from precisely the edges, for which one
adjacent plane is facing the light and the other is fac-
ing away. To check if a plane is facing the light, one
has to calculate the angle between the faces normal and
the incoming light ray. If this angle is > 90◦, the plane
is facing toward the light source. To create a shadow
volume, as seen in Figure 1(a), he extended the recov-
ered silhouette by displacing copies of each silhouette’s
vertices in the direction opposite to the incoming light
ray.

In order to use the later introduced GPU’s inherit ver-
tex processing power in calculating shadow volumes a
new method had to be developed. Since vertex shaders
are not capable of producing new vertices, objects have
to be enhanced with new vertices, which can later be
displaced by the vertex shader. To do that, all the ob-
ject’s edges are replaced by newly created quads. Two
of the quad’s vertices receive the normal of one adja-
cent face and the other two vertices the normal of other
face. These quads are called "degenerate quads," since
they don’t contain any surface area at creation time. To
create a shadow volume from the extended object, we
use the vertex shader to displace all vertices that aren’t
facing the light source. Through the displacing process
the degenerate quads are stretched so they get their own
surface area. The created shadow volume consists of
the newly emerged quads together with the displaced
and the non-displaced triangles capping it.

To get shadows from the calculated shadow volumes,
as seen in Figure 1, the counting capability of the sten-
cil buffer is used to find these objects. [4] Heidmann
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(a) A scene with a visible shadow
volume

(b) the shadow is visible, where
the volume intersects geometry

(c) stencil shadows in a real envi-
ronment

(d) stencil shadows in a real envi-
ronment

Figure 1: Stencil Shadow Volumes

followed Crow’s method for determining which objects
are shadowed, by counting the order of the objects and
volumes surfaces, today known as z-Pass or depth pass.
It is a method, in which the front and back faces are suc-
cessively rendered. If a fragment of the front faces can
be drawn, the associated stencil value is incremented.
Afterwards, the back faces are rendered and, for every
fragment that isn’t covered by another object, the as-
sociated stencil value is decremented. Fragments with
an associated stencil value > 0 after all faces are ren-
dered indicate that there is an object within the volume;
Therefore, it lies in the shadow. After completing this
step for all fragments, the stencil buffer contains values
that divide the scene into lit and shadowed regions.

Unfortunately, z-Pass inverts the lit and shadowed re-
gions if the camera is located inside the shadow volume.
To avoid this problem, the order of operations can be re-
versed, known as Carmack’s reverse [1] or simply as
z-Fail. Using this method, the stencil buffer must be in-
cremented, if it was not possible to draw the volume’s
back face, and decremented, if the front face cannot be
rendered. In contrast to z-Pass, it is necessary to cap the
volume, making z-Fail a bit slower. The results are al-
most the same, but enables entering a shadow volume,
without producing inverted shadows.

There are two ways in which the stencil buffer’s
mask can be used to render shadows. One can use
either "modulative shadows" or "additive light mask-
ing." Using modulative shadows, we overlay the scene
with a quad, colored with a semi-transparent shadow
color. Doing this exclusively in the regions masked in
the stencil buffer, the scene’s color is darkened inside
the shadowed region. This method is comparatively
fast and easy to use, but can produce errors within the
shadow if there is specular highlighting inside the shad-
owed region. The "additive light masking" approach
produces more realistic shadows and handles highlights
the correct way, but it is noticeably slower, since the im-
age must be drawn twice. In the first pass, the scene is
rendered only with weak ambient light. After determin-
ing the shadowed regions, the scene is rendered again to
the regions outside the shadowed regions with fully en-
abled lighting.

4 IMPLEMENTATION
The goal of our work was to make standard shadow
methods available in the scene graph based VR sys-
tem AVANGO, such that they were automatically cre-
ated throughout the entire scene. This goal was based
on an outsider’s view that the shadow methods were, at
this point "plug ’n play," and it should be just a sim-
ple matter of adapting the processes to work with SG
based systems. In this section we present the imple-
mentation details of how both Shadow Mapping and
Stencil Shadow Volumes can be implemented into SG
based VR systems, specifically OpenGL Performer and
AVANGO. In the following section we discuss the re-
sults of our implementations.

4.1 Shadow Mapping
Integrating Shadow Mapping into a VR system isn’t
necessarily easy, due to it being implemented as a two
pass algorithm. While the first pass is only necessary
when the light sources moves, VR systems use a "the
world moves" metaphor instead of moving the camera,
which means the light sources move every frame.

In Performer multi-pass algorithms can be imple-
mented using two or more channels, conceptually a
view of the scene that is part of the underlying "pipe." In
many VR systems, including AVANGO, the underlying
windowing, Performer’s pipes/channels, is hidden from
the user. This makes it difficult to create a second per-
spective needed for the Shadow Mapping method, as
the underlying VR system must be modified.

Fortunately, it turned out that creating our own
Shadow Mapping implementation wasn’t necessary.
Our initial investigations on integrating Shadow
Mapping lead us to look at the Performer’s own imple-
mentation, which was supported officially only under
Windows and AVANGO functions only under Linux,
to see how it was dealt with there. This investigation
showed that the Performer method, supported through
the class pfLightSource, did indeed function under
Linux as well. Instead of reimplementing Shadow
Mapping ourselves, we proceeded with the version
available and describe here how it functions and how it
is then integrated into AVANGO.

These light sources are SG nodes, which means that
the position, from where the scene is lit, is determined

Full Papers 298 ISBN 978-80-86943-98-5 



by placing them in the SG. Because Shadow Mapping
doesn’t support omnidirectional shadows, it is impor-
tant to specify the light’s direction. The field-of-view
(fov) of the light source is an important factor affect-
ing the quality of the shadow; A smaller fov can bet-
ter take advantage of the texture resolution, which re-
sults in smoother borders of the shadow. For the pre-
cision of the shadows, the two clipping planes must
lie as close together as possible. In AVANGO, these
configurations can be changed at run-time, since all at-
tributes of the class fpLightSource are represented as
fields. The following code snippet shows the sequence
of scheme scripting commands required to use Per-
former’s Shadow Mapping in AVANGO:
(define newLight (make-instance-by-name "fpLightSource"))
(fp-set-value newLight ’Name "newLight")
(fp-set-value newLight ’Position (make-vec4 0 0 0 1))
(fp-set-value newLight ’SpotDir (make-vec3 0 0 -1))
(fp-set-value newLight ’SpotCone (make-vec2 0 180))

(fp-set-value newLight ’ShadowEnable 1)
// resolution of the shadow texture:
(fp-set-value newLight ’ShadowSize 512)
(fp-set-value newLight ’ShadowFrustum

(make-vec4 -0.5 0.5 -0.5 0.5))
(fp-set-value newLight ’ShadowNearFar (make-vec2 0.01 100))

4.2 Stencil Shadow Volumes
As Stencil Shadow Volumes are found neither in Per-
former nor AVANGO, we describe here all of the im-
plementation details from our implementation. We ex-
tended AVANGO with a new node, "fpStencilShadow,"
which is directly inherited from the node fpDCS. The
realization of this extension, as a transform node, makes
it capable of being positioned within the scene graph
and also has the advantage of collecting all the required
objects for this method under one node. The task of
this node class is to extend loaded objects by degenerate
quads and manipulate the way the underlying geometry
is drawn.

To extend an object by new quads, it must be com-
mitted to the extension’s most important field, "Caster."
This field holds a node or complete sub-tree, allowing
the inclusion of any geometry set consisting of trian-
gles or triangle strips. When the field update mecha-
nism finds that the Caster field has received a new ob-
ject, a function is called that creates a custom recursive
pfuTraverser, which traverses the object of the field,
searching for geometry nodes. When a geometry node
is found, the contained GeoSets are extracted to create
the new quads from them. Since GeoSets can contain
only one primitive type, the new quads are put into a
newly created GeoSet.

To create the shadow volume, the newly created
GeoSet and a copy of the original one are placed as
children of two newly created geometry nodes. This
is done, so that the front and back faces can obtain
different Draw-Traverser functions, describing the
different behaviour for passing or not passing the depth
test. These two nodes are then attached to the instance
of the fpStencilShadow class.

Figure 2: An object consisting of one triangle-geoset is
hung under the ShadowNode. After modification per-
formed by the traverser, another geode is created ref-
erencing both the triangle and the quad geosets.

The resulting Scene Graphs can be seen in Figure 2.
In order to be able to displace the vertices of the new
GeoSets later, all GeoSets have a special GeoState that
is comprised a shader program that displaces vertices,
dependant on the light’s position. Further state requires
are discussed later.

In Performer, it is possible to use OpenGL commands
directly, so we can change the systems state. Unfortu-
nately, changing the systems state this way is critical,
because the changes are hidden from Performer. This
means that Performer acts on the assumption that the
state isn’t touched, so completely unwanted effects can
occur. That is why we have to save the OpenGL state
on our own, so we can undo the changes later.

To be able to undo these changes, the first command
stores the current state. In the Post-Draw-Function, this
saved state can be loaded again. In order to perform
the depth test without changing the depth entries, the
depth test is enabled and the associating mask is "false."
The Pre-Draw-Function shown below is designed for
the front faces, so the back faces are culled away. Now,
the stencil test can be enabled and configured, such that
it is incremented when it is possible to render the cur-
rent fragment. Using z-Pass, the Pre-Draw-Traverser
for the front faces follows:
int fpStencilShadow::pfdPreDraw1(pfTraverser *trav, void *data)
{

glPushAttrib( GL_ALL_ATTRIB_BITS);
glColorMask(GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE);
glEnable( GL_DEPTH_TEST);
glDepthMask(GL_FALSE);
glEnable( GL_CULL_FACE);
glCullFace( GL_BACK);
glEnable(GL_STENCIL_TEST);
glStencilFunc( GL_ALWAYS, 0, 0xffffffff);
glStencilOp( GL_KEEP, GL_KEEP, GL_INCR_WRAP);

return PFTRAV_CONT;
}

After attaching the shadow volumes to the scene
graph, they are rendered, with the color buffer dis-
abled. This is done in order to create a mask in the
stencil buffer that separates lit regions from shadowed
ones. As mentioned previously, there are two ways of
using this mask for creating real shadows. We have
implemented "modulative shadows," in order to avoid
the multi-pass issues discussed in Section 4.1. There-
fore, a node containing a quad is held in the field
ShadowQuad. The ShadowQuad functions as a semi-
transparent film, through which the whole scene can be
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(a) 32x32 (b) 128x128 (c) 256x256 (d) 1024x1024

Figure 3: Depiction of a typical outdoor scene, a marketplace in Germany with different sizes of depth texture.

seen, darkening the shadowed regions. For this function
to behave correctly, it is necessary that the film is al-
ways positioned between the camera and the scene. For
this function to behave correctly, it is necessary that the
film is always positioned between the camera and the
scene. For that reason, a transformation node, above
the geometry node, positions the film in front of the
camera.

Furthermore, if the field that contains the Shad-
owQuad is modified, the field update mechanism calls
a function that creates a new traverser. It then traverses
the geometry subtree searching for geometry nodes to
attach the Draw-Traverser functions to them. These
functions configure the drawing of the ShadowQuad,
such that it is drawn dependent on the values in the
stencil buffer. In this manner, the film is laid over
the scene only on the shadowed regions. In order to
avoid having the shadow quad simply covering objects
behind it, the Draw-Traverser activates the blending
mode, darkening the shadow regions by blending its
color with a black color whose alpha value is 0.5. The
code of the Draw-Traverser function is as follows:
int fpStencilShadow::pfdPreDraw3(pfTraverser *trav, void *data)
{

glPushAttrib( GL_ALL_ATTRIB_BITS);
glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);
glEnable( GL_STENCIL_TEST);
glStencilFunc(GL_NOTEQUAL, 0, 0xffffffff);
glStencilOp( GL_REPLACE, GL_REPLACE, GL_REPLACE);
glColor4f(0.0f, 0.0f, 0.0f, 0.5f);
glEnable(GL_BLEND);
glBlendFunc( GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
return PFTRAV_CONT;

}

5 RESULTS
In this section, we discusses our experience of using
the implemented shadow methods. We also provide the
user with much of the information that they will require
in order to successfully introduce shadows into their en-
vironment. We have divided this into three parts, han-
dling of the two method individually and a short state-
ment on using both methods simultaneously.
Shadow Mapping The Shadow Mapping routine
works much as advertised, working with arbitrary sur-
faces and performing self-shadowing. As seen in the
code in Section 4.1, it is easy to enable in AVANGO.
It is, however, not a "plug ’n play" method. As will be
discussed in the following paragraphs, there are numer-
ous points to tweak to the individual scene. One of the

main points that requires careful consideration from the
user is the texture resolution vs. the area to which it is
applied. The second area of importance relates to the
depth comparison and its inherit inaccuracy. Luckily,
the AVANGO implementation assists the user highly in
this endeavour, as they can modify all relevant values at
runtime using the scheme interface or a GUI interface.

Depending on the resolution of the shadow texture,
the shadow is, more or less, blocky. Although it is pos-
sible to assign an arbitrary value for the resolution of
the shadow texture, it must be a square of a power of
2 to be accepted as a valid value. To get a correct tex-
ture mapping, the texture resolution can be no larger
than the window size and the TFT monitor used had a
maximum resolution of 1280x1024, so already a tex-
ture resolution of 1024x1024 could only be used in full
screen mode. Naturally, larger textures take longer to
generate and can cause texture swapping problems, so
always selecting a large texture may not be appropriate.

As one can see in Figure 3, any resolution <=
128x128 results in such a blocky shadow that it is
better to leave the scene shadowless than use a shadow
that can be identified as artificial on the first view.
We recommend the use of the maximum resolution
available, or at least 512x512 as a resolution for
the shadow texture. The results are still blocky, but
Performer tries to soften the edges, so it is tolerable.

The other half of the resolution problem is dependent
on the chosen field-of-view and, in practice highly, in-
fluences the "blockyness" of the shadows. The smaller
the field-of-view is, the better the resolution is utilized.
In VR, where it is common to simulate a world size of
square kilometres, it is not recommend to use a shadow
field-of-view including the whole scene like it would
be used for a sun to casts shadows. Instead, local light
sources lighting need to be used, shadowing only a
small area with each.

Additionally, it is possible that the depth value of
a fragment in the depth texture differs from the one
stored in the frame buffer for the same object, since
the depth values of the frame buffer and the ones of
the shadow texture descend from different rasters. This
produces artefacts and incorrect self-shadowing when
they are compared and are detected as different. The
steeper the slope of the surface in depth and the lower
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(a) polygon offset is: too high (b) polygon offset is: too low (c) polygon offset is: just right (d) both techniques in combina-
tion

Figure 4: Generating and tweaking shadows using the implementation.

the resolution it is, the more such errors appear. The
special values PFLS_SHADOW_DISPLACE_SCALE
and PFLS_SHADOW_DISPLACE_OFFSET reduce
such mistakes by adding a small offset, which is
dependent on the surface’s depth slope, to the sampled
depth value. Usual values are 1.0 for the displace scale
and 0.001 for the displace offset, but they are scene
dependent. Customizing them for the current scene
must be done manually. The effect of an incorrect
offset, either too great or too small, can be seen in
Figure 4. An important thing to mention is that it often
occurs that when a good value for an specific object in
the scene is found, it will result in improper results for
other objects. It may be the case that there is no value,
with which all objects are properly shadowed!

Stencil Shadow Volumes The Stencil Shadow Vol-
umes implementation integrated well in AVANGO and
seemed to be a solution that would be highly effective
for our use. The implementation process was made
more complex due to Performer’s handling of state.
Objects in Performer that do not possess their own
GeoState inherit the current GeoState. This is done to
reduce OpenGL context switches, but leads to problems
if extra care is not taken in the shadow programming.
That is why the GeoSet of the shadow quad also gets
an empty GeoState to avoid inheriting the current one.
With this implementation issue taken care of, we had
expected the user to get their "plug ’n play" shadows,
if only for limited objects due to the processing load of
the method.

While implementing the Stencil Shadow Volumes,
we discovered fully unexpected problems with regard to
the shadow casting objects. Although it was known that
such objects must be closed, 2-manifold, and consisting
only of triangles (or triangle-strips), the problems these
limitations brought up were not foreseen.

Most of the objects available on the internet are not
constructed carefully enough to be usable for shadow
volume generation, because the modelers didn’t create
them for this purpose. Similarly, the models created by
students and computer scientists are often inadequate.
If the model is only displayed, it seems to be all right,
but if further processing of the model is performed, it
causes problems. Shared vertices of neighboring sur-

faces that have differing positions and are bordered by
more than two surfaces could result in holes. This leads
to incorrect results, not only for shadow volume calcu-
lation, but also for techniques like Non-Photorealistic
Rendering. A single incorrect vertex is enough to get
a completely wrong shadow volume, which results in
visible parts of the shadow volume.

This problem is unfortunately compounded by the
SG systems and, in particular, Performer. When load-
ing objects, the Performer loader tries to optimize the
model for faster processing, converting it into its own
native format. This leads to a re-triangulation of the ob-
ject, which, in turn, isn’t implemented carefully enough
to create shadow volumes from this. Many times, after
this "optimization," incorrect planes are included in the
object or other planes are missing, so there are holes in
the object. Mostly, these faults are not visible on the
object itself, but the models can no longer be used for
shadow generation. To avoid such problems, it is possi-
ble to convert the object to the Performer format in ad-
vance by using the program "pfConv." This application
can be configured such that the triangulation remains
untouched. If the converted object is loaded by the
shadow-application, the loader will never re-triangulate
it again.

Combined Usage Both the Stencil Shadow Volume
and Shadow Mapping techniques and implementations
have strengths and weaknesses. The quality of pictures
strongly depends on the environment they are used on.

Most often, Shadow Mapping’s implementation is
faster than Stencil Shadow Volumes, since most of the
calculations can be done on the specialized GPU of
modern graphic cards. The dependency on textures and
their limited resolution are two limitations on Shadow
Mappings ability to produce beautiful shadows. On the
other hand, it is not dependent on the scene’s complex-
ity as shadow volumes are, so it can be used as a more
general solution, particularly for complex scenes. The
Shadow Mapping implementation is also much more
robust in terms of handling arbitrary objects, but re-
quires fine adjustments with polygon offset over all
components. Adjusting the polygon offset of the scene
can be performed for static scene; However, for mov-
ing objects, changing position and form, the use Sten-
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cil Shadow Volumes do not require adjusting it to the
current situation and scene, making potentially better
suited for this usage.

Due to the completely different concepts used, it is
possible to use both shadow methods in combination.
The only thing that should be observed is the use of
different light sources for each shadow method to avoid
having the resulting shadows overlap. An example of
the combined usage can be seen in Figure 4(d), where
the brighter shadow is produced by Shadow Mapping.
The darker coloring of the Stencil Shadow in the figure
is purposely done to differentiate the two shadows.

6 FUTURE WORK
Our experiences have shown that the biggest problem
with Stencil Shadow Volumes in the SG are objects
with wrong surfaces or holes in them. To avoid these
problems completely, methods to automatically check
and repair the objects would be optimal. Such tools
embedded in the modeling program would be of great
help for modelers, particularly those amateur modelers
VR often uses. Additionally, a model loader that is ca-
pable of reducing automatically the complexity of the
GeoSets to accelerate the volume calculations would be
desirable. In many Stencil Shadow Volume applications
there is, next to the original object, a reduced version;
The original is displayed in the scene and the reduced
version is used for calculating the shadow volume.

Future investigations of interest would be the imple-
mentation of advanced Shadow Mapping approaches.
There are many proposals that avoid or reduce the
dependency on the texture resolution, for example the
"Perspective Shadow Mapping." [8] Unfortunately,
to use them in our setup would require customizing
the available pfLightSource, which is not available
in source code. Instead, like the fpStencilShadow
extension, a new node or object must be created.
This would require a multi-pass rendering algorithm,
which needs to access the underlying channel to be
implemented. Dependent on the VR system being
used, this could be difficult to implement, as is the case
with AVANGO.

7 CONCLUSION
In this paper we have presented how two popular
shadow techniques, Shadow Mapping and Stencil
Shadow Volumes, can be implemented in a Scene
Graph based VR system, in pursuit of a system for
automatic generation of shadows. We presented how
we implemented these in the OpenGL Performer Scene
Graph and the AVANGO VR system, using methods
viable for other systems. Based on our experience, we
have discussed both the implementation and usage of
the systems. As a portion of this discussion, we have

presented advice to the potential user of such a system
on the different aspects that the user must be aware of,
such as model issues with Stencil Shadow Volumes and
tweaking Shadow Mapping parameters for typical VR
environments. Finally, we have identified a number of
areas of further research and development, which could
help deliver the goal of truly automatic generation of
shadows in SG based VR.
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Abstract

The Human Visual System (HVS) is a key part of the ren-
dering pipeline. The human eye is only capable of sens-
ing image detail in a 2◦ foveal region, relying on rapid eye
movements, or saccades, to jump between points of interest.
These points of interest are prioritised based on the saliency
of the objects in the scene or the task the user is performing.
These ”glimpses” of a scene are then assembled by the HVS
into a coherent, but inevitably imperfect, visual perception
of the environment. In this process, much detail, which the
HVS deems unimportant, may literally go unnoticed.

In this paper we use knowledge of the HVS to influence what
our attention is attracted to in computer graphics imagery,
and thus what we actually perceive in those images. We in-
fluence the affinity of subjects towards an object based on
the complexity of the context that object is put into. The
images are rendered using the Radiance lighting simulation
system. In this way, we are able to significantly influence
users’ preferences in an e-commerce application. Detailed
psychophysical studies are used to validate our approach.

CR Categories: I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism-Colour, shading, shad-
owing, and texture—;

Keywords: Visual perception, attention, saliency, e-
commerce

1 Introduction

Computer graphics imagery is increasingly playing a key
role in e-commerce applications. High quality rendered im-
ages and virtual/augmented reality environments are now
regularly used to help buyers select the product of their
choice. One such example is choosing furniture [ARIS
2003]. This computer graphics imagery is ultimately seen
by the Human Visual System (HVS) and while the HVS
is good, it is not perfect, and is very much influenced by
the scene being considered [James 1890]. The HVS does
not process an image sequentially in a raster-like fashion,
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but rather our eyes rapidly ”jump” through rapid eye move-
ments, known as saccades, between features of interest in the
scene. Our visual attention is a coordinated action involving
conscious and unconscious processes in the brain. This coor-
dinated action enables us to, rapidly and efficiently, find and
focus on relevant information within a potentially cluttered
scene. While the quality of the rendered image of a product
itself is of course important, the choice of context also plays
a significant role in capturing the HVS’s attention.

In this paper, we investigate the perception of objects based
on the context they are put in. Our target application is the
sale of cars using both static images and dynamic web-based
environments. The subjects considered were young adults,
in particular students of the University of Sarajevo and Sara-
jevo School of Science and Technology. A detailed study, in-
volving 114 subjects is carried out to determine their strong
preferences for choice of car colour. We understand that
car colour preferences vary across different cultures and age
groups. Throughout the project, we kept the variance in cul-
tural characteristics and age of subjects at a minimum.

We then demonstrate that this preference can be significantly
influenced by the choice of context and other perceptual cues
in a rendered scene, in particular a dynamic background ob-
ject.

The rest of the paper is structured as follows. Section 2
details previous work in computer graphics which has ex-
ploited the human visual system. Section 3 describes the
experiments that were conducted. The results of these exper-
iments are given in section 4, and finally, in section 5, con-
clusions are drawn and avenues for future work presented.

2 Background

In 1890, James described the two general visual attention
processes, termed bottom-up and top-down, which deter-
mine where humans locate their visual attention [James
1890]. The bottom-up process is automatic, without voli-
tional control, and is purely stimulus driven. Our eyes are
automatically attracted to, for example, any movement, es-
pecially in our peripheral vision, certain colours, the size,
shape, brightness, edges and orientation of objects. This is
evolutionary; the movement may be a predator lurking in
the bushes, and our ancestors needed to be able to easily dis-
cern at a distance the red ripe fruit amongst the green of the
trees. Top-down processes, on the other hand, are task de-
pendent causing the HVS to focus on only those parts of a
scene which are necessary for the user’s current task, for ex-
ample looking for street signs, or targets in a game [Yarbus
1967]. When attention calls for concentrating on an object
or task, the viewer will often fail to perceive an unexpected
object, even if it appears at fixation. This is known as Inat-
tentional Blindness [Mack and Rock 1998]

Models of the human visual system have been used in
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computer graphics to investigate the perceptual quality of
images [Daly 1993; Myszkowski 1998; Bolin and Meyer
1998], improve the quality of rendered images [Ferwerda
et al. 1996; McNamara et al. 2000; Myszkowski et al. 2001;
Pattanaik et al. 1998; Ramasubramanian et al. 1999], or to
reduce the complexity of models without any perceptual loss
of quality, such as [Luebke and Hallen 2001; Reddy 1997;
Watson et al. 2001]. A good overview of perceptual ren-
dering can be found in [O’Sullivan et al. 2004]. More re-
cently, researchers have used detailed models of the bottom-
up (known as Saliency Maps [Itti and Koch 2000]) and top-
down (known as Task Maps [Cater et al. 2003]) visual at-
tention processes to significantly reduce the computation
of high-fidelity global illumination calculations [Yee et al.
2001; Haber et al. 2001; Cater et al. 2003; Sundstedt et al.
2004].

In this paper we use the saliency of objects to direct visual
attention to different parts of a scene and thereby influence
the manner in which a viewer perceives the scene.

3 Model and the Experiment

3.1 Model and Preference Defining Property

The environment chosen for our experiments consists of a
car modeled in Maya and rendered using the Radiance light-
ing simulation system, as shown in Figure 1.

Figure 1: A radiance 3D scene

In order to carry out the experiments, we first need to estab-
lish a property of the car for which we have significant evi-
dence that when altered will change the subjects’ preference
of the whole car. In [Hasic and Chalmers 2006] we showed
that given the same car, if we just vary the car colour, the
subjects, in general, prefer a blue car over the purple one. In
this work 32 (16 male and 16 female) subjects were given
the task to rank the chosen 6 car colours according to which
car they would prefer to buy (1 - the most preferred car, 6 -
the least preferred car). The background used in this experi-
ment was neutral (medium grey). All car colours, Figure 2,
were presented on one screen at once.

The table below summarizes statistics obtained for both male
and female subjects. The number next to the car colour rep-
resents the average ranking of the particular car colour.

Figure 2: The different car colours shown and the subjects’
preference

Female Male Total
Colour Rank Colour Rank Colour Rank

Blue 2.14 Green 2.55 Blue 2.56
Red 2.57 Blue 2.82 Green 2.83

Green 3.29 Red 3.18 Red 2.94
Yellow 4.00 Yellow 3.45 Yellow 3.67
Purple 4.43 Orange 3.45 Orange 3.89
Orange 4.57 Purple 5.55 Purple 5.11

This experiment established the blue car colour as most pre-
ferred and the purple car colour as least preferred one. To
verify these results, another set of 16 subjects was asked to
rank just those two car colours. The following preferences
were obtained (see Figure 3):

Preferred Blue Preferred Purple
86% 14%

The results demonstrate a clear difference in preference be-
tween those two car colours for our demographic. The blue
and the purple car colours were used to represent preferred
and non-preferred objects in the experiments conducted for
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Figure 3: The best and the worst ranked car colour

this paper.

3.2 Experimental Setup

Two identical displays, with equivalent settings, placed next
to each other were used in our experiments. 62 males stu-
dents with normal, or corrected to normal vision, were the
subjects for the experiments that followed. A pilot study
was performed with 10 participants to determine the time
required to comfortably complete the given task. Based on
this pilot study the subject’s response time was limited to
10 seconds. Most subjects responded well before this time
limit. Due to the low number of female subjects in the over-
all student population used for this experiment, we chose to
exclude answers from female students.

Each subject was seated in front of the two displays and had
the same view of the both displays. On the two displays,
a pair of images was presented and each subject was asked
one question (not all subjects were asked the same question).
Only one subject was present in the room where the experi-

ment was conducted. Upon completion of the experiment, he
was asked to keep the details of the experiment confidential
and not to share any information about the experiment with
other subjects since their experimental performance could be
influenced by such information. The position of images in
the two displays, within each pair, on the two displays was
randomized to avoid bias.

4 Results

4.1 Comparison of objects on identical back-
grounds

The results achieved in [Hasic and Chalmers 2006] about
car preference based on the colour used 2D imagery. Since
in this paper we are using a different car model and a global
illumination 3D environment we had to verify that these ear-
lier results would be consistent under the new conditions.
The previous 2D imagery experiment tested the preference
of car based on the car colour if the cars were placed on a
neutral background (medium grey). In the first part of the
experiment we verified that subjects would still prefer blue
cars over purple ones if presented to them in the same con-
text (on the same background). The two images were pre-
sented concurrently to one subject at a time and the subject
was asked to answer the following question:

”Which car do you prefer?”

4.1.1 Car preference on neutral background

Each of the 10 subjects in this group was shown the pair of
images in figure 4.

Figure 4: Car on neutral background

The following preferences were obtained from this group of
subjects:

Preferred Blue Preferred Purple
70% 30%

As we can see, this experiment confirmed that subjects do
indeed prefer the blue new car model over the purple one on
the neutral background.

4.1.2 Car preference on colourful background

The next group of 9 subjects was shown the pair of images in
figure 5. This time the two cars were placed in a showroom-
like setting. On the showroom walls colourful pictures were
hung.
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Figure 5: Car on complex background

The results for this experiment were:

Preferred Blue Preferred Purple
78% 22%

Even though the background of the two cars was changed
from neutral to a more complex one, the subjects still highly
preferred the blue car over the purple one.

4.1.3 Car preference on dynamic background

A final group of 9 subjects, in this part of the experiment,
was shown the pair of images in figure 7. The background
of these two cars was the same showroom-like background
from the previous experiment, but with a dynamic addition.
An animated button was added to the two pictures that were
hanging in the show room. The face of the button had a
label which read ”CLICK HERE”. As time went by, the
face of the button opened in a window-like fashion and a new
message was revealed reading ”TO FIND OUT MORE” (see
figure 6).

Figure 6: 2 frames of the dynamic button

Figure 7: Car on complex-dynamic background

The preferences for this part of the experiment were:

Preferred Blue Preferred Purple
88% 12%

As can be seen from this subsection’s experiment, if two ob-
jects are presented on the identical background and the sub-
jects are given a task (in this case the question: ”Which car
do you prefer?”) their visual behaviour is consistent with a
top-down process and what happens outside the zone of in-
terest is not visually important.

4.2 Comparison of different backgrounds

Now that we clearly established that the blue car is preferred
over the purple one we needed to devise an experiment in
which we could manipulate the environment so that subjects
would no longer prefer the blue car over the purple one. We
did so by using different contexts for the two objects. The
hypothesis was that if the less preferred car was put in a more
complex environment then it is likely that, as some subjects
might prefer more complex images, just because they are
more complex, they would thus choose the less preferred car.
We performed this experiment in two stages.
In the first stage the subjects were asked to answer the ques-
tion:

1. Which image do you prefer?

In the second stage the subjects were asked:

2. Which car do you prefer?

A different set of subjects was used for the two stages of the
experiment. We thus wished to investigate whether, by intro-
ducing both bottom-up and top-down visual processes in im-
ages we could significantly influence subjects’ preferences
of objects. We used two pairs of images for this experiment.
The first pair consisted of the blue car on neutral background
and the purple car on the colourful background as in Fig-
ure 8. The second pair consisted again of the blue car on the
neutral background and the purple car on colourful-dynamic
background as shown in Figure 9. The hypothesis we are
considering is: Even when subjects are given a task within
an image (such as in question 2), if the context is sufficiently
salient, the subject’s preference could be significantly influ-
enced.

Figure 8: Car on complex background

Figure 9: Car on complex-dynamic background

4.3 Question: Which image do you prefer?

These are the results of 16(8+8) subjects’ preferences when
presented a pair of images in figure 8.
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1. Comparison of static and complex backgrounds

Preferred Blue Preferred Purple
37% 63%

The following are the results of subjects’ preferences when
presented a pair of images in figure 9.

2. Comparison of static and complex-dynamic backgrounds

Preferred Blue Preferred Purple
25% 75%

As expected, when there was no clear task given within the
image, the subjects preferred the more complex image dis-
pate the fact the car that appears on this image is the car less
preferred. During this question, subjects’ perception worked
in bottom-up fashion and most of the subjects were attracted
to the more complex image.

4.4 Question: Which car do you prefer?

The following are the results of 18(9+9)subjects’ prefer-
ences when presented a pair of images in figure 8.

1. Comparison of static and complex backgrounds

Preferred Blue Preferred Purple
78% 22%

The following are the results of subjects’ preferences when
presented a pair of images in figure 9.

2. Comparison of static and complex-dynamic backgrounds

Preferred Blue Preferred Purple
44% 56%

As we can see from the results above, the subjects responded
in the top-down fashion with the first pair (figure 8) of im-
ages (their responses were task driven). Even though we
introduced salient objects (the pictures) in the background,
they were not salient enough to draw attention away from
the task object (car). However, the experiment with the sec-
ond pair images (figure 9) shows different results. With even
more saliency added to the background (an opening window
with a different text when the window is opened and closed)
we were able to influence the subjects’ preference of the task
object itself (car). This suggests that we have successfully
drawn attention away from the task region (car). Our test
group in this case slightly preferred the purple car that be-
fore, in all being equal circumstances, was far less preferred
than the blue car.

5 Conclusions and Future Work

In this paper we wished to explore how a viewer’s prefer-
ence of objects such as cars can be influenced by the overall
appearance of realistic virtual environment. In particular we
wanted to investigate whether the choice of the complexity
of the background was sufficient to significantly influence
the perception of the object of interest in the image.

Our results have shown that by only changing the back-
ground of objects to a complex and colourful one, we cannot
significantly influence the perceptual preference of subjects.
However, what we did discover is that other parameters of

the image, in particular the presence of a highly salient an-
imation in the background can significantly influence sub-
jects’ perception of the virtual environment.

So, it is possible to create an environment where, even
though the subjects are performing a task in a specific region
of the image, their overall perception of a targeted object can
still influenced by what is happening outside of that specific
region.

This is suggesting that the top-down process can be influ-
enced in a bottom-up fashion.

This result has important implications for the design of vir-
tual and augmented reality environments.

In future work, we will consider the effect that even more
complex virtual environments may have on the perception
of e-commerce objects and investigate whether we can use
such salient cues to attract a viewer to consider ”purchasing”
additional objects in the virtual environment.
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ABSTRACT 
This paper proposes a fast but effective user-guided colorization algorithm. The main difficulty with colorization 
is its intensive computational cost. And the color sometimes diffuses from one region to others. We make full 
use of the information given by the gray-scale images, including the edge, gradient and gradient direction, to 
propagate color over regions from the user’s scribbles. We introduce a novel local distance definition which 
reduces the color confusion between two regions obviously. Two-Dimensional Programming is used to get the 
minimum distance from the scribbles to every pixel, and every pixel is blended by the chrominance with top 
three minimum distances. This speeds up the colorization process. Our algorithm can also be extended to 
recolorization and movie colorization. Experimental results show that our algorithm outperforms many state-of-
the-art algorithms from small amount of user scribbles. Besides, the implementation require less than 1 second 
on the image with 320*240 pixels. 

Keywords 
Colorization, recolorization, interactive 

 

1. INTRODUCTION 
Color can be added to gray-scale images in order to 
increase the visual appeal of images such as old 
black and white photos, classic movies or scientific 
illustrations. In addition, the information content of 
some scientific images can be perceptually enhanced 
with color by exploiting variations in chromaticity as 
well as luminance. 

Colorization is a term introduced by Wilson Markle 
in 1970 to describe the computer assisted process he 
invented for adding color to black and white 
movies[1]. The term is generically used now to 
describe the process of adding color to monochrome 
still images and movies. Colorization is the problem 
of assigning three-dimensional pixel values to an 
image which varies along only one dimension. Since 
different colors may have the same luminance value 

but vary in hue or saturation, the problem of 
colorizing gray-scale images has no inherently 
“correct” solution. 

The main difficulty with colorization is its intensive 
computational cost. The user cannot see the effect 
immediately and colorize the images interactively. 
Levin[2] propose a new user-guided colorization 
technique based on the premise that nearby pixels in 
space that have similar gray levels should also have 
similar colors. However, because no boundary or 
region information is considered in their colorization 
process, unseemly color sometimes diffuses from one 
region to others. The processing time of colorizing 
an image with 320*240 pixels costs ten or more 
seconds.  

In this paper, we propose a user-guided colorization 
method inspired by Levin’s. This paper makes 
several specific technical contributions. First, we 
introduce a novel local distance definition, which 
take the edge, gradient and gradient direction into 
accounts. With the edge and gradient constrains, the 
color confusion between two regions reduce 
obviously. Next, we use Two-Dimensional 
Programming to get the minimum distance from the 
scribble to every pixel. This make the process time 

Permission to make digital or hard copies of all or part of 
this work for personal or classroom use is granted without 
fee provided that copies are not made or distributed for 
profit or commercial advantage and that copies bear this 
notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute 
to lists, requires prior specific permission and/or a fee.  
Copyright UNION Agency – Science Press, Plzen, Czech 
Republic. 
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only one tenth of Levin’s. We also extend our 
algorithm to movies. 

2. RELATED WORK 
Colorization has been extensively studied in the 
movie industry since 1970’s. Various analogue 
techniques have been used to accomplish this 
challenging task[3]. In this section we focus on 
digital colorization only. 

Semi-automatic Colorization  
Welsh[4] exploited local luminance distribution as 
textural information and transfer the color between 
the similar texture regions in the source color image 
and the target gray-scale image. The idea is to 
transfer color from neighborhoods in the reference 
image that match the luminance in the target data. 
There is then an underlying assumption that different 
colored regions give rise to distinct luminance, and 
their approach works properly only when this is not 
violated, otherwise requiring significant user 
intervention. This approach is a special case of the 
more general image analogies framework[5]. The 
results reported by the authors are quite impressive, 
although the technique intrinsically depends on the 
user to find proper reference data. 

Irony[6] presented a method to colorize grayscale 
images by transferring color from a segmented 
example image. Instead of relying on a series of 
independent pixel-level decisions, they developed a 
new strategy that attempts to account for the higher-
level context of each pixel. Target pixels are 
classified using LDA and image space voting with 
DCT coefficients as feature vectors. The colorized 
results exhibit nice spatial consistency. 

Sykora[7] introduced a colorization framework for 
old black-and-white cartoon video. The dynamic part 
of the scene is represented by a set of outlined 
homogeneous regions which superimpose the static 
background. They combined unsupervised image 
segmentation, background reconstruction, and 
structural prediction to reduce manual intervention. 

User-guided Colorization 
Levin[2] proposed a simple yet effective user-guided 
colorization method. In this method the user is 
required to scribble the desired colors in the interiors 
of the various regions. These constraints are 
formulated as a least-squares optimization problem 
that automatically propagates the scribbled colors to 
produce a completely colorized image. The basic 
premise is that neighboring pixels having similar 
intensities in the monochrome data should have 
similar colors in the chroma channels .Other 
algorithms based on color scribbles have 
subsequently been proposed [8][9]. These 

approaches have produced some impressive 
colorizations from a small amount of user input. 

Manga[10] Colorization proposed a novel 
colorization technique that propagates color over 
regions exhibiting pattern-continuity as well as 
intensity continuity. It propagates colors over 
pattern-continuous regions containing hand drawn 
hatching and printed screening patterns. The user is 
free from manually segmenting the patterned regions. 
Both pattern-continuous and intensity-continuous 
regions can be segmented under the same 
mathematical framework. 

3. ALGORITHM 
Our colorization method is working in YUV color 
space(other color spaces could be used as well). The 
problem of colorization is to estimate the U, V 
component value of the input gray-scale image from 
the only known intensity value Y. That is an ill-
posed problem in which two and more solutions exist, 
since different color may have the same intensity 
value. 

Our algorithm is based on three assumptions: 

♦ The colors have high correlativity between 
pixels in one local region and low correlativity 
in different regions; 

♦ Pixels having similar intensities have similar 
colors; 

♦ The color values in the input image change 
smoothly. 

We start with the description of the proposed 
algorithm for still images. Let Y(x,y):Ω R+ be the 
given monochromatic image defined on the region. 
The given monochromatic image becomes the 
luminance Y. The goal is to compute U(x,y):Ω R+ 
and V(x,y):Ω R+. The colors are given in a region 
Ωc, and |Ω|<<|Ωc|. This information is provided by 
the user via color strokes in editing type of 
applications, or automatically obtained for 
compression (selected compressed regions) or 
wireless (non lost and transmitted blocks) 
applications. The goal is from the knowledge of Y in 
Ω and U, V in Ωc to get the color information (U,V) 
into the rest of Ω, Ω-Ωc. 

Ps,t represent a path connecting s and t, where s∈Ωc 
and t∈Ω-Ωc. Our objective is to find a path which 
have the minimum link cost from each scribble to t. 
We define the geodesic distance between s and t by: 

,

( , ) min ( , )
s tP

dist s t J p q= ∑ , 

p,q∈Ps,t, J(p,q) is the local link cost between two 
neighbor point. 
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Every scribble gives a uniform color c. To every 
point t, we define the geodesic distance dc(t) as the 
minimum distance d(s,t) from t to s of the same 
chrominance c: 

( ) min ( , )
c

c
s

dist t d s t
∀ ∈Ω

=  

Local cost 
Figure 1 shows the result of Levin[2]. At first glance, 
the result is exciting. But there is color confusion 
near the edge between two images even after careful 
color choosing and scribbling(figure 1.c). If we 
change the color of the scribbles, we can see that 
there are obvious color confusion near the area 
between two regions(figure 1.d). 

        
(a)      (b) 

 
(c)      (d) 

    
(e)      (f) 

Figure 1. Comparison of Levin’s results[2] and ours. (a) The gray-scale image with color scribbles from 
[2], (b)The gray-scale image with color scribbles whose positions are same as(a), but color changes; c) and 
(d) are the results using Levin’s algorithm; e)and f) are the results of our algorithm. 
 
The edges, the gradient and its direction give 
important cue of the color, so we compute the local 
cost of two neighbor point as a weighted sum of 
three parts: 

( , )  ( , )  ( )  ( , )E E G G D DJ p q w J p q w J q w J p q= + + , 
where JE is the edge cost, JG is the gradient cost and 
JD is the gradient direction cost. 
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We use Canny edge detector to extract the boundary 
of the input gray image I and restore it into the 
boundary image IE, then  

1;     
( , )

0;                
E E

E

if p I or q I
J p q

otherwise

∈ ∈
=
⎧
⎨
⎩

 

Then, we calculate every pixel’s gradient magnitude: 

2 2

x yG I I= + ,  

where Ix and Iy represent the partials of an image I in 
x and y respectively. 

To keep the resulting maximum gradient at unity, we 
define: 

max( )G

G
J

G
=  

Then JG(q) is scaled by 1 if q is a diagonal neighbor 
to p and by 2  if q is a horizontal or vertical 
neighbors. 

Next, we define the gradient direction cost. For every 
pixel, the cost is computed in 8 directions 
respectively. The gradient in each direction is 
defined as: 

1 1

1 2 1 2

,  is the diagonal direction 
2( , )

,  otherwise
4

i i

i

i i i i

q q
i

J p q
q q q q

+ −

+ + − −

−

=
+ − −

⎧
⎪⎪
⎨
⎪
⎪⎩

,  

where q∈N(p), qi+j means the neighbor in the j clock 
wise direction p, qi+j means the neighbor in the j 
counter clockwise  direction to p, i∈(0,8), j∈(-2,2). 

Color blending 
We compute the U, V component of every point 
t∈Ω-Ωc by blending the different chrominance in Ωc: 

( ( ))

C(t)=
( ( ))

c

c

c
c

c
c

W d t c

W d t
∀ ∈Ω

∀ ∈Ω

∑

∑
,   (1) 

where W(.) is a blending weight function. Here we 

use 
2-r / 2 w(r)=e . 

Obviously, the chrominance with lower intrinsic 
distance effect the point’s color more. We found that 
we can get the satisfactory results using three closest 
chrominance to blend the color. So we only use the 
chrominance with the three closest distances to blend 
the point. This can fast the blending speed. 

Two-Dimensional Programming 
The pixels with link cost construct a graph. Dynamic 
programming can be formulated as a directed graph 
search for an optimal path. We utilizes an optimal 

graph search similar to that present by Dijkstra[11] 
and Nilsson[12]. 

Firstly, we construct a heap to store the nodes sorted 
by link cost. The user’s scribbled colors are the seeds 
and we insert them into the heap. Then an expending 
process deals with all their neighbors and inserts 
them to the heap until the end point is reached. 

The 2-D dynamic programming (DP) graph search 
algorithm is follows: 

Input : 
I //Grayscale image 
s //scribbles drawn by user 

Output: 
I’  //colored image 

Data Structures: 
M; // a map structure which store the chrominance reached 
this point and the correspondence distance. 
blend;//the color blend result of a point 
P(p);// a structure store a point p’s M and blend  
Link; // a path whose nodes pointer the point/pixel 
IE; //The edge image; 

Algorithm: 
Using Canny edge detector to get edge image IE; 
For t∈Ω 

New P(t);//Create an empty M for every point; 
End for 
New Link_pool; 
For p∈Ωc 
   P(p).M.push(c,0); //set the point in the scribbles to be the 
chrominance of the scribbles; and the distance to be 0; 
   Link.push(P(p)); 
End for  
While Link is not empty 
   For all P, Get the pair (cp,distp)with smallest distance 
   Pop P from Link; 
   For all q∈N(p)  
      Get P(q); 
      Calculate dist(p,q); 
      distq= distp+dist(p,q); 

P(q).M.push(pair(cp,cq)); 
If(P(q).M.pair_no>=3 

            P(q).M.sort; 
            P(q).M.pop_back;//only remain the three smallest 
distance 

End if 
Link.push(P(q)); 
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   End for 
For t∈Ω 

Caculate P(t).blend equation(1) 
End for 

Video 
Levin[2] uses optical flow tracking to propagate 
colors across time. We avoid this explicit 
computation. We opt for a simpler formulation. 
Following the color constancy constraint often 
assumed in optical flow, and if the gradient fields 
and motion vectors of all the movie channels are the 
same, then of course we can consider: 

Y U V

t t t

∂ ∂ ∂
= =

∂ ∂ ∂
, 

where t is the time coordinate in the movie. 

Recolorization 
Recolorization is to replace the colors of an image by 
new colors. The original color in the image give us 
more cue than the gray images. We assume that the 
color changes indicate the new color changes. That’s 
to say, in the recolorization process, the original 
chrominance give more information than intensity. 
So we can replace the Y by U or V in equation (1). 

4. RESULTS AND ANALYZE 
Our blending algorithm’s time and space complexity 
is O(|Ω|·|c|), where c is the chrominance of Ωc. 
Because |c| is small and we only use the three 
chrominance with lowest distance to blend. So the 
time and space complexity are reduced to O(|Ω|). 

The colorization system is built on a Pentium IV 
1.9Ghz CPU and 512M RAM. Most images can be 
colorized reasonably well in under a second. We get 
the scribbled pictured from Levin’s website and 
using our algorithm on them. As figure 2 shows, we 
get almost the same satisfied results as Levin’s. 
Levin takes more than ten seconds, while our 
algorithm only takes less than one second (Table 1). 
Figure 1.c and d is our results. From the insets, we 
can see there are less confusion around the face and 
hair. We give more results on nature scenes in figure 
5. 

Because we take edges into accounts, our proposed 
algorithm needs smaller scribbles than [2], especially 
for the images with strong edges, such as cartoons. In 
figure 3, our algorithm colorizes the gray-scale 
Garfield good. Figure 4 shows more results on 
natural scene. Our algorithm also gives good results. 
Garfield’s right and left area are colorized correctly 
because of their connection. 

 

 

 
Figure 2 The first column is the gray images 
marked with color scribbles from [2]. The second 
column is our colorization results.  

 Pixels Time in [2] 
(second) 

Ours 
(second) 

Cats 319*267 15.209 0.712 

Girl 318*238 10.128 0.421 

Building 399*299 15.267 0.917 

Table 1 The comparison of the processing time 
between ours and Levin’s under the same 
platform. 

 

(a) 

    
(b) (c) 

Figure 3 Colorization of Garfield. (a) The gray-
scale image with color scribbles, (b) The 
colorization using algorithm in[2] (c) Our 
colorization result. 
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Figure 5 shows how our algorithm can be applied to 
recolorization. There is no need to mask the object as 
[2]. What the user need is to scribble the color on the 
areas where he want change the color. Our algorithm 
can recolor the object according to their original 
color change with the edge and gradient constrains. 

Figure 6 shows 8 frames from the movie “Ice Age 2”. 
We change their color to gray to test our algorithm. 
We only scribble color on one frame. The remaining 
frames can be colorized around 2 seconds. And the 
effect is good. 

 

 

 

Figure 4: More still examples. Right column: the 
input images with scribbled colors. Left column: 
colored images. 

5. SUMMARY 
A simple, effective and fast colorization framework 
was introduced in this paper. While keeping the 
quality at least as good as state-of-art algorithm, our 
propose method colorize images within a second. 
Besides the improvement on speed, our algorithm 
reduces the color confusion near the boundary by 
bringing in edge and gradient cost. Our algorithm 
also can be applied on movie efficiently. 

There are many important topics to explore in the 
future work. First, it is hard to people to draw the 

scribble in a right region to make the algorithm more 
efficient. So we need to find a way to understand 
what kind of information is needed in the chroma 
channels for error controlled colorization. This will 
be helpful in editing images, directing the user to the 
crucial regions to provide the strokes. Second, we 
can use the colorization onto compression. Only a 
few color samples can colorize the entire gray-scale 
image. This can be explored to a new color image 
compress method. Third, this colorization algorithm 
can be used on wireless image transmission. When 
some data lost in transformation process, using the 
relation between the chrominance and intensity, the 
lost data can be repaired. 

 

 

 
Figure 5 Recolorization results. The first row is 
the original images, the second row is the images 
with color scribbles, and the last row is the result. 
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(b)       (c) 

Figure 6 Colorizing the movie by our colorization algorithm. (a) The first frame with the color scribbles. 
(b) The 8 gray-scale frames. (c) Colorization results. 
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ABSTRACT 
With the addition of free programmable components to modern graphics hardware, graphics processing units 
(GPUs) become increasingly interesting for general purpose computations, especially due to utilizing parallel 
buffer processing. In this paper we present methods and techniques that take advantage of modern graphics 
hardware for real-time tracking and recognition of feature-points. The focus lies on the generation of feature 
vectors from input images in the various stages. For the generation of feature-vectors the Scale Invariant Feature 
Transform (SIFT) method [Low04a] is used due to its high stability against rotation, scale and lighting condition 
changes of the processed images. We present results of the various stages for feature vector generation of our 
GPU implementation and compare it to the CPU version of the SIFT algorithm. The approach works well on 
Geforce6 series graphics board and above and takes advantage of new hardware features, e.g. dynamic 
branching and multiple render targets (MRT) in the fragment processor [KF05]. With the presented methods 
feature-tracking with real time frame rates can be achieved on the GPU and meanwhile the CPU can be used for 
other tasks. 

Keywords 
GPU, SIFT, feature extraction, tracking. 

 

1. INTRODUCTION 
With the inclusion of programmable parts in modern 
graphics hardware, such as vertex and fragment 
processors, developers started using the power of 
graphics processing units (GPUs) for general 
purpose computations beyond creating beautiful 
pictures and creating high-end game engines. The 
research field that arose from those efforts is known 
as GPGPU (general purpose computations on GPUs). 
To make use of the GPU for more general 

computations it is necessary to transform the 
algorithms under investigation such that it optimally 
utilizes the parallel processing model used on 
modern graphics hardware. A number of algorithms 
and applications have been implemented onto 
GPGPUs, e.g. kd-tree search [FS05], sorting 
algorithm acceleration [GHLM05] and database 
search [GLW*04]. An overview of concepts for 
algorithm transformation to GPU architecture is 
given in [Har05] and [OLG*05].  

In this paper we show, how a feature extraction 
algorithm can be adapted to make use of modern 
graphics hardware and which processing acceleration 
can be obtained by optimizing all stages of the 
algorithm. Specifically, the SIFT Algorithm 
[Low04a] was implemented on a NVIDIA 
QuadroFX 3400 GPU with 256MB video RAM, 
taking advantage of new functionalities, e.g. dynamic 
branching and multiple render targets (MRTs) of the 
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fragment and vertex processor. After reviewing the 
related work, we give a short overview of the 
algorithm, followed by the stage-by-stage GPU 
implementation and the obtained overall acceleration 
of the algorithm in comparison to standard CPU 
implementation. 

2. RELATED WORK 
One of the main problems of computer vision is the 
generation of stable feature-points from natural 
images. These feature-points are used for 
correspondence matching to find known objects and 
gain information about their presence, position, size 
or rotation in other images [BL02]. One approach for 
feature tracking is given in [Fun05], but the extracted 
feature points were not invariant to scale and the 
application was focused on the usage of multiple 
parallel graphics cards. One method to create highly 
stable feature-vectors from images is the Scale 
Invariant Feature Transform (SIFT) introduced by 
David Lowe [Low04a]. SIFT features are invariant 
against rotation, changes in scale and 
lighting/contrast and can therefore be well applied to 
scene modeling, recognition and tracking [GL04] 
and panorama creation.  

3. SIFT OVERVIEW 
The SIFT method consists of different stages to 
obtain relevant feature points. These stages where 
analyzed and individually adapted to maximize GPU 
parallel processing using only few CPU accesses. 
The single SIFT stages are: 

1. Search for potential points of interest by creation 
of a Difference of Gaussian (DoG) scale-space 
pyramid as image representation and filtering for 
extreme values 

2. Further filtering and reduction of the obtained 
points from 1. to select stable points with high 
contrast. To each remaining point, its position 
and size are assigned. 

3. Orientation assignment to each point by finding a 
characteristic direction.  

4. Feature vector calculation based on the 
characteristic direction from 3. to provide rotation 
invariance. 

5. The whole process is stacked in a way that only a 
subset of elements from the beginning of a stage 
is passed onto the next stage. 

To achieve scale invariance it is necessary to create a 
representation of the image frequencies. This is 
realized using a scale space pyramid as introduced by 
Witkin [Wit83]. Each image within the pyramid 
refers to different image frequencies. By searching in 

all images of the scale space pyramid, the obtained 
feature point candidates become scale invariant. The 
scale-space pyramid is constructed by taking a gray-
scaled version of the original image and convolving 
it repeatedly with Gaussian convolution kernels of 
increasing size. Thus a number of images with 
increasing blurriness is constructed as shown in the 
stack of four 640x480 images in Figure 1 top-left. In 
the next stage, the most blurred image from this stack 
is downscaled by a factor of two and afterwards 
convolved with the same set of Gaussian kernels as 
before to create the next stack of four 320x240 
images. The whole process is repeated until a 
specified size has been reached, which is 80x60 in 
the example in Figure 1 top-right. 

 
Figure 1. Gaussian pyramid (top) and difference 

of Gaussian (bottom). 
Now the pyramid consists of continuously convolved 
versions of the original image with different sizes 
and blurriness. To calculate the single frequencies of 
the image, adjacent images or stages of the same size 
of the pyramid have to be subtracted to create the 
Difference of Gaussian (DoG) representation, as 
shown in Figure 1 bottom. Finally, the obtained DoG 
pyramid is filtered to find the global extreme values. 
The filtering is applied pixel wise by comparing the 
luminance of the current pixel to its 8 neighbors 
within the same image, as well as to its 9 non-shifted 
neighbors of both adjacent layers of the same size. If 
the luminance valueof the pixel under investigation is 
a minimum or maximum among all these 
neighboring luminance values, the pixel is 
considered as feature point candidate. 

In the next step, the obtained candidates are further 
filtered to eliminate feature points that are unsuitable 
for correspondence detection. Here, mainly two types 
of unsuitable points are considered. First, points 
erroneously found due to noise in the input image 
and second points that lay on edges. The first type is 
eliminated by introducing a threshold for luminance 
differences between a possible feature point and its 
neighbors. Only, if the threshold is exceeded, the 
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point is further processed and considered as 
candidates. Edge points need to be excluded, since 
they are unsuitable for tracking and correspondence 
matching. For edge point detection, the surface 
curvature around the surface D(x,y) of a candidate 
point at position (x,y) can be analyzed using the 
Hessian Matrix H of second order local derivatives: 
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As shown by Harris and Stephens [HS88], the 
curvature of D(x,y) is proportional to the Eigen 
vectors of H. Since we are only interested in a 
criterion for edge or non-edge points, only the ratio 
between both Eigen values e1 and e2 with e1 ≥ e2 is 
important. Let r = e1/e2 be this ratio, then: 
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From this, the criterion for non-edge points is 
derived as: 
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In Lowe [Low04b], best results for excluding edge 
points have been reported for r = 10. 

In the third step, the remaining feature points are 
assigned with their main orientation to achieve 
rotation invariance. Therefore, the gradients within a 
certain distance around each feature point are 
transformed into polar coordinates: 
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Then, a histogram is constructed from the phase 
values θ(x,y) and weighted with magnitude values 
m(x,y), to obtain the main direction of the gradients 
around the feature points. 

 
Figure 2. Image gradient transformation into key 

point descriptors. 

Finally, feature vectors are created from the 
gradients. In Figure 2 left, the image gradients are 
shown. For each 4x4 region, the main orientation is 
used as new local coordinate system, meaning that 
also new texture coordinates need to be interpolated 
at intermediate positions. The 16 gradients within 
that particular region are than obtained within this 
new texture coordinate system. The created 
descriptor elements are a projection of the 16 
gradients onto 8 directions, aligned in the local 
coordinate system, defined by the main orientation, 
as shown in Figure 2, right. This projection is carried 
out for all 4x4 regions, thus creating a feature vector 
of 128 entries. Finally, the feature vector is 
normalized to achieve invariance to contrast changes. 

4. GPU-IMPLEMENTATION 
For the implementation of the SIFT algorithm on the 
GPU, adaptation of the initial CPU algorithms were 
required to fit the algorithm well into the graphics 
pipeline [Zel05] and take full advantage of the GPUs 
parallel processing abilities. Therefore, the main 
focus was to restructure the different SIFT stages to 
fit the GPU texture format. The experiments where 
carried out on a system, using an Intel Xeon 3.2GHz 
CPU, 2GB of RAM and a NVIDIA QuadroFX 3400 
GPU with 256MB video RAM and PCI Express x16 
graphics bus. 

4.1. DoG Pyramid Creation 
SIFT features are generated from gray level images, 
whereas GPU texture buffers are designed for three 
color + one alpha channels. GPUs do not only have a 
parallel processing ability on a per pixel basis 
parallelized by the number of fragment processors on 
the GPU, there also is a parallelism on the 
computational stages of the GPU calculating the four 
color values at once as a vector. Having only gray 
images the computations done to convolve an image 
would waste 75% of the processing power. To make 
full usage of the vector abilities of GPUs the gray-
level input image is modified. Here, we rearranged 
the gray image data into a four channel RGBA 
image, as shown in Figure 3. 

 
Figure 3. Texture packing to RGBA16 GPU 

format. 
One color value in the RGBA image represents 2x2 
pixel of the gray-level image, thus reducing the 
image area by 4. With the RGBA image, the 
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convolution can be processed without wasting 
computational power on the GPU. In the case of a 
convolution, the processing on the packed data is 
straightforward, since here mostly linear operations, 
such as pixel- wise additions or multiplications are 
applied. In cases of operations, where pixel 
processing also depends on neighboring pixels, the 
algorithm adaptation for packed data becomes 
complicated, since all neighboring references need to 
be redirected. Reorganizing the input image creates 
some computational overhead which is 
comparatively low since the data remains in this 
packed format for the whole process of scale-space 
and DoG pyramid creation. The packing is 
implemented using a simple fragment shader that 
takes a block of 2x2 adjacent pixels and arranges 
them into one RGBA pixel. The Gaussian 
convolution is directly applied onto the packed 
RGBA format, as shown in Figure 4 with a 9tap 
Gaussian kernel. Here, the Gaussian kernel is split 
into even and odd values to carry out two separate 
semi-convolutions, which are added afterwards for 
the final result. Each pixel of the Gaussian kernel is 
multiplied with all four color components in one 
calculation, thus only requiring one texture access. 
The calculations with even and odd Gaussian kernel 
pixels are implemented in the same fragment shader 
and therefore the same texture access can be used for 
both steps. 

 
Figure 4. Gaussian convolution in RGBA16 GPU 

format, (a) odd and (b) even samples. 
Horizontal and vertical filtering with Gaussian 
kernels of different sizes is applied successively and 
the differently blurred images are subtracted to create 
the DoG pyramid, described above. 

Using this technique allows us to convert a color 
image into a gray level image and pack the pixels in 
the described way in one rendering pass. 

4.2. Key Point Filtering and Orientation 
For the detection of feature points, as described 
before, dynamic branching is used to keep the whole 
selection process in the GPU. Therefore, the criteria 
for possible feature points where rearranged starting 
with the luminance difference threshold, which 
excludes 50% of possible feature points. Then the 
search for global extreme values first compares a 

point with its 8 neighbors within the same buffer, 
leaving only 0.6% of possible points followed by 
comparison with the 9 pixel of the adjacent buffers 
within the DoG stack. Possible feature points are 
shown in Figure 5(b). Afterwards, the exclusion of 
noise and edge points is carried out, leaving stable 
feature points, as shown in Figure 5(c). 

 
Figure 5. Extraction and filtering of features. 

After filtering and localization of potential feature 
points, the corresponding feature vectors are 
calculated. To calculate the gradient direction and 
magnitude, MRT functionality is used. For both 
values, only the four direct neighboring pixels are 
required, which keeps the referencing for calculation 
relatively simple. The reqired pixel access and 
operations are shown in Figure 6. 

 
Figure 6. Gradient magnitude (top) and direction 

(bottom) calculation for red channel. 
Here, the central texel “rgba” with its packed 4 
original pixels as the four color components is 
processed. The magnitude and direction calculation 
for the central “r” component are shown in Figure 6, 
which require the four neighboring components that 
are highlighted as solid colors. Each central 
component requires two other components from the 
central texel and two from adjacent texels. The 
required operations for magnitude and direction 
calculation are also shown in Figure 6. Both 
calculations require the same input data. Since the 
input data is already packed, the use of two color 
components for magnitude and direction respectively 
is not possible. Instead, the use of MRTs greatly 
accelerates the processing, since both calculations 
can be carried out at once, writing the results into 
two separate rendering targets. Thus, time consuming 
OpenGL context switching is avoided and only one 
texel access for both operations is required, since 
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magnitude and direction use the same intermediate 
calculation (i.e. horizontal and vertical subtraction).  

4.3. Feature Descriptor Creation 
Both render targets are now used to create the 
weighted histograms of the 4x4 regions around each 
feature point, as shown in the theoretical part in 
Figure 2. Each region is associated with 8 directions, 
adding up to a 128-element output vector. This 
operation differs from previously implemented 
operations, since for each single input element (or 
extreme point) 128 output elements are created. This 
operation can not be carried out at once, even with 
MRTs. Therefore, each region is processed in one 
fragment shader call, as there is no possibility to split 
the histogram calculation itself. For this calculation, 
it is useful to select a structure, where for each 
fragment different data can be accessed. A simple 
rectangular area, as used for the other calculations is 
not sufficient, since interpolation algorithms would 
interpolate the four corner attributes across the area, 
whereas here, each point requires independent 
attributes. A suitable representation for such 
independent attribute purposes is a vertex grid that 
can be created from geometry points via glVertex2f() 
or a line of multiple segments. 

For easier processing, magnitude and direction 
values are rearranged from the two rendering targets 
into one texture to further process them with the 
precalculated texture directions, as shown in 
Figure 7. 

 
Figure 7. Gradient map unpacking into one 

texture. 
Here, the packed values for magnitude and direction 
are unpacked and interleaved at the same time, such 
that one output value only contains one magnitude 
and one associated direction value. In this form, both 
values are contained in one texture that can be 
further processed without format change. 

For the final feature creation, gradient histograms for 
the 4x4 areas of each extreme point are created. Each 
area has to be processed in one fragment shader call, 
since the histogram calculation itself cannot be split 
up without expensive calculations. To carry out the 
histogram calculation in one shader cycle, 8 output 
values have to be calculated simultaneously. This 
again can be achieved, using MRTs on advanced 

graphics cards. In Figure 8(a) the data structure for 
the feature generation is shown. As an example, a 
feature vector is shown in Figure 8(b), which 
consists of 16 vertices and is mapped into the two 
render targets.  

 
Figure 8. Render Targets for Feature Generation. 
(a) Frame buffers in both render targets and (b) 

feature point position in image and access on pre-
calculated texture coordinates. 

Each vertex of a feature vector is associated with 
appropriate attributes in the CPU. These attributes 
contain relative texture coordinates, magnitude and 
direction of gradient areas. The corresponding 
calculations can be carried out independently and all 
necessary parameters are coded in the feature 
vectors. As a result, each render target from 
Figure 8(a) contains a complete data set for half the 
feature vectors.  

These SIFT feature vectors can now be used for 
correspondence matching between different images, 
e.g. for tracking in an image sequence. For this 
purpose, the Euclidean distance D between two 
feature vectors V1 and V2 with length N is 
calculated, as shown in (5). 
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−=
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In our SIFT implementation, each vector has N = 128 
elements. The associated subtractions in (5) can be 
well calculated in parallel. In a test, a CPU and GPU 
implementation were compared in terms of 
processing time. For this test, a number of feature 
vectors K were taken, with K varying between 500 
and 3000. Each feature vector was compared with 
each other, resulting in K2 comparisons. While the 
processing time for 3000x3000 comparisons was 
13sec using the CPU implementation, the GPU 
implementation only required 0.5sec. 

 

4.4. Results 
After optimizing all SIFT stages for efficient GPU 
processing, the entire algorithm was tested and 
compared against the original CPU implementation 
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