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ABSTRACT 

We present an extension of the original progressive mesh algorithm for large dynamic meshes that contain a mix 

of triangle and quadrilateral elements. The demand for this extension comes from the visualisation of dynamic 

finite element simulations, such as car crashes or metal sheet punch operations. These methods use meshes, 

which consist mainly of quadrilaterals, due to their increased numerical stability during the simulation. 

Furthermore, these meshes have a dynamic geometry with about 25 to 100 animation steps. Accordingly, we 

extend the original progressive mesh algorithm in two aspects: First, the edge collapse operation is extended for 

meshes with a mixture of triangle and quadrilateral elements. Second, we present an algorithm on how to extend 

quadric error metrics for the simplification of large dynamic meshes with many animation steps. The results are 

dynamic progressive triangle-quadrilateral meshes – a progressive multi-resolution mesh structure that has two 

interactive degrees of freedom: simulation time and mesh resolution. We show that our method works on meshes 

with up to one million vertices and 25 animation steps. We measure the approximation error and compare the 

results to other algorithms. 
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1. INTRODUCTION 
For dynamic finite element simulations in structural 

mechanics, such as car crashes or sheet metal 

forming, analysts prefer quadrilateral meshes over 

triangular meshes (Figure 1), since three-noded 

constant strain triangles behave poorly in bending 

[MG97]. The results of these simulations are meshes 

with a constant mesh topology, which contain 

between 1 and 5 million vertices, and a dynamic 

geometry with about 25 to 100 animation steps. In 

addition, during the optimization process hundreds of 

variants are simulated and stored, leading to huge 

amounts of data. Tools to visualise the three-

dimensional simulation results help the engineer to 

interpret the crash behaviour and to optimise the car 

body. These tools have to efficiently deal with large 

time dependent data sets [Som03]. Even though for 

finite element simulations the model has to be highly 

tessellated over the complete mesh, during post-

processing analysis, data base browsing, or 

interpolation of simulation results, it is often 

sufficient to display the animated mesh at a reduced 

granularity first and refine the animation on demand 

only. Furthermore, only the mesh sections with a high 

deformation need to be displayed at full resolution. 

This approach reduces the amount of data that needs 

to be transmitted and displayed. The base for these 

methods will be a progressive data structure that 

supports dynamic triangle-quadrilateral meshes. 

 

Figure 1. Example of a small triangle-

quadrilateral mesh used for crash simulations. 
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Goals and Contribution 
We will show how Dynamic Progressive Triangle-

Quadrilateral Meshes can easily be generated out of 

common dynamic meshes as a pre-processing step to 

visualisation. 

Accordingly, we extend the original progressive mesh 

algorithm of Hoppe [Hop96] in two aspects: First, the 

edge collapse and vertex split operations are 

extended for meshes with a mixture of triangle and 

quadrilateral elements. Therefore, a new constraint is 

added to avoid the creation of degenerated meshes. 

Second, we present an algorithm that extends quadric 

error metrics [GH97] for the simplification of large 

dynamic meshes with many animation steps. The 

result is a progressive multi-resolution mesh structure 

that has two interactive degrees of freedom: 

simulation time and mesh resolution. We show that 

our method works on meshes with up to one million 

vertices and 25 animation steps, and compare the 

approximation error to other algorithms. 

Related Work 
Progressive Meshes, first introduced by Hoppe 

[Hop96], are a progressive data structure for 

triangular meshes based upon the edge collapse 

operation. By means of this operation it is possible to 

reduce the complexity of a given triangle mesh by 

iteratively removing edges and thus deleting the 

adjacent triangles resulting in the base mesh M
0
: 

M
n →(ecoln-1)→ … →(ecol1)→ M1 →(ecol0)→ M0 

The inverse vertex split operation allows undoing 

these changes and restoring the removed mesh items. 

This allows for storage and transmission of the 

original mesh M
n
 as multi-resolution representation 

consisting of M
0
 and a sequence of n vertex split 

operations: 

M
0
 →(vsp0)→ M

1
 →(vsp1)→ … →(vspn-1)→ M

n
 

Ramsey et al. [RBH03] describe an extension to the 

edge collapse operation for meshes composed of non-

planar multi-sided polygons. However, extending the 

necessary preconditions for legal collapse operation 

was not covered. 

Gumhold [Gum04] introduced the remove edge and 

join edges operations to simplify arbitrary polygonal 

meshes (Face Clustering). The remove edge opera-

tion joins two faces by removing its shared edge and 

thus creates polygons of higher complexity.  

To create the sequence of operations from the 

original mesh one has to define an error metric. 

Selecting the error measurement is a trade-off 

between the quality of the simplified mesh and the 

performance of the simplification process. For a 

discussion of the different methods see [PS97]. 

Garland and Heckbert [GH97] introduced an error 

metric based on quadrics that accumulates the error 

during simplification. It approximates the maximum 

error of the geometric distance and the deviation of 

surface normals. A quadric is assigned to each vertex 

of the mesh, which represents a weighted combi-

nation of all faces adjacent to the vertex. To estimate 

the approximation error of an edge collapse operation 

the quadrics of the two adjacent vertices are added 

and evaluated. This leads to a fast algorithm with low 

memory needs and a good approximation quality. In 

[GH98] a generalization of the quadric error metric is 

presented that also considers surface properties, such 

as colours, texture coordinates, or surface normals. 

We will extend this approach in this work to support 

dynamic meshes with many animation steps.  

In [KEH97] Kuschfeldt has described how to convert 

quadrilateral meshes into triangles and how to display 

the original element boundaries using texture map-

ping. In combination with progressive meshes this 

method has several disadvantages. First, inherent 

information about the element boundaries is lost and 

has to be stored additionally, which increases the 

amount of data and complicates the method. Second, 

storing twice as many triangles increases the 

connectivity data in many representations. Thus, we 

decided to include quadrilaterals as basic elements 

into the progressive mesh algorithm which leads to a 

simple and elegant solution.  

2. PROGRESSIVE TRIANGLE-

QUADRILATERAL MESHES 
Our aim is to extend progressive meshes to support a 

mix of triangle and quadrilateral elements. We start 

with some definitions related to meshes that will be 

used throughout the paper. 

A polygonal mesh M can be denoted by a tuple (V, 

F), where V = {v0,…,vn} is a set of vertex positions 

defining the shape of the mesh in R
3
, and F = 

{f0,…,fi} is a set of closed faces. The set of edges is 

denoted by E = {e0,..,ek}. An animation with a 

constant topology is defined by m sets of vertex 

positions A = {V0,...,Vm-1}.  

An edge is a boundary edge if it is part of only one 

face. A vertex is a boundary vertex if it is part of a 

boundary edge. A vertex is an inner vertex if it is not 

a boundary vertex. 

For the representation of a legal surface, polygonal 

meshes have to fulfil the following conditions (cp. 

[Gum04] [FDF+90] [BSBK02]): 

(M1)  The mesh is manifold with boundary. 

(M2) The minimum valence of an inner vertex is 

three. 

(M3) The minimum degree of a face is three. 



Our work is based on the OpenMesh library 

[BSBK02] that internally works with a half-edge data 

structure. Non-manifold meshes are initially 

converted to manifold meshes. 

Extending the Collapse and Split 

Operation for Mixed Meshes 
Figure 2 shows the half-edge collapse operation used 

for triangle meshes collapsing the edge {v0; v1} into 

the vertex v1. The adjacent faces fl and fr degenerate 

and vanish in this process. Also the vertex v0 is 

removed from the mesh. 

An extension to the half-edge collapse is the edge 

collapse operation, which allows optimal placement 

of the remaining vertex v1, but will not be used in this 

work. Although the usage of the edge collapse 

operation usually increases the quality of the 

decimated mesh it also increases the amount of data 

that has to be stored in a progressive mesh as we will 

describe later. 

 

Figure 2. Half-edge collapse and vertex split 

operation in triangle mesh. 

Figure 3 shows the new extended half-edge collapse 

operation for quadrilateral meshes. In this case,  

collapsing the edge {v0; v1} into the vertex v1 does not 

lead to degenerated faces. Instead, the quadrilaterals 

are transformed into triangles. Only the vertex v0 is 

removed. 

 

Figure 3. Half-edge collapse in quad mesh. 

How these half-edge collapse and vertex split 

operations are stored in a data structure is described 

in section 4. 

Legal Collapses for Triangle Edges 
Depending on the topology of the mesh an edge 

collapse operation may produce a degenerated mesh. 

To avoid this one has to validate legal operations 

using a topology test. Hoppe et al. introduced three 

preconditions in order to collapse an edge 

{v0; v1} ∈ E [HDD+93]. 

Definition: Two vertices vi and vj are neighbours, if 

an edge {v0; v1} ∈ E exists.  

 

(P1) For each vertex vi ∈ V, that is a neighbour 

of v0 and v1, vi shares a face with v0 and v1. 

(P2) If v0 and v1 are both boundary vertices, 

{v0; v1} is a boundary edge. 

(P3) M has more than 4 vertices if neither v0 nor 

v1 are boundary vertices, or M has more 

than 3 vertices if either v0 or v1 are 

boundary vertices. 

 

While (P2) avoids the separation of M into two 

meshes that are only connected by a single vertex, 

(P3) terminates the simplification. Precondition (P1) 

avoids the creation of vertices with a valence of two, 

which are only allowed at the boundary of the mesh. 

Figure 4 shows a half-edge collapse operation that 

violates the first precondition.  

 

Figure 4. Illegal half-edge collapse operation that 

creates a vertex with a valence of two. This case is 

avoided, because (P1) is violated by vx. 

Legal Collapses for Quadrilateral Edges 
For mixed meshes containing triangles and 

quadrilaterals the precondition (P1) is not sufficient 

and has to be extended. It is necessary to differ 

between edges that are adjacent to a triangle or to 

quadrilaterals only. We define that a triangle edge is 

adjacent to at least one triangle, whereas a 

quadrilateral edge is adjacent to quadrilaterals only. 

The collapse of a quadrilateral edge needs no further 

tests. As seen in Figure 3, the valence of each 

involved vertex is unchanged or increased. The 

valence of the adjacent faces is decreased by one, 

since the quadrilaterals are turned into triangles. Only 

precondition (P2) is necessary in this case. 

On the other hand, the collapse of a triangle edge 

within a quadrilateral mesh needs further attention. 

Similar to an edge collapse in a triangle mesh a 

vertex with a valence of two might be created. 



 
Figure 5. Creation of a vertex with a valence of 

two in a quadrilateral mesh. This case is not 

avoided, because (P1) is not violated by v
x
. 

In Figure 5 the shown half-edge collapse operation 

leads to a vertex with a valence of two, even though 

precondition (P1) is not violated. Thus, precondition 

(P1) has to be extended in order to avoid this case. 

Definition: Two vertices vi and vj are neighbours of 

second order, if a face f ∈ F exist for that vi ∈ f and 

vj ∈ f holds true. 

 

Corollary: Two vertices vi and vj that are neighbours 

are also neighbours of second order. 

  

Precondition (P1) can be reformulated as follows: 

(P1*) For each vertex vi ∈ V, that is a neighbour 

of second order of v0 and v1, vi shares one 

face with v0 and v1.  

 

Precondition (P3) for termination is not changed, 

since successive collapses of quadrilaterals always 

end up in triangles. The more costly precondition 

(P1*) is only needed for quadrilateral meshes. A 

proof for the extended preconditions is given in the 

Section 7.  

Extending the Quadric Error Metric for 

Mixed Meshes 
As described in [GH97] fundamental quadrics 

represent the triangles of the original mesh. Each 

fundamental quadric is defined by a plane, which in 

turn is defined by a triangle of the mesh. Each 

quadric is based on a set of these fundamental 

quadrics. However, in a quadrilateral mesh the 

fundamental quadrics are only well-defined for planar 

quadrilaterals. For skew quadrilaterals with non-

coplanar vertices a plane has to be defined that 

represents the quadrilateral best. We propose to 

compute the plane as follows:  

To define the plane a normal vector n and a distance 

d are needed. At first, a normal vector is computed 

for each vertex of the quadrilateral (cp. [RBH03]). 

Then n is set to the mean of these normals, and d is 

defined as the centre of gravity of the quadrilateral 

multiplied by n. This leads to a fundamental plane 

that has the same distance to all vertices of the 

quadrilateral. 

3. LARGE DYNAMIC PROGRESSIVE 

MESHES WITH MULTI QUADRICS 
In [GH98] a generalization of the quadric error 

metric was presented that considers surface 

properties, such as colours, texture coordinates or 

surface normals. This approach can be extended to 

support animated meshes with fixed topology, since 

the characteristic property of a dynamic model is the 

changed geometry during each animation step.  

There are two principle approaches for the extension 

of quadrics to consider multiple properties (e.g. A 

and B) during simplification [GH98]: 

(1) The generation of multi quadrics QA and QB 

for each vertex and the definition of the 

error as QA(vA) + QB(vB). 

(2) The generation of one higher dimensional 

quadric QAB for each vertex and the 

definition of the error as QAB(vAB). 

 

While in method (1) the memory and computation 

costs rise linearly with the number of attributes, 

method (2) shows a quadratic behaviour.  

In the case of dynamic progressive meshes the 

number of attributes corresponds to the number of 

animation steps. A mesh with 25 animation steps 

would thus lead to a factor of 25² = 625 in 

computation time and memory consumption 

compared to the static mesh. This disqualifies method 

(2) for our work. Using multi quadrics instead of 

higher dimensional quadrics means however, that 

optimal vertex placement is not easily possible. 

In contrast to the simplification of polygonal meshes 

with colour or texture attributes a dynamic mesh with 

m animation steps has additional geometry data in 

form of m positions for each vertex. The summation 

of the error values in method (1) however doesn’t fit 

the needs of dynamic meshes very well. Thus, we 

choose a modified method (1*) that better preserves 

the geometric variation over time: 

 

(1*) The generation of multi quadrics QA and QB 

for each vertex and the definition of the 

error as max( QA(vA) , QB(vB) ). 

 

The m animation steps can be interpreted as m 

distinct meshes {(V0,F),...,(Vm-1,F)}. For each vertex 

vi, m quadrics Qt,i will be generated and initialised 

using the geometry of the associated animation step 

(Vt,F). During simplification the meshes of the 

animation steps can be processed in a parallel 

manner. Thus, an edge collapse will be rated 

considering the 2*m associated quadrics. 

The collapse of an edge (vi,vj) into vertex vk needs m 

quadric additions Qt,k = Qt,i + Qt,j, generating m 



quadrics, one per animation step. The overall 

approximation error for this operation is defined by 

the maximum of these m quadrics: 

( ))(max ,
..0

kkt
mt

vQ
=

 

For large models with many animation steps it is 

possible to further optimise the error metric. In the 

case of crash results, one can notice that the 

geometric difference between two successive 

animation steps is relatively small. Therefore, it is 

possible to take into account only selected animation 

steps. For crash simulations we achieved good results 

by selecting the first, the last, and one animation step 

in between, preferably the one with the maximum 

vertex displacements. A generalization to arbitrary 

animations would be to automatically detect the 

animation steps with the strongest deformation. 

Restriction to a small number of animation steps 

allows for reduced computation effort. Measurements 

are discussed in section 5. 

4. DATA STRUCTURE 
As described in [Hop96] progressive meshes are 

stored in two parts. First the small base mesh, second 

a stream of n vertex split operations, which are the 

inverse of the n edge collapse operations generated 

during the simplification process. This structure may 

then be used for Level-of-Detail or progressive 

streaming of the mesh. 

 

 

Figure 6. The vertex split operation as inverse 

operation of edge collapse allows for the 

refinement of the base mesh. 

 

As shown in Figure 2 for a pure triangle mesh it is 

sufficient to know the references of the vertices v1; vl; 

vr as well as the position of the vertex v0. If optimal 

vertex placement was used during simplification the 

new position of v1 has also to be stored. If the vertex 

has additional properties, such as colour or 

displacement vectors, one additionally has to store 

the properties of the vertex v0. The references to vl 

and vr indicate the triangles fl and fr. 

To define a vertex split operation within a mixed 

mesh one also has to save whether the half-edge 

collapse operation did remove any triangles. For 

example Figure 6 shows the half-edge collapse 

removing triangle fr. Thus, the inverse operation of 

the half-edge collapse operation hec(v0;v1) is well-

defined by the vertex split operation vsp(p0; v1; vl; vr; 

tl; tr) with the following parameters: 

  

v1; vl; vr vertex reference 

p0 position of removed vertex v0 

tl; tr bool, true if fl / fr triangle 

  

5. RESULTS 

Evaluation 
To evaluate the approximation error of a simplified 

mesh we compare it to the original mesh. We used 

Metro [CRS96] to measure the two-sided Hausdorff 

distance. Tools such as Metro do not offer the 

comparison of dynamic simplified meshes. As a 

workaround we compared the single animation steps 

manually and calculated an overall approximation 

error as average of the all animation steps. 

In addition, Metro is only able to compare triangle 

meshes, thus, before measuring, the mixed meshes 

had to be triangulated. To avoid approximation errors 

due to non well-defined triangulation we used the 

star-shaped triangulation as described in [Gum04] 

that uses the centre of gravity as a new vertex 

position. 

In the following we express the two-sided Hausdorff 

distance in percentage of the diagonal of the meshes 

bounding box. Each simplification was computed 

using a PC with a Pentium 4 processor with 2.0 GHz 

and 1GB of RAM running Windows 2000.  

Results Static Mixed Meshes 
First, we test our algorithm against QSlim, an 

implementation of the quadric error metric using edge 

collapse simplification with optimal vertex placement 

as described in [GH97].  

 

Figure 7. The pillar mesh at animation step t0 and 

t15 and in resolutions of 100% and 5% of original 

vertices.  

 



 

Figure 8. The croco mesh in resolutions of 100% 

and 5% of original vertices.  

We use two different animation steps (t0, t15) of a 

technical model (Figure 7) and a non-technical model 

(Figure 8) to evaluate the quality of the simplification 

of our algorithm compared to QSlim. The results are 

shown in Table 1. 

Mesh Tris Quads 5% 5% 
QSlim 

Time 

[sec] 

pillar.t0 0 6190 0,08 0,03 0,7 

pillar.t15 0 6190 0,68 0,68 0,7 

croco 9358 12523 1,78 1,75 2,1 

Table 1. Results static meshes. 

The results are generally comparable to QSlim, even 

though no optimal vertex placement algorithm was 

used. One thing to notice is that for the non-deformed 

mesh (pillar.t0) the approximation error is 

significantly lower than to the deformed mesh 

(pillar.t15). Meshes prepared for finite element 

analysis are generally tessellated in a high resolution, 

even for plane faces. For an undeformed mesh these 

triangles can be eliminated easily without increasing 

the approximation error. For deformed meshes 

however, these triangles are needed to represent the 

deformed geometry with the needed accuracy. This 

explains the difference between the two pillar 

meshes. 

Results Dynamic Mixed Meshes 
In a second experiment we measure the quality of our 

algorithm for dynamic meshes. We used the front part 

of the large neon mesh (Figure 9) as a subset, since 

this part is deformed most. The Metro tool does not 

support dynamic meshes, thus we compared the 

single animation steps for the neon.front mesh as if 

they were static meshes and calculated an overall 

approximation error afterwards. The results are 

shown in Table 2. Above 4% of the original vertices, 

the maximum overall approximation error falls below 

1%.   

Percent 

of 

vertices 

t0 

[%] 

t12 

[%] 

t24 

[%] 

Max. 

t0...t24 

1% 2,06 1,63 1,52 2,06 

2% 1,21 1,35 1,30 1,35 

4% 0,89 0,78 0,80 0,89 

11% 0,26 0,27 0,27 0,27 

Table 2. Approximation error for dynamic mesh 

neon.front, at various resolutions and animation 

steps. 

Figure 9 shows the resulting meshes subject to the 

two degrees of freedom in mesh resolution and 

simulation time. 

 

Figure 9. This picture shows the two degrees of 

freedom, with resolution 4%, 18%, and 100% and 

animation steps t0, t6, and t12. 

One thing to notice is that for dynamic meshes the 

use of quadric error metrics leads to a higher mesh 

resolution for the areas with a high deformation. 

Our last experiment analyses if it is sufficient for the 

error metric to consider only a subset of animation 

steps for meshes that are typically produced by crash 

simulations, in order to save computation time during 

the simplification process. 

Considered 

Animation 

Steps 

1% 4%  6%  Time 

[sec] 

All 1,60 0,73 0,38 36:52 

t0,t6,t12 1,67 0,68 0,34 3:33 

t0 3,92 1,97 1,24 2:16 

t12 1,80 0,93 0,57 2:16 

Table 3. Mean approximation errors for dynamic 

mesh neon.front. 

Table 3 shows a summary of the results. Including 

only a subset of three animation steps leads to nearly  



 

no increase of the approximation error but 

significantly reduces the computation time for the 

simplification. Using only one animation step is only 

acceptable if the animation step with the maximum 

deformation (t12) is chosen.  

Finally, Figure 10 shows the complete finite element 

mesh of a neon car body in various resolutions. The 

mesh contains more than 1 million vertices and 25 

animation steps. The second mesh shows the mix of 

triangular and quadrilateral elements.  

6. SUMMARY AND CONCLUSION  

We have extended the original progressive mesh 

algorithm in two aspects: First, to support meshes 

with a mixture of triangle and quadrilateral elements. 

Second, we defined an error metric for the 

simplification of large dynamic meshes with many 

animation steps.  

Together we have created a multi-resolution mesh 

structure that has two interactive degrees of freedom: 

simulation time and mesh resolution. In future work 

extensions towards selective refinement and optimal 

vertex placement shall be researched. 

7. PROOF OF PRECONDITIONS 
Let M be a valid mixed mesh which means the rules 

(M1) to (M3) are true. Let col be an edge collapse 

that fulfils the preconditions (P1*), (P2) and (P3) on 

M.  

We want to proof that col(M) also is a valid mesh. 

We use a proof by contradiction and presume the 

opposite: “col(M) is an invalid mesh”. Thus, the mesh 

violates one of the rules (M1) to (M3).  

We will show that this presumption leads to a 

contradiction. 

There are three reasons why the produced mesh 

col(M) may be invalid, namely the violation of (M1), 

(M2), or (M3).  

 

 

 

 

Case 1: col(M) violates (M1) 

Since M is manifold with boundary there are three 

cases:  

 

1) The vertices v0 and v1 are inner 

vertices. Since M is manifold the 

topology around v0 and v1 are 

homeomorphous to discs. After edge-

collapse col(M), v1 still has a disc 

topology, all other vertices have an 

unchanged topology. Thus, col(M) is 

manifold and does not violate (M1). 

Contradiction!  

2) The vertex v0 is an inner vertex and 

v1 is a boundary vertex. Since M is 

manifold the topology around v0 is 

homeomorphous to a disc and the 

topology around v1 to a half-disc. After 

col, the topology around v1 is 

homeomorphous to a half-disc, all 

other vertices have an unchanged 

topology. Thus, col(M) is manifold 

and does not violate (M1). 

Contradiction! 

 

 

3) The vertices v0 and v1 are boundary 

vertices. Due to (P2) this means {v0,v1} 

is a boundary edge. After col, the 

topology around v1 is homeomorphous 

to a half-disc. All other vertices have 

an unchanged topology. Thus, col(M) 

is manifold and does not violate (M1). 

Contradiction!  

 

Case 2: col(M) violates (M2) 

Let the vertices v0 and v1 be the 

inner vertices involved in col. 

Let v2 be the inner vertex that 

violates (M2), such that 

val(v2)<3 in col(M). 
 

The degree of an inner vertex can 

only be decreased by col if it is a 

neighbour of v0 and v1 (proof left 

to the reader). The valence of v2 

 

v1 

v0 

v1 

col 

v1 

v0 

col 

v1 

v2 

v0 

v1 

col 

v1 

v0 

v1

Figure 10. The complete neon mesh at resolutions 100%, 50%, and 8% of the original vertices. 



must be 3. Since val(v2)<3 would 

violate already (M2) and 

val(v2)>3 would not lead to 

val(v2)<3 in col(M). 

 

Since val(v2)=3, v2 must have 

exactly one additional neighbour 

vx . In addition, v2 is an inner 

vertex and M is manifold, thus 

the topology around v2 must be 

homeomorphous to a disc. 

Since the topology around v2 is 

homeomorphous to a disc and 

val(v2)=3, there must be f1 and f2 

with {vx, v2, v1}∈ f1 and {vx, v0, 

v2}∈ f2 to close the circle around 

v2. 

Due to f1 and f2, vx is a neighbour 

of 2
nd

 order to v0 and v1 but does 

not share one common face with 

v0 and v1. This means that col 

already violates (P1
*
). 

Contradiction! 

 

 

Case 3: col(M) violates (M3) 

This case is trivial since all faces with degree < 3 are 

removed after an edge collapse col. Thus, col(M) can 

never violate (M3), which also leads to a 

contradiction in this case. 

Since all three cases lead to a contradiction, this 

means the presumption col(M) is invalid must be 

wrong. Thus, col(M) must be valid. Q.E.D. 
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