
Dynamic Progressive Triangle-Quadrilateral Meshes

Stefan Wundrak
Fraunhofer IGD
Fraunhoferstr. 5

 64283 Darmstadt, Germany

stefan.wundrak@igd.
fraunhofer.de

Thomas Henn
Technical University Darmstadt

Fraunhoferstr. 5
64283 Darmstadt, Germany

thomas.henn@gris.
informatik.tu-darmstadt.de

André Stork
Fraunhofer IGD
Fraunhoferstr. 5

64283 Darmstadt, Germany

andre.stork@igd.
fraunhofer.de

ABSTRACT

We present an extension of the original progressive mesh algorithm for large dynamic meshes that contain a mix

of triangle and quadrilateral elements. The demand for this extension comes from the visualisation of dynamic

finite element simulations, such as car crashes or metal sheet punch operations. These methods use meshes,

which consist mainly of quadrilaterals, due to their increased numerical stability during the simulation.

Furthermore, these meshes have a dynamic geometry with about 25 to 100 animation steps. Accordingly, we

extend the original progressive mesh algorithm in two aspects: First, the edge collapse operation is extended for

meshes with a mixture of triangle and quadrilateral elements. Second, we present an algorithm on how to extend

quadric error metrics for the simplification of large dynamic meshes with many animation steps. The results are

dynamic progressive triangle-quadrilateral meshes – a progressive multi-resolution mesh structure that has two

interactive degrees of freedom: simulation time and mesh resolution. We show that our method works on meshes

with up to one million vertices and 25 animation steps. We measure the approximation error and compare the

results to other algorithms.

Keywords

Progressive Meshes, Level of Detail, Crash Simulation, Animation, Quadrilaterals, Dynamic Meshes.

1. INTRODUCTION
For dynamic finite element simulations in structural

mechanics, such as car crashes or sheet metal

forming, analysts prefer quadrilateral meshes over

triangular meshes (Figure 1), since three-noded

constant strain triangles behave poorly in bending

[MG97]. The results of these simulations are meshes

with a constant mesh topology, which contain

between 1 and 5 million vertices, and a dynamic

geometry with about 25 to 100 animation steps. In

addition, during the optimization process hundreds of

variants are simulated and stored, leading to huge

amounts of data. Tools to visualise the three-

dimensional simulation results help the engineer to

interpret the crash behaviour and to optimise the car

body. These tools have to efficiently deal with large

time dependent data sets [Som03]. Even though for

finite element simulations the model has to be highly

tessellated over the complete mesh, during post-

processing analysis, data base browsing, or

interpolation of simulation results, it is often

sufficient to display the animated mesh at a reduced

granularity first and refine the animation on demand

only. Furthermore, only the mesh sections with a high

deformation need to be displayed at full resolution.

This approach reduces the amount of data that needs

to be transmitted and displayed. The base for these

methods will be a progressive data structure that

supports dynamic triangle-quadrilateral meshes.

Figure 1. Example of a small triangle-

quadrilateral mesh used for crash simulations.

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee.

Short Communications proceedings, ISBN 80-86943-05-4

WSCG’2006, January 30-February 3, 2006

Plzen, Czech Republic.

Copyright UNION Agency – Science Press

Goals and Contribution
We will show how Dynamic Progressive Triangle-

Quadrilateral Meshes can easily be generated out of

common dynamic meshes as a pre-processing step to

visualisation.

Accordingly, we extend the original progressive mesh

algorithm of Hoppe [Hop96] in two aspects: First, the

edge collapse and vertex split operations are

extended for meshes with a mixture of triangle and

quadrilateral elements. Therefore, a new constraint is

added to avoid the creation of degenerated meshes.

Second, we present an algorithm that extends quadric

error metrics [GH97] for the simplification of large

dynamic meshes with many animation steps. The

result is a progressive multi-resolution mesh structure

that has two interactive degrees of freedom:

simulation time and mesh resolution. We show that

our method works on meshes with up to one million

vertices and 25 animation steps, and compare the

approximation error to other algorithms.

Related Work
Progressive Meshes, first introduced by Hoppe

[Hop96], are a progressive data structure for

triangular meshes based upon the edge collapse

operation. By means of this operation it is possible to

reduce the complexity of a given triangle mesh by

iteratively removing edges and thus deleting the

adjacent triangles resulting in the base mesh M
0
:

M
n →(ecoln-1)→ … →(ecol1)→ M1 →(ecol0)→ M0

The inverse vertex split operation allows undoing

these changes and restoring the removed mesh items.

This allows for storage and transmission of the

original mesh M
n
 as multi-resolution representation

consisting of M
0
 and a sequence of n vertex split

operations:

M
0
 →(vsp0)→ M

1
 →(vsp1)→ … →(vspn-1)→ M

n

Ramsey et al. [RBH03] describe an extension to the

edge collapse operation for meshes composed of non-

planar multi-sided polygons. However, extending the

necessary preconditions for legal collapse operation

was not covered.

Gumhold [Gum04] introduced the remove edge and

join edges operations to simplify arbitrary polygonal

meshes (Face Clustering). The remove edge opera-

tion joins two faces by removing its shared edge and

thus creates polygons of higher complexity.

To create the sequence of operations from the

original mesh one has to define an error metric.

Selecting the error measurement is a trade-off

between the quality of the simplified mesh and the

performance of the simplification process. For a

discussion of the different methods see [PS97].

Garland and Heckbert [GH97] introduced an error

metric based on quadrics that accumulates the error

during simplification. It approximates the maximum

error of the geometric distance and the deviation of

surface normals. A quadric is assigned to each vertex

of the mesh, which represents a weighted combi-

nation of all faces adjacent to the vertex. To estimate

the approximation error of an edge collapse operation

the quadrics of the two adjacent vertices are added

and evaluated. This leads to a fast algorithm with low

memory needs and a good approximation quality. In

[GH98] a generalization of the quadric error metric is

presented that also considers surface properties, such

as colours, texture coordinates, or surface normals.

We will extend this approach in this work to support

dynamic meshes with many animation steps.

In [KEH97] Kuschfeldt has described how to convert

quadrilateral meshes into triangles and how to display

the original element boundaries using texture map-

ping. In combination with progressive meshes this

method has several disadvantages. First, inherent

information about the element boundaries is lost and

has to be stored additionally, which increases the

amount of data and complicates the method. Second,

storing twice as many triangles increases the

connectivity data in many representations. Thus, we

decided to include quadrilaterals as basic elements

into the progressive mesh algorithm which leads to a

simple and elegant solution.

2. PROGRESSIVE TRIANGLE-

QUADRILATERAL MESHES
Our aim is to extend progressive meshes to support a

mix of triangle and quadrilateral elements. We start

with some definitions related to meshes that will be

used throughout the paper.

A polygonal mesh M can be denoted by a tuple (V,

F), where V = {v0,…,vn} is a set of vertex positions

defining the shape of the mesh in R
3
, and F =

{f0,…,fi} is a set of closed faces. The set of edges is

denoted by E = {e0,..,ek}. An animation with a

constant topology is defined by m sets of vertex

positions A = {V0,...,Vm-1}.

An edge is a boundary edge if it is part of only one

face. A vertex is a boundary vertex if it is part of a

boundary edge. A vertex is an inner vertex if it is not

a boundary vertex.

For the representation of a legal surface, polygonal

meshes have to fulfil the following conditions (cp.

[Gum04] [FDF+90] [BSBK02]):

(M1) The mesh is manifold with boundary.

(M2) The minimum valence of an inner vertex is

three.

(M3) The minimum degree of a face is three.

Our work is based on the OpenMesh library

[BSBK02] that internally works with a half-edge data

structure. Non-manifold meshes are initially

converted to manifold meshes.

Extending the Collapse and Split

Operation for Mixed Meshes
Figure 2 shows the half-edge collapse operation used

for triangle meshes collapsing the edge {v0; v1} into

the vertex v1. The adjacent faces fl and fr degenerate

and vanish in this process. Also the vertex v0 is

removed from the mesh.

An extension to the half-edge collapse is the edge

collapse operation, which allows optimal placement

of the remaining vertex v1, but will not be used in this

work. Although the usage of the edge collapse

operation usually increases the quality of the

decimated mesh it also increases the amount of data

that has to be stored in a progressive mesh as we will

describe later.

Figure 2. Half-edge collapse and vertex split

operation in triangle mesh.

Figure 3 shows the new extended half-edge collapse

operation for quadrilateral meshes. In this case,

collapsing the edge {v0; v1} into the vertex v1 does not

lead to degenerated faces. Instead, the quadrilaterals

are transformed into triangles. Only the vertex v0 is

removed.

Figure 3. Half-edge collapse in quad mesh.

How these half-edge collapse and vertex split

operations are stored in a data structure is described

in section 4.

Legal Collapses for Triangle Edges
Depending on the topology of the mesh an edge

collapse operation may produce a degenerated mesh.

To avoid this one has to validate legal operations

using a topology test. Hoppe et al. introduced three

preconditions in order to collapse an edge

{v0; v1} ∈ E [HDD+93].

Definition: Two vertices vi and vj are neighbours, if

an edge {v0; v1} ∈ E exists.

(P1) For each vertex vi ∈ V, that is a neighbour

of v0 and v1, vi shares a face with v0 and v1.

(P2) If v0 and v1 are both boundary vertices,

{v0; v1} is a boundary edge.

(P3) M has more than 4 vertices if neither v0 nor

v1 are boundary vertices, or M has more

than 3 vertices if either v0 or v1 are

boundary vertices.

While (P2) avoids the separation of M into two

meshes that are only connected by a single vertex,

(P3) terminates the simplification. Precondition (P1)

avoids the creation of vertices with a valence of two,

which are only allowed at the boundary of the mesh.

Figure 4 shows a half-edge collapse operation that

violates the first precondition.

Figure 4. Illegal half-edge collapse operation that

creates a vertex with a valence of two. This case is

avoided, because (P1) is violated by vx.

Legal Collapses for Quadrilateral Edges
For mixed meshes containing triangles and

quadrilaterals the precondition (P1) is not sufficient

and has to be extended. It is necessary to differ

between edges that are adjacent to a triangle or to

quadrilaterals only. We define that a triangle edge is

adjacent to at least one triangle, whereas a

quadrilateral edge is adjacent to quadrilaterals only.

The collapse of a quadrilateral edge needs no further

tests. As seen in Figure 3, the valence of each

involved vertex is unchanged or increased. The

valence of the adjacent faces is decreased by one,

since the quadrilaterals are turned into triangles. Only

precondition (P2) is necessary in this case.

On the other hand, the collapse of a triangle edge

within a quadrilateral mesh needs further attention.

Similar to an edge collapse in a triangle mesh a

vertex with a valence of two might be created.

Figure 5. Creation of a vertex with a valence of

two in a quadrilateral mesh. This case is not

avoided, because (P1) is not violated by v
x
.

In Figure 5 the shown half-edge collapse operation

leads to a vertex with a valence of two, even though

precondition (P1) is not violated. Thus, precondition

(P1) has to be extended in order to avoid this case.

Definition: Two vertices vi and vj are neighbours of

second order, if a face f ∈ F exist for that vi ∈ f and

vj ∈ f holds true.

Corollary: Two vertices vi and vj that are neighbours

are also neighbours of second order.

Precondition (P1) can be reformulated as follows:

(P1*) For each vertex vi ∈ V, that is a neighbour

of second order of v0 and v1, vi shares one

face with v0 and v1.

Precondition (P3) for termination is not changed,

since successive collapses of quadrilaterals always

end up in triangles. The more costly precondition

(P1*) is only needed for quadrilateral meshes. A

proof for the extended preconditions is given in the

Section 7.

Extending the Quadric Error Metric for

Mixed Meshes
As described in [GH97] fundamental quadrics

represent the triangles of the original mesh. Each

fundamental quadric is defined by a plane, which in

turn is defined by a triangle of the mesh. Each

quadric is based on a set of these fundamental

quadrics. However, in a quadrilateral mesh the

fundamental quadrics are only well-defined for planar

quadrilaterals. For skew quadrilaterals with non-

coplanar vertices a plane has to be defined that

represents the quadrilateral best. We propose to

compute the plane as follows:

To define the plane a normal vector n and a distance

d are needed. At first, a normal vector is computed

for each vertex of the quadrilateral (cp. [RBH03]).

Then n is set to the mean of these normals, and d is

defined as the centre of gravity of the quadrilateral

multiplied by n. This leads to a fundamental plane

that has the same distance to all vertices of the

quadrilateral.

3. LARGE DYNAMIC PROGRESSIVE

MESHES WITH MULTI QUADRICS
In [GH98] a generalization of the quadric error

metric was presented that considers surface

properties, such as colours, texture coordinates or

surface normals. This approach can be extended to

support animated meshes with fixed topology, since

the characteristic property of a dynamic model is the

changed geometry during each animation step.

There are two principle approaches for the extension

of quadrics to consider multiple properties (e.g. A

and B) during simplification [GH98]:

(1) The generation of multi quadrics QA and QB

for each vertex and the definition of the

error as QA(vA) + QB(vB).

(2) The generation of one higher dimensional

quadric QAB for each vertex and the

definition of the error as QAB(vAB).

While in method (1) the memory and computation

costs rise linearly with the number of attributes,

method (2) shows a quadratic behaviour.

In the case of dynamic progressive meshes the

number of attributes corresponds to the number of

animation steps. A mesh with 25 animation steps

would thus lead to a factor of 25² = 625 in

computation time and memory consumption

compared to the static mesh. This disqualifies method

(2) for our work. Using multi quadrics instead of

higher dimensional quadrics means however, that

optimal vertex placement is not easily possible.

In contrast to the simplification of polygonal meshes

with colour or texture attributes a dynamic mesh with

m animation steps has additional geometry data in

form of m positions for each vertex. The summation

of the error values in method (1) however doesn’t fit

the needs of dynamic meshes very well. Thus, we

choose a modified method (1*) that better preserves

the geometric variation over time:

(1*) The generation of multi quadrics QA and QB

for each vertex and the definition of the

error as max(QA(vA) , QB(vB)).

The m animation steps can be interpreted as m

distinct meshes {(V0,F),...,(Vm-1,F)}. For each vertex

vi, m quadrics Qt,i will be generated and initialised

using the geometry of the associated animation step

(Vt,F). During simplification the meshes of the

animation steps can be processed in a parallel

manner. Thus, an edge collapse will be rated

considering the 2*m associated quadrics.

The collapse of an edge (vi,vj) into vertex vk needs m

quadric additions Qt,k = Qt,i + Qt,j, generating m

quadrics, one per animation step. The overall

approximation error for this operation is defined by

the maximum of these m quadrics:

())(max ,
..0

kkt
mt

vQ
=

For large models with many animation steps it is

possible to further optimise the error metric. In the

case of crash results, one can notice that the

geometric difference between two successive

animation steps is relatively small. Therefore, it is

possible to take into account only selected animation

steps. For crash simulations we achieved good results

by selecting the first, the last, and one animation step

in between, preferably the one with the maximum

vertex displacements. A generalization to arbitrary

animations would be to automatically detect the

animation steps with the strongest deformation.

Restriction to a small number of animation steps

allows for reduced computation effort. Measurements

are discussed in section 5.

4. DATA STRUCTURE
As described in [Hop96] progressive meshes are

stored in two parts. First the small base mesh, second

a stream of n vertex split operations, which are the

inverse of the n edge collapse operations generated

during the simplification process. This structure may

then be used for Level-of-Detail or progressive

streaming of the mesh.

Figure 6. The vertex split operation as inverse

operation of edge collapse allows for the

refinement of the base mesh.

As shown in Figure 2 for a pure triangle mesh it is

sufficient to know the references of the vertices v1; vl;

vr as well as the position of the vertex v0. If optimal

vertex placement was used during simplification the

new position of v1 has also to be stored. If the vertex

has additional properties, such as colour or

displacement vectors, one additionally has to store

the properties of the vertex v0. The references to vl

and vr indicate the triangles fl and fr.

To define a vertex split operation within a mixed

mesh one also has to save whether the half-edge

collapse operation did remove any triangles. For

example Figure 6 shows the half-edge collapse

removing triangle fr. Thus, the inverse operation of

the half-edge collapse operation hec(v0;v1) is well-

defined by the vertex split operation vsp(p0; v1; vl; vr;

tl; tr) with the following parameters:

v1; vl; vr vertex reference

p0 position of removed vertex v0

tl; tr bool, true if fl / fr triangle

5. RESULTS

Evaluation
To evaluate the approximation error of a simplified

mesh we compare it to the original mesh. We used

Metro [CRS96] to measure the two-sided Hausdorff

distance. Tools such as Metro do not offer the

comparison of dynamic simplified meshes. As a

workaround we compared the single animation steps

manually and calculated an overall approximation

error as average of the all animation steps.

In addition, Metro is only able to compare triangle

meshes, thus, before measuring, the mixed meshes

had to be triangulated. To avoid approximation errors

due to non well-defined triangulation we used the

star-shaped triangulation as described in [Gum04]

that uses the centre of gravity as a new vertex

position.

In the following we express the two-sided Hausdorff

distance in percentage of the diagonal of the meshes

bounding box. Each simplification was computed

using a PC with a Pentium 4 processor with 2.0 GHz

and 1GB of RAM running Windows 2000.

Results Static Mixed Meshes
First, we test our algorithm against QSlim, an

implementation of the quadric error metric using edge

collapse simplification with optimal vertex placement

as described in [GH97].

Figure 7. The pillar mesh at animation step t0 and

t15 and in resolutions of 100% and 5% of original

vertices.

Figure 8. The croco mesh in resolutions of 100%

and 5% of original vertices.

We use two different animation steps (t0, t15) of a

technical model (Figure 7) and a non-technical model

(Figure 8) to evaluate the quality of the simplification

of our algorithm compared to QSlim. The results are

shown in Table 1.

Mesh Tris Quads 5% 5%
QSlim

Time

[sec]

pillar.t0 0 6190 0,08 0,03 0,7

pillar.t15 0 6190 0,68 0,68 0,7

croco 9358 12523 1,78 1,75 2,1

Table 1. Results static meshes.

The results are generally comparable to QSlim, even

though no optimal vertex placement algorithm was

used. One thing to notice is that for the non-deformed

mesh (pillar.t0) the approximation error is

significantly lower than to the deformed mesh

(pillar.t15). Meshes prepared for finite element

analysis are generally tessellated in a high resolution,

even for plane faces. For an undeformed mesh these

triangles can be eliminated easily without increasing

the approximation error. For deformed meshes

however, these triangles are needed to represent the

deformed geometry with the needed accuracy. This

explains the difference between the two pillar

meshes.

Results Dynamic Mixed Meshes
In a second experiment we measure the quality of our

algorithm for dynamic meshes. We used the front part

of the large neon mesh (Figure 9) as a subset, since

this part is deformed most. The Metro tool does not

support dynamic meshes, thus we compared the

single animation steps for the neon.front mesh as if

they were static meshes and calculated an overall

approximation error afterwards. The results are

shown in Table 2. Above 4% of the original vertices,

the maximum overall approximation error falls below

1%.

Percent

of

vertices

t0

[%]

t12

[%]

t24

[%]

Max.

t0...t24

1% 2,06 1,63 1,52 2,06

2% 1,21 1,35 1,30 1,35

4% 0,89 0,78 0,80 0,89

11% 0,26 0,27 0,27 0,27

Table 2. Approximation error for dynamic mesh

neon.front, at various resolutions and animation

steps.

Figure 9 shows the resulting meshes subject to the

two degrees of freedom in mesh resolution and

simulation time.

Figure 9. This picture shows the two degrees of

freedom, with resolution 4%, 18%, and 100% and

animation steps t0, t6, and t12.

One thing to notice is that for dynamic meshes the

use of quadric error metrics leads to a higher mesh

resolution for the areas with a high deformation.

Our last experiment analyses if it is sufficient for the

error metric to consider only a subset of animation

steps for meshes that are typically produced by crash

simulations, in order to save computation time during

the simplification process.

Considered

Animation

Steps

1% 4% 6% Time

[sec]

All 1,60 0,73 0,38 36:52

t0,t6,t12 1,67 0,68 0,34 3:33

t0 3,92 1,97 1,24 2:16

t12 1,80 0,93 0,57 2:16

Table 3. Mean approximation errors for dynamic

mesh neon.front.

Table 3 shows a summary of the results. Including

only a subset of three animation steps leads to nearly

no increase of the approximation error but

significantly reduces the computation time for the

simplification. Using only one animation step is only

acceptable if the animation step with the maximum

deformation (t12) is chosen.

Finally, Figure 10 shows the complete finite element

mesh of a neon car body in various resolutions. The

mesh contains more than 1 million vertices and 25

animation steps. The second mesh shows the mix of

triangular and quadrilateral elements.

6. SUMMARY AND CONCLUSION

We have extended the original progressive mesh

algorithm in two aspects: First, to support meshes

with a mixture of triangle and quadrilateral elements.

Second, we defined an error metric for the

simplification of large dynamic meshes with many

animation steps.

Together we have created a multi-resolution mesh

structure that has two interactive degrees of freedom:

simulation time and mesh resolution. In future work

extensions towards selective refinement and optimal

vertex placement shall be researched.

7. PROOF OF PRECONDITIONS
Let M be a valid mixed mesh which means the rules

(M1) to (M3) are true. Let col be an edge collapse

that fulfils the preconditions (P1*), (P2) and (P3) on

M.

We want to proof that col(M) also is a valid mesh.

We use a proof by contradiction and presume the

opposite: “col(M) is an invalid mesh”. Thus, the mesh

violates one of the rules (M1) to (M3).

We will show that this presumption leads to a

contradiction.

There are three reasons why the produced mesh

col(M) may be invalid, namely the violation of (M1),

(M2), or (M3).

Case 1: col(M) violates (M1)

Since M is manifold with boundary there are three

cases:

1) The vertices v0 and v1 are inner

vertices. Since M is manifold the

topology around v0 and v1 are

homeomorphous to discs. After edge-

collapse col(M), v1 still has a disc

topology, all other vertices have an

unchanged topology. Thus, col(M) is

manifold and does not violate (M1).

Contradiction!

2) The vertex v0 is an inner vertex and

v1 is a boundary vertex. Since M is

manifold the topology around v0 is

homeomorphous to a disc and the

topology around v1 to a half-disc. After

col, the topology around v1 is

homeomorphous to a half-disc, all

other vertices have an unchanged

topology. Thus, col(M) is manifold

and does not violate (M1).

Contradiction!

3) The vertices v0 and v1 are boundary

vertices. Due to (P2) this means {v0,v1}

is a boundary edge. After col, the

topology around v1 is homeomorphous

to a half-disc. All other vertices have

an unchanged topology. Thus, col(M)

is manifold and does not violate (M1).

Contradiction!

Case 2: col(M) violates (M2)

Let the vertices v0 and v1 be the

inner vertices involved in col.

Let v2 be the inner vertex that

violates (M2), such that

val(v2)<3 in col(M).

The degree of an inner vertex can

only be decreased by col if it is a

neighbour of v0 and v1 (proof left

to the reader). The valence of v2

v1

v0

v1

col

v1

v0

col

v1

v2

v0

v1

col

v1

v0

v1

Figure 10. The complete neon mesh at resolutions 100%, 50%, and 8% of the original vertices.

must be 3. Since val(v2)<3 would

violate already (M2) and

val(v2)>3 would not lead to

val(v2)<3 in col(M).

Since val(v2)=3, v2 must have

exactly one additional neighbour

vx . In addition, v2 is an inner

vertex and M is manifold, thus

the topology around v2 must be

homeomorphous to a disc.

Since the topology around v2 is

homeomorphous to a disc and

val(v2)=3, there must be f1 and f2

with {vx, v2, v1}∈ f1 and {vx, v0,

v2}∈ f2 to close the circle around

v2.

Due to f1 and f2, vx is a neighbour

of 2
nd

 order to v0 and v1 but does

not share one common face with

v0 and v1. This means that col

already violates (P1
*
).

Contradiction!

Case 3: col(M) violates (M3)

This case is trivial since all faces with degree < 3 are

removed after an edge collapse col. Thus, col(M) can

never violate (M3), which also leads to a

contradiction in this case.

Since all three cases lead to a contradiction, this

means the presumption col(M) is invalid must be

wrong. Thus, col(M) must be valid. Q.E.D.

8. ACKNOWLEDGMENTS
This work has been partially supported by the

European Network of Excellence AIM@SHAPE, IST

project 506766.

9. REFERENCES
[BSBK02] M. Botsch, S. Steinberg, S. Bischoff, and

L. Kobbelt. OpenMesh. A generic and efficient

polygon mesh data structure. OpenSG

Symposium, 2002.

[CRS96] Paolo Cignoni, Claudio Rocchini, and

Roberto Scopigno. Metro: measuring error on

simplified surfaces. Technical report, Paris,

France, 1996.

[FDF+90] James Foley, Andries van Dam, Steven

Feiner, and John Hughes. Computer Graphics:

Principle and Practice, Second Edition. Page 473.

Addison-Wesley Publishing Company, Reading,

Massachusetts, 1990.

[GH97] Michael Garland and Paul S. Heckbert.

Surface simplification using quadric error metrics.

In SIGGRAPH '97: Proceedings of the 24th

annual conference on Computer graphics and

interactive techniques, pages 209-216, ACM

Press, New York, NY, USA, 1997.

[GH98] Michael Garland and Paul S. Heckbert.

Simplifying surfaces with colour and texture using

quadric error metrics. In VIS '98: Proceedings of

the conference on Visualization '98, pages 63-

269, IEEE Computer Society Press, Los Alamitos,

CA, USA, 1998.

[Gum04] Stefan Gumhold. Progressive polygonal

meshes. Technical Report WSI. 2004.4, Wilhelm-

Schickard-Institut für Informatik, Universität

Tübingen, July 2004.

[HDD+93] Hugues Hoppe, Tony DeRose, Tom

Duchamp, John McDonald, and Werner Stuetzle.

Mesh optimization. In SIGGRAPH '93:

Proceedings of the 20th annual conference on

Computer graphics and interactive techniques,

pages 19-26, ACM Press, New York, NY, USA,

1993.

[Hop96] Hugues Hoppe. Progressive meshes. In

SIGGRAPH '96: Proceedings of the 23rd annual

conference on Computer graphics and interactive

techniques, pp. 99-108, ACM Press, New York,

NY, USA, 1996.

[KEH97] S. Kuschfeldt, T. Ertl, and M. Holzner.

Efficient visualization of physical and structural

properties in crash-worthiness simulations. In

IEEE Visualization '97, IEEE Computer Society

Press, pp.487-490,583, 1997.

[MG97] Anish Malanthara and Walter Gerstle.

Comparative study of unstructured meshes made

of triangles and quadilaterals. Proc. of 6th Intl.

Meshing Roundtable, pp. 437-447, 1997.

[PS97] Paolo cignoni, Claudio Montani, Enrico

Puppo, and Roberto Scopigno. Multiresolution

representation and visualization of volume data.

IEEE Transactions on Visualization and

Computer Graphics, pp. 352–369, October–

December 1997.

[RBH03] Shaun D. Ramsey, Martin Bertram, and

Charles Hansen. Simpli_cation of arbitrary

polyhedral meshes. In IASTED Computer

Graphics and Imaging 2003, pp. 117-222, 2003.

[Som03] Ove Sommer. Interaktive Visualisierung

von Strukturmechaniksimulationen. PhD-Thesis,

Universität Stuttgart, 2003. URN:

urn:nbn:de:bsz:93-opus-15600.

vx v0

v1

v2 3

f2

f1

vx

v0

v1

v2 3

v0

v1
v2 3

