
3D NOffset mixed-element mesh generator approach

Claudio Lobos and Nancy Hitschfeld-Kahler
Depto Ciencias de la Computación,

FCFM, Universidad de Chile,
Blanco Encalada 2120,

Santiago - Chile, Zip code: 837-0459
clobos@dcc.uchile.cl, nancy@dcc.uchile.cl

ABSTRACT

In this paper we present a new approach to generate a mixed mesh with elements aligned to boundary/interfaces wherever is
required. A valid element is: (a) any convex co-spherical element that fulfills the requirements of the underlying numerical
method and (b) any element that satisfies domain specific geometric features of the model. The algorithm is based on the
normal offsetting approach to generate coarse elements aligned to the boundary/interfaces. Those elements are later refined
to accomplish layer density requirements. The main steps of the algorithm are described in detail and examples are given to
illustrate the already implemented parts. As far as possible, we contrast this algorithm with previous approaches.

Keywords: mixed-element meshes, normal offsetting approach, advancing front.

1 INTRODUCTION

CVM -conforming Delaunay meshes are Delaunay
meshes where the circumcenter (center of the cir-
cumcircle of an element) of each boundary/interface
element is inside the element itself or inside a neigh-
boring element through internal edges/faces. The
previous restriction guarantees that when Voronoi
regions are used as control volumes in the control
volume method (CVM), a mesh satisfies the conditions
for the numerical integration around each boundary or
internal point.

CVM -conforming Delaunay meshes are used in sev-
eral applications, but in particular in the simulation of
semiconductor devices. In this application, the meshes
must also fulfill two additional requirements: due to the
geometry of the devices, they should properly model
very thin layers, and due to physical properties, edges
parallel to the current flow are desirable.

Octree-based and mixed-element tree-based(MET)
mesh generators have been developed for the genera-
tion of 3D mixed elementCVM-conforming Delaunay
meshes [2, 4]. The MET approach generalizes the
modified octree approach [8, 6] in several aspects: (1) it
considers the whole device no longer encapsulated in a
single octree, but partitioned in a set of basic elements:
cuboids, rectangular prisms and pyramids; each basic

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

Short Communications proceedings ISBN 80-86943-05-4
WSCG’2006, January 30 – February 3, 2006
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

element becomes the root of a tree, (2) elements are
either bisected or refined by introducing appropriate
edge points in order to get the density requirements and
(3) a Delaunay tessellation that includes tetrahedra,
prisms, pyramids and other basic elements [3] is
generated. The main advantage of this approach is
the use of several element types that naturally fit the
requirements of theCVM. The main drawback is that it
can not efficiently generate element faces aligned to the
boundary/interfaces and it generates too many points if
the device geometry is not well-oriented.

The normal-offsetting approach has been used to gen-
erate 3D tetrahedral meshes for theCVM with element
edges aligned to the boundary [5]. In this approach,
the surface and interfaces of the device are triangu-
lated first and then, the front is moved, step by step,
to generate almost prismatic elements. These elements
are later divided into tetrahedra. In order to gener-
ate aCVM-conforming Delaunay tetrahedral mesh, bad-
shaped tetrahedra are divided by orthogonal refinement
or by applying a more complex strategy in case the
orthogonal refinement does not work [7]. The main
advantages of this approach is that it generates edges
aligned to the boundary, wherever required. The main
drawback is that the improvement of bad-shaped tetra-
hedra along the boundary/interfaces might require the
insertion of a high number of points [7, 4]. In addi-
tion, the generation of each prismatic element is slow
because it requires a front expansion computation.

In this paper we present an algorithm that takes the
advantages of the mixed element tree and of the normal
offsetting approaches and improves their drawbacks.
First, it includes as valid mesh elements all the convex
co-spherical elements that fulfill the requirements of the
CVM. Cuboids, in particular, are very useful to repre-



sent very thin layers. Tetrahedra are only used where
other element types cannot be used. Second, it uses
the normal offsetting approach to generate coarse ele-
ments edges aligned to the boundary. Coarse elements
are later refined to generate the required layer density
specified together with the front information. We con-
jecture that the refinement of an element involves less,
more robust and simpler operations than the ones in-
volved in the computation of a front expansion. The
main steps of the algorithm are described in detail and
several examples are shown.

2 BASIC CONCEPTS

2.1 NOffset
Normal Offsetting (NOffset) is a particular case of the
advancing front technique [1]. NOffset adds the con-
straint that the expansions must be parallel to the fronts.

In order to compute the expansion of a front face in
a distanceh, the new position of each face point is cal-
culated. The new position of a pointP depends on: (a)
the normal vectorn of the face, (b) a distanceh and (c)
the fact that other geometry faces that shareP can also
be front faces or not.

Let k be the number of front faces that share the point
P, ni be the normal vector of each front face andhi be
the distance of expansion associated to each front face.
The new pointP′ is calculated following one of the next
rules [5]:

1. Only one front face containsP (k=1). ThenP′ =
P+n1h1

2. Two front faces shareP (k=2). Then(P′−P) ·ni =
hi | i = {1,2} and(n1×n2) · (P′−P) = 0.

3. Three front faces shareP (k=3). Then(P′−P) ·ni =
hi | i = {1,2,3}

4. Four or more faces shareP (k > 3). Then, the near-
est point to all intersection planes is computed. Our
work does not consider this case yet.

Figure 1 shows an example where the new positions
of P and Q (P′ and Q′, respectively) are obtained by
applying rule 2.

3 ALGORITHM DESCRIPTION
In order to generate an adequate mixed element mesh,
we have divided this process in the following steps:

• Generation of a coarse anisotropic mixed element
discretization

• Generation of a primitive mesh.

• Fulfilling the required layer density

• Fulfilling the required maximum edge length

n 1 n 2h 2

h 1

P Q

Q ’P ’

Figure 1: The initial edge PQ is expanded in a distance
h2.

• Generation of aCVM-conforming mixed element
mesh

The next subsections describe each of these steps.

3.1 Generating a coarse mixed element
discretization

This first step generates coarse anisotropic elements
aligned to the boundary or interfaces according to the
front information specified by the user. Two inputs are
required: the initial geometry to be meshed and a file
where the user specifies the fronts with the following
information [5]:

• A list of original geometry faces that conform the
front.

• Thickness of first layer (hloc).

• Coarsening factor of the next layers (factor).

• Number of layers (endline).

• Maximum edge length of the generated elements
(mel).

For each front face only one coarse element is gen-
erated. The thickness (hf inal) of each one of these ele-
ments is obtained from the number of layers and coars-
ening factor as follows:

hf inal = hloc·
t−1

∑
i=0

f actori | t = endline

The geometry is specified by a set of polyhedral el-
ements and a subset of the faces that define those ele-
ments conform the fronts. Each face is part of just one
front.

Let us use Figure 2 to illustrate the algorithm to gen-
erate one coarse anisotropic element. Figure 2(a) shows
a truncated prism with two front faces: the top one and
the right one. LetFn be the new face obtained by the
expansion of the top front face. Figure 2(b) shows the



points ofFn. It can be observed that the position of the
points to the right was obtained applying the rule 2 and
the position of the points to the left was obtained ap-
plying rule 1. If each front face point is shared by only
front faces,Fn is already in the right position. But if this
fact does not occur, some points ofFn may need to be
recalculated. Then, the next step is to find the intersec-
tion of Fn with adjacent faces that are not front faces.
This is the case of the left face of the truncated prism.
The new positions of the left points ofFn are shown in
Figure 2(c). OnceFn is well defined (Figure 2(d)), the
truncated prism is divided into two elements: the first
one formed by the top front face, the faceFn, and the
lateral faces that join both faces, and the second one
formed by the rest of the original truncated prism. This
can be observed in Figures 2(e) and 2(f). The process
illustrated in Figure 2 is repeated for each polyhedral
element whose boundary faces must be expanded.

� � � � � � � � � � � �� � � � � � � � � � � �� � � � � � � � � � � �� � � � � � � � � � � �� � � � � � � � � � � �� � � � � � � � � � � �

� � � � � � � � � � � �� � � � � � � � � � � �� � � � � � � � � � � �� � � � � � � � � � � �� � � � � � � � � � � �� � � � � � � � � � � �

� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �

� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �

(a) (b)

� � � � � � � � � � � �� � � � � � � � � � � �� � � � � � � � � � � �� � � � � � � � � � � �� � � � � � � � � � � �� � � � � � � � � � � �� � � � � � � � � � � �

� � � � � � � � � � � �� � � � � � � � � � � �� � � � � � � � � � � �� � � � � � � � � � � �� � � � � � � � � � � �� � � � � � � � � � � �� � � � � � � � � � � �

(c) (d)

� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �

� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �

� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �

� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �

� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �

� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �

� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �

� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �

� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �

� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �

� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �

� � �� � �� � �� � �� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �� � �� � �� � �� � � � � �� � �� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �� � �� � �

� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �

	 	 	 	 	 	 	 	 		 	 	 	 	 	 	 	 		 	 	 	 	 	 	 	 		 	 	 	 	 	 	 	 		 	 	 	 	 	 	 	 		 	 	 	 	 	 	 	 		 	 	 	 	 	 	 	 		 	 	 	 	 	 	 	 		 	 	 	 	 	 	 	 		 	 	 	 	 	 	 	 		 	 	 	 	 	 	 	 		 	 	 	 	 	 	 	 		 	 	 	 	 	 	 	 		 	 	 	 	 	 	 	 	


 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 


� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �

(e) (f)

Figure 2: Building a macro element.

The algorithm 1 implements the designed strategy for
this step. We assume that each front can be expanded
to the maximum distance specified by the user.

Note that when adding a new face it may overlap a
previous one. In that case the overlapped face is split

Input: front specification file and the geometry
for each faceF of each frontdo

let E be the element that containsF
for each face point P (not expanded)do

find which rule applies to P
P’ = NOffset of P using the previous rule

afne = adjacent faces to F that do not expand
move each point P’ to the intersection with afne
join the points P’ to form the new faceFn

find the type ofFn

Fj = lateral faces between F andFn

En = new element defined byF , Fn andFj

find the type ofEn

update elementE by E -En

Output: coarse discretization of the original geome-
try

Algorithm 1: Generating a coarse mesh

into two new ones. If other element shares the same
overlapped face, this element is also updated with the
two new faces.

The previous algorithm shows that the calculation of
the NOffset for each point P is a very expensive com-
putational task. That is why we do it only once at the
generation process of the aligned elements. This strat-
egy avoids applying the previous algorithm each time
the user wants to generate a new parallel layer.

We have left out of the scope the detection and han-
dling of collisions among the fronts that require a global
approach. Figure 3 shows three cases of problematic
collisions and three possible solutions. Figure 3(a)
shows the case where an expanded edge becomes an
inverted edge. This problem can be solved by comput-
ing this edge expansion until the edge length is zero,
and then, as shown in the right picture, the expansion
of the neighboring edges to the target one should con-
tinue. Figure 3(b) shows an edge expansion that goes
out of the original geometry because the current imple-
mentation of the algorithm only cut it by the neighbor-
ing face. Figure 3(c) shows a case where two different
fronts collide. This problem can be solved by testing if
the current expansion crashes a previous one. Although
these problems has been studied, they are not imple-
mented yet.

3.2 Generating a primitive mesh

At this point we have an initial mesh, that might contain
general polyhedra as coarse elements. Since it is diffi-
cult to develop a method that is capable of refining any
type of element, we would like to have a subset of dif-
ferent kind of elements known as primitives elements:
tetrahedra, prism, pyramid, bricks and some truncated
variants of them. For this type of elements we are capa-
ble of defining a refinement strategy.



(a)

(b)

(c)

Figure 3: Collisions between expansions and possible
solutions

The main idea is to split each coarse element in sev-
eral primitive elements and refine those elements when-
ever the density constraints (layer density and maxi-
mum edge length) are not accomplish.

Although this step is not very hard to implement it is
not done yet, because we have several examples where
this is not required. This occurs, for example, when
the coarse elements generated after the first step are
directly primitive elements. The priority was given to
other steps of the algorithm and this was left as part of
the ongoing work.

3.3 Fulfilling the required layer density
The input of this step is the initial discretization com-
posed of coarse anisotropic mixed elements aligned
to boundary/interfaces and of polyhedrical elements
that model the part of the device geometry (cavities)
where elements aligned to boundary/interfaces are not
required. This step can be done independently of the
previous one, i.e., the input could be a primitive coarse
mesh or just a coarse mesh as coming from the first step.

Each coarse element contains the information of the
front by which was generated. Our algorithm splits
each coarse element by planes parallel to the front face
at a distance defined by the expressionhloc∗ f actori |
i = 0, ...,endline−2 from the front face. The first layer
is then located at a distance ofhloc from the front

Input: Coarse discretization of the geometry
for each elementE do

get front data
for (i = 0; i < endline-1; i++)do

for eachFj do
compute the intersection points produced
by expansioni

generate f acei defined by the points of
expansioni
generateelementi

Output:Discretization with the required layer density

Algorithm 2: Fulfilling layer density requirements

face, the second layer is located at a distance ofhloc
+ hloc*factor from the front face, and so on. Note that
the layer obtained withi = endline−1 was already cal-
culated in subsection 3.1 to build the coarse element.

Figure 4 illustrates one refinement of a coarse ele-
ment. Figure 4(a) shows the discretization of the trun-
cated prism shown in Figure 2. The top coarse element
is refined once by intersecting its edges with a plane lo-
cated at the distancehloc from the front face as shown
in Figure 4(b). The coarse element is divided into two
new elements as shown in Figure 4(c) and (d).

� � �� � �� � �� � �� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �� � �� � �� � �� � � � � �� � �� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �� � �� � �� � �� � � � � �� � �� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �� � �� � �

�����

����� 		�



�����

(a) (b)

� � �� � �� � �� � �� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �� � �� � �� � �� � � � � �� � �� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �� � �� � �

� � � � � � � � � � � �� � � � � � � � � � � �� � � � � � � � � � � �� � � � � � � � � � � �� � � � � � � � � � � �� � � � � � � � � � � �� � � � � � � � � � � �

� � � � � � � � � � � �� � � � � � � � � � � �� � � � � � � � � � � �� � � � � � � � � � � �� � � � � � � � � � � �� � � � � � � � � � � �� � � � � � � � � � � �

� � � � � � � � � � � �� � � � � � � � � � � �� � � � � � � � � � � �� � � � � � � � � � � �� � � � � � � � � � � �� � � � � � � � � � � �
� � � � � � � � � � � �� � � � � � � � � � � �� � � � � � � � � � � �� � � � � � � � � � � �� � � � � � � � � � � �� � � � � � � � � � � �

� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �

� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �

� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �

� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �
� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �

� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �

(c) (d)

Figure 4: Refining a front element.

Let E be a coarse element,F be the front face ofE,
Fn be the face ofE obtained by the maximum expan-
sion of F , andFj , the faces ofE generated by joining
F and Fn. The algorithm splits first all theFj of the
element E at the locations defined byhloc∗ f actori |
i = 0, ...,endline−2, and then builds the new elements.
The coarse element is divided in a number of new el-
ements equal to the value ofendlinehence eachFi is
also split in a number of faces equal to this quantity.
The pseudo-code of the refinement process is shown in
algorithm 2.



3.4 Fulfilling the required maximum edge
length

As we mentioned in subsection 3.1 a front specification
has several fields. Two of them are the maximum edge
length (mel) constraint and the list of faces to expand.
Themelfield affects all the elements generated due to
an expansion of the faces defined on this front.

We re-use the previous work (subsection 3.3) to ac-
complish themelconstraint on brick type of elements.
The layering process of a brick generates only new
bricks hence the same algorithm can be applied in other
directions until themelfield is satisfied. Figure 5 shows
how this process is done.

h3

h4

h h

expansion

12

5h4h

12h h

(a) (b)

5h6h

2h

6h 5h

1h

, < mel

(c)

Figure 5: (a) Layer density constraint satisfied (b) mel
satisfied in one direction (b) mel satisfied in the other
direction

The same strategy cannot be applied over other types
of element, at least not in every direction. It is necessary
to specify the way to split the edges and the way to form
the new elements for each primitive type. This task is
part of the ongoing work.

3.5 Generating a cavity mesh
When all the expansions are done, there might remain
a portion of the initial body unmeshed like the example
shown in figure 6(b). When this happens it means that
the user do not need a specific element density in that
zone. Then the final step is to build a conforming mesh.

We have a library capable of building a tetrahedral-
ization of a body. When all the steps are done, the re-
maining parts of the original body are tetrahedralized
and the overall process is finished. Figure 6(f) shows
an example of it.

A better strategy is to implement a mix element cav-
ity generator, to produce a real mixed mesh. We have
already a mesh generator to accomplish this task [4],
however it must be adapted to generate a cavity mesh.

Example 1 (Figure 6) consists of: (a) the initial body,
(b) the generation of the coarse mesh in relation to the

(a) (b)

(c) (d)

(d) (e)

Figure 6: Example 1: mesh generation process for a
simple geometry

given front input, (c) satisfying layer density, (d) satis-
fying the mel attribute in one direction (only for brick
type of elements), (e) satisfying themelattribute in the
other direction and (f) the final mesh including the tetra-
hedralization of the cavity.

4 COMPARISON BETWEEN NOFF-
SET STRATEGIES

There is an implementation of a NOffset strategy with
only the tetrahedral type of elements specified in [5].
The differences between that work and ours are: (a)
we use mixed elements, (b) we apply NOffset only one
time and not every time a new layer is needed and (c)
we refine the coarse elements in order to fulfill the layer
density.

The more important difference between both imple-
mentations is produced in the layering step. The next
table shows the number of operations to calculate each
new point by each strategy in relation to the number of
layersn required by the user.

current implementation 15+6∗n
old implementation 15∗n



The most important result is that we obtain a 60%
reduction in the number of operations in relation to the
old strategy. This is because the refinement process is
much easier than to apply NOffset at each time a new
layer is needed.

Another result that we should obtain in the future is
that the final mesh should need less elements to accom-
plish the same required density. This is because we use
mixed elements. The worst case is to mesh a body with
just tetrahedra so the final number of elements would
be the same in both strategies.

5 EXAMPLE AND ONGOING WORK
The second example is a body used for real semi-
conductor devices analysis called a bipolar transistor.
Figure 7 shows the entire process: (a) the original body,
(b) the coarse mesh, (c) accomplishment of layer den-
sity constraint, (d) generation of a cavity tetrahedraliza-
tion and (e) and (f) the final mesh.

(a) (b)

(c) (d)

(e) (f)

Figure 7: Example 2: mesh generation for a bipolar
transistor

Currently, we are working on: (1) the generation
of a non-conforming tessellation composed of coarse
co-spherical elements such as cuboids, some kinds of

prism and pyramid, and tetrahedra inside the coarse
anisotropic elements before the layer density is gener-
ated, (2) the generation of a final mixed element mesh,
(3) making the mesh Delaunay and (4) improving the
quality of the elements inside the cavity.

6 ACKNOWLEDGMENTS
This work has been supported by Fondecyt ProjectNo

1030672.

REFERENCES
[1] Pascal J. Frey, Houman Borouchaki, and Paul L. George. Delau-

nay tetrahedralization using an advancing front approach. In5th
International Meshing Roundtable, pages 31–46, 1996.

[2] N. Hitschfeld, P. Conti, and W. Fichtner. Mixed Elements Trees:
A Generalization of Modified Octrees for the Generation of
Meshes for the Simulation of Complex 3-D Semiconductor De-
vices. IEEE Trans. on CAD/ICAS, 12:1714–1725, November
1993.

[3] N. Hitschfeld and R. Farías. 1-irregular element tessellation
in mixed element meshes for the control volume discretiza-
tion method. InProceedings of the 5th International Meshing
Roundtable, pages 195–204. Pittsburgh, Pennsylvania, U.S.A.,
1996.

[4] N. Hitschfeld-Kahler. Generation of 3d mixed element meshes
using a flexible refinement approach.Engineering with Comput-
ers, November 2004. Accepted for publication.

[5] Jens Krause.On boundary conforming anisotropic Delaunay
meshes. PhD thesis, ETH Zürich. Series in Microelectronics,
Vol. 115, 2001.

[6] Mark S. Shephard and Marcel K. Georges. Automatic Three
Dimesional Generation by the Finite Octree Technique. InIn-
ternational Journal for Numerical Methods in Engineering, vol-
ume 32, pages 709–749, 1991.

[7] L. Villablanca. Mesh Generation Algorithms for Three-
Dimensional Semiconductor Process Simulation. PhD thesis,
ETH Zürich. Series in Microelectronics, Vol. 97, 2000. Hartung-
Gorre Verlag, Konstanz, Germany.

[8] M.A. Yerry and M.S. Shephard. Automatic Three-dimensional
Mesh Generation by the Modified-Octree Technique.Interna-
tional Journal of Numerical Methods in Engineering, 20:1965–
1990, 1984.


