
Density estimation optimizations for global illumination
R. Garcia, C. Ureña, J. Revelles, M. Lastra, R. Montes

Dpto Lenguajes y Sistemas Informáticos
University of Granada

{ruben,curena,jrevelle,mlastral,rosana}@ugr.es

ABSTRACT

Density estimation on the tangent plane (DETP) is a density estimation technique for global illumination. This technique is
based on Photon Maps and provides increased accuracy when the surfaces are not locally smooth or continuous. However,
the performance of the technique is limited by the large number of ray-disc intersections needed. Some optimizations which
increase the performance of DETP have been devised. The first optimization works by creating a set of candidate rays for
each radiance calculation. The second optimization uses spatial indexing of the discs around the radiance calculation points.
An analytical study of the order of complexity of the algorithms, as well as an heuristic study of the calculation time for the
different values of the parameters involved, has been performed. Some rules are given in order to identify the most suitable
optimization for a given radiance calculation.

Keywords: Global Illumination, Density Estimation, Range Searching.

1 INTRODUCTION

Density estimation performance depends on the rapid
calculation of which rays contribute to a zone in
the scene. Current techniques use space partitioning
schemes to achieve interactive speeds. Most techniques
index the rays in order to calculate density estimation
on each of the points in the scene. Our approach,
which is based on Density Estimation on the Tangent
Plane, uses advanced space partitioning techniques
to index the zones which affect each point where
density estimation is being calculated and obtains
better performance than existing techniques when the
zones are relatively small.

In Density Estimation rays are usually included in a
spatial indexing in order to provide a fast means to lo-
cate rays which affect a given position. Photon Maps
[Jen01] indexes the ray impacts using a kd-tree. Sphere
cache [LURM02] creates a list of spheres which con-
tain rays. Havran et al. use a lazily constructed kd-tree
to index the rays [HBHS05].

In Raytracing (from the eye), most applications
create a spatial indexing for the objects in the scene.
[AK89] and [Hav01] provide a compendium of
techniques.

Our approach consists in applying a spatial indexing
of the discs used in Density Estimation on the Tangent
Plane.

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

Short communications proceedings, ISBN 80-86943-05-4
WSCG’2006, January 30 – February 3, 2006
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

Some work has been done on applying statistical
and analytical methods to calculate the efficiency of
spatial indexing used in global illumination algorithms.
[HPP00] uses statistical methods to study different
spatial indexing techniques for ray tracing and [HP03]
presents a framework which eases the comparison
among different optimization techniques.

The structure of the article is the following: Sec-
tion 2 describes the most common density estimation
techniques, beginning with simple techniques whose
limitations are dealt with by more complex algorithms.
Finally our algorithms are described in some detail.
An optimization of DETP, disc indexing, is introduced.
This technique provides increased performance when
the distance between points in which the radiance is be-
ing calculated is in the order of magnitude of size of
the kernel of the density estimation function. However,
the main advantage of this technique is that all existing
spatial indexing techniques can be trivially modified to
support this approach. Section 3 contains an empirical
comparison of time efficiency between different opti-
mizations of Density Estimation on the Tangent Plane,
using a test scene. Section 4 has a time efficiency study
on the different algorithms. The probabilities of ray ob-
ject intersection are used to calculate the expected time
of the different algorithms, and an order of efficiency
using the O() notation is derived for each algorithm. Fi-
nally the most important conclusions are summarized
and our future work is outlined.

2 DENSITY ESTIMATION METHODS
In order to obtain a radiosity value at a point, an ap-
proximation of the integral of the incident radiance for
all the directions towards that point must be calculated.

The most basic method is described by Arvo in
[Arv86] and Patanaik in [PM92]. It computes the

impacts of the photons in the patches and calculates
the energy density in those patches. Then vertexes are
assigned a radiance which is the average of the patches
to which they belong.

One method which has proven useful to obtain an es-
timate of the integral is the Density Estimation Method,
popularized by [WHSG97] and [Jen96]. This method
consists of three phases. The first phase is based on the
particle model of light, and traces a number of photons
from the light sources. The second phase (Density Esti-
mation proper) estimates the radiance. The third phase,
decimation, simplifies the geometry after illumination
has been calculated. This last phase is dropped often
because it is considered to be outside the scope of den-
sity estimation.

Jensen [Jen96], devised the well known Photon Maps
method. It consists in finding the nearest n ray impacts
(n is predefined) to the point where radiance is being
estimated, adding their energy, and dividing it by the
area of the greatest circle of the sphere which contains
the n impacts.

The most known limitation of Photon Maps, is that
when radiance on a point is calculated, the surface in the
neighbourhood should be relatively planar and large.
[HP02] presents an algorithm which solves this limi-
tation by using geometry information near the point.

Another less known limitation of Photon Maps and
[HP02], mentioned in [LURM02] and [HBHS05], is
that if relatively very small surfaces exist in the scene,
these zones have a comparatively high variance, and
they tend to appear either too bright (in a few cases)
or too dark (which is more frequent) if the number of
photons is not large enough.

2.1 Density Estimation on the Tangent
Plane

A method to avoid the high variance of Photon Maps
mentioned in the previous section consists in storing the
rays in the scene and using a fixed size disc centered in
the point where radiance is being calculated, and con-
tained in the plane tangent to the surface. Rays inter-
secting a given disc are used to calculate the radiance at
the point on which the disc is centered [LURM02]. The
algorithm is called Density Estimation on the Tangent
Plane (DETP). Note that this algorithm keeps track of
the trajectory of the photons (origin, direction and im-
pact point) unlike the original Photon Maps. See Fig-
ure 1. To avoid self-shadowing in concave surfaces, the
second intersection of the ray and the scene is used in-
stead of the first. This method uses discs of fixed radius
[LURM02].

The algorithm has optimum trade-off between accu-
racy and variance when the disc radius (which is a user
defined constant) is in the order of magnitude of half the
distance between irradiance calculations. If disc radius
were smaller, rays intersecting the tangent plane near

Figure 1: Density Estimation on the Tangent Plane

the middle point of two irradiance calculations would
be ignored. If it were larger, intersections would be
used for various calculations, creating artificial smooth-
ing.

2.2 Sphere cache
The limitation of DETP is that the number of disc-ray
intersections is high, therefore increasing the computa-
tion time. To address this, the sphere cache [LURM02]
was developed.

The sphere cache consists in creating a hierarchy of
spheres of decreasing radius and storing the rays which
intersect each sphere in order to decrease the number of
ray-disc intersection tests.

Firstly, a sphere tangent (i.e. circumscribed) to the
bounding box of the scene is built. This sphere inter-
sects all the rays.

Then, as figure 2 shows, spheres of decreasing ra-
dius are built one inside the other (the ratio between
two consecutive spheres is a parameter called Q), until
the radius is just above the disc radius mentioned in the
previous section.

Each sphere has an associated data structure which
contains the rays which the aforementioned sphere in-
tersects. These rays are calculated by the intersection
of the sphere with the rays in the immediately enclos-
ing sphere.

The first point at which radiance is to be calculated is
the center of the spheres of decreasing radius. There-
fore, the first disc is contained in the inner sphere. Ir-
radiance can be calculated by checking which rays in
the inner sphere intersect the disc as well, and adding
their energy. The number of ray-disc intersection tests
is clearly reduced.

For the rest of the points, if the disc centered in the
point is contained in the inner sphere, the disc is in-
tersected against the rays in this sphere. Otherwise, the
sphere is discarded, and the rest of the spheres are tested
in order, until one is found to enclose the disc. Then the
hierarchy of spheres is recalculated, using this point as
center. See Figure 2 right.

Finally, the disc is intersected against the rays in the
innermost sphere, in the same way as when no recalcu-
lation of spheres is needed.

Figure 2: Sphere cache

Lastra et al. [LURM02] demonstrated that the use
of space filling curves to reorder the points increments
spatial coherence, and therefore reduces computation
time. This approach is called point sorting.

2.3 Disc indexing
The disc indexing technique creates a spatial index-
ing of the discs in the scene. This is accomplished by
considering the discs as real geometry, and applying a
space partitioning method to them. The discs are ini-
tialized with a radiance value of zero. Then the rays
traverse the spatial index adding their contribution to
the discs they intersect. See Figure 3. The ray need

Figure 3: Disc indexing

only be followed until the first intersection with the real
scene (or the second if concave surfaces exist). The spa-
tial indexing should be able to store discs and to calcu-
late efficiently all the intersections with a segment (the
endpoints of this segment are the origin of the ray and
the intersection with the real scene). All the published
algorithms meet this criterion.

After radiance has been calculated, each disc con-
tains an estimate of the radiance according to the DETP
scheme. The data structure can be considered a sort
of irradiance cache [WRC88]; therefore new irradiance
values can be estimated using the same interpolation
which that paper proposes.

Some work [HP03] has been done on studying
characteristics of the scene which make some indexing
techniques more efficient than others. Other studies
[HPP00][RLGM03] use a fast simulation with few rays
to choose the most appropriate indexing method. Since
the disc position follows the surface of the objects, this
research is applicable for this technique as well.

This method has higher performance than the orig-
inal sphere cache intersection method when the discs
have a radius which is in the order of magnitude of the
mean distance among the points in which radiance is
being calculated. In other situations, the performance
of the sphere cache is higher. Details are provided in
Section 3.

3 EMPIRICAL COMPARISON
All the algorithms described in the previous sections
have been implemented in our rendering system. The
system calculates irradiance samples on the vertexes of
the scene even though DETP can calculate irradiance
on any surface point.

The first test scene can be seen in Figure 4 (left). It
contains 72 500 triangles, and is called the first tree
scene.

The second tree scene is a different type of tree and
ground, with bigger triangles (Figure 4 (center)).

An axis aligned BSP Tree [SS92] is used in the first
examples of this section, and an Octree is used in the
latter, more complete comparison. These techniques
were chosen because they provided good performance
in the photosimulation phase.

The timing results for the BSP Tree are shown in Fig-
ure 5. In this article, all times are expressed in seconds.

Triangles in the ground have edges whose length is
2 % of the scene’s length and triangles in the tree have
edges of 1 %. It can be seen that for disc sizes under
4 % of the scene, disc indexing is faster than sphere
cache.

For 20 000 photons, the results are only better for
sizes of 1 % and 2 %.

The graph in Figure 5 shows disc indexing’s perfor-
mance decrease as the area of the discs increases. It can
be seen that for the second scene the results are better
using larger discs than in the first, due to the fact that
the triangle size has increased.

In order to make a more complete comparison be-
tween the techniques, a series of experiments were con-
ducted on the first scene. Time was measured for the
different combinations of radius of the DETP disc (be-
tween 1% and 16%), maximum depth of the octree (be-
tween 5 and 8 levels) and number of photons (between
100 and 409 600).

The timing results are linear with respect to the num-
ber of rays for the executions of disc indexing with oc-
trees of different depths. Sphere cache is also linear,
but the time is slightly better than linear when the num-
ber of rays is small. This is due to the rays in the inner
sphere fitting the processor’s cache. According to the
experiments performed, the performance difference of
sphere cache and disc indexing depends basically on the
ratio of the distance between discs (∆x) to the disc ra-
dius (d). If we call r this number, r = ∆x/d, and bearing
in mind that the performance of the algorithms changes

Figure 4: First and second tree scenes, and large atrium

Figure 5: Time in seconds of radiance calculation using
sphere cache and disc indexing for the first scene, as
a function of disc radius

smoothly with this number and therefore the divisions
are not sharp, three regions can be recognized.

• The first corresponds to r ≤ 2, in which disc index-
ing is better than sphere cache. The difference is
more significant as disc radius decreases.

• The second corresponds to r ≥ 6, in which the situ-
ation is the opposite.

• The third is the intermediate situation 2 < r < 6. In
this case, if the rays in the inner sphere fit the pro-
cessor’s cache, sphere cache is faster due to the co-
herence of this algorithm. Otherwise, disc indexing
is faster, because the performance per ray of sphere
cache lowers.

Figure 6 gives the performance of the techniques for
each case. In a third, more complex scene, which can
be seen in Figure 4 (right), disc indexing obtained re-
ductions in time of up to 50 %. In this scene, the mean
distance between points is 0.013̂ and the disc radius is
0.01; ∆x/d=1.3̂, therefore it belongs to the first zone.

Summarizing, it is worth noting that the performance
of disc indexing decreases faster than that of sphere

Figure 6: Zones in which each technique is optimal.
Time as a function of r = ∆x/d

cache as disc size grows and that the memory required
by disc indexing grows extremely fast as disc size
grows, making disc indexing unusable for large discs.
For very small radii, disc indexing at maximum depth
is always better than sphere cache. It should be noted
as well that the spatial partitioning should end when
the size of the voxel is similar to that of the disc radius.

4 THEORETICAL STUDY
These algorithms have the same underlying Density Es-
timation Technique (DETP). Therefore, for any given
scene and set of rays, they will calculate the same so-
lution (albeit using different computation time). In this
case, the efficiency of the algorithms can be compared
using computation time as a function of the size of the
scene (that is, the number of discs and their size) and
the number of rays.

Of the three algorithms (raw DETP, sphere cache
with point sorting and disc indexing), only sphere cache
with point sorting and disc indexing are discussed, since
they have the highest performance. Notation is sum-

Ray related quantities
R Set of Rays
nR = #R Number of rays
Sphere related quantities
S = {Si} Set of Spheres
ri Radius of Si

ri = ri−1Q = r0Qi

Vi = 4
3 πr3

i Volume of Si

mi Number of recalculations of sphere
Si with point sorting.

k Number of spheres
Time related quantities
u Ray Disc intersection time
t Ray Sphere intersection time
TR Time to recalculate the spheres with

point sorting
TI Time to intersect the disc against the

inner sphere
Other symbols
0 < Q < 1 Ratio of the radii of two spheres
P = {Pi} Set of Irradiance samples
nP = #P Number of Irradiance samples
d Disc Radius

Table 1: Symbols used in this article

marized in Table 1. The efficiency of raw DETP is
clearly O(nRnP). For sphere cache with no point sort-
ing, the points at which the radiance is calculated are
assumed to follow a uniform distribution. This prevents
sphere cache from obtaining better performance. It can
be shown that the algorithm is O(nRnP), with a hidden
constant slightly over 1. The efficiency of the other two
algorithms is discussed in detail in the following sec-
tions.

An asymptotical analysis of the performance of the
algorithms in the average case is useful to check scala-
bility. Scene complexity (here measured as the number
of radiance calculations) and illumination complexity
(number of rays) are used as the variables for the study.

To calculate the expected time for the algorithms
mentioned in the previous sections we need an estima-
tion of the number of ray-disc intersections, which de-
pend on the distribution of rays. We will suppose that
the rays are uniformly distributed in space. This as-
sumption is essential to obtain mathematical formulae
for intersection probability. It is a common assumption
[ABCC02, ABCC03], also implicitly used in [RKJ96]
which works well in practice although it does not cor-
respond exactly to reality.

4.1 Mean time using sphere cache with
point sorting

The probability that a ray (with uniform distribution)
which intersects a convex body, intersects a second con-
vex body located inside the first can be derived from re-

sults of integral geometry from Santalo [San02], and is
the ratio of the areas of the bodies.

In the case of sphere cache, if the distribution of the
rays is uniform, the number of rays which intersect
the inner sphere is independent of the location of the
sphere, and is proportional to the quotient of the square
of the radii of the spheres. The number of rays which
intersect Si is then

ni = nR
r2

i

r2
0

= nRQ2i (1)

The cost of recalculating a sphere Si once is product
of the number of rays in the surrounding sphere multi-
plied by the ray-sphere intersection test:

ti = tni−1 (2)

where t is the ray sphere intersection time.
Now we need to know how many spheres there are.

Spheres are created with decreasing radius, until the ra-
dius of the sphere is just above the disc radius (i.e. the
next sphere would have a smaller radius than the disc).

Let k be the number of nested spheres in the sphere
list. To calculate k, we will use d as the disc radius.
Recall (Section 2.2) that the quotient between the radii
of two adjacent spheres is Q, and that spheres are built
until their radius is just above the disc radius d. The
value of k should comply with the following equations:

rk = Qkr0 ≥ d ; rk+1 < d (3)

Therefore k can be calculated as:

k =

⌊

logQ

(

d
r0

)⌋

(4)

The cost of intersecting the disc with the rays in the
inner sphere, TI , is:

TI = u nk nP = u nR Q2k nP = (5)

u nP nR Q
2∗blogQ(d

r0
)c

. u nP nR
d2

r2
0

(6)

Since sphere cache is not useful unless the locations
of the points in which the radiance is calculated are co-
herent, a space filling curve is used to sort the points.
The z-order or Lebesgue curve is used in this algorithm.

The sorting algorithm divides the cube in 248 cubes.
Each small cube has an X, Y and Z coordinate with 16
bits each, ranging from 0 to 16383. These 3 coordinates
are concatenated to form a 48-bit number. A function
then transforms this number by reordering the bits in
the following way: the least significant bits of each co-
ordinate correspond to the three least significant bits of
the new one, and this process is repeated until the most
significant bit is reached. An example with 3 bits / co-
ordinate would be:

• Original: (x2x1x0 | y2y1y0 | z2z1z0)

• Reordered: (x2y2z2 | x1y1z1 | x0y0z0)

Now the cubes are visited from 0 to 248 −1. Chang-
ing the least three significant bits means moving the
point to a distance whose length does not exceed that
of the diagonal of the cubes, 2∗

√
3∗2−16, and it is also

not less than that of its side, 2 ∗ 2−16. A sphere with a
radius in that order of magnitude would be recalculated
at most 248 times. It can be seen that a sphere of radius
2−mr0 is recalculated 23m times. Therefore, since

ri = Qir0 = 2−mr0 (7)

m = − log2 Qi (8)

sphere Si is recalculated mi = 23∗(− log2 Qi) = Q−3i times.
This is the maximum number of times the sphere is

rebuilt, and is independent of the number of points at
which the density estimation is calculated. There is an
independent limit on the number of times which it can
be rebuilt, given by the number of irradiance samples.
Sphere Si is recalculated at most nP times. The total
recalculation cost in this case is

TR =
k

∑
i=1

min(nP,mi)ti (9)

and the total cost is

T = TR +TI (10)

T can be used to provide clues about what value for
Q should be used. See Figure 7. The graph in the
left shows the cost of recalculating spheres per ray (i.e.
1 would mean nR intersections; equivalent to no opti-
mization), as a function of the disc radius and Q. A
small Q creates few spheres, so the time is small. The
disc radius influences the length of the sphere list, but
the smallest spheres have very few rays and therefore
add little to the time, so the differences in time are
small.

Figure 7 (center) provides a graph of the time it takes
to intersect the disc to the rays in the inner sphere. This
time only depends on the radius of the inner sphere,
which depends on Q: the radius is rk such that rk =
r0 Qk ≥ d and rk+1 < d. This graph shows that there is
an infinite number of optimum Q; but if numeric insta-
bility makes obtaining the minimum values difficult, Q
should be as near as possible to one.

A high Q provides inner spheres which wrap tightly
around the discs. On the other hand, the number of
recalculations is high. A low Q provides loose fits
to the discs; therefore there will be many rays in the
inner sphere and the calculation time will be higher.
The spikes in the graph correspond to the inner spheres
which wrap perfectly around the discs, i.e., d = rk. The
local minima of this function have all the same value,
which is the time to intersect the rays in a sphere of
radius d: u nR d2/r2

0.
Figure 7 (right) provides the sum of the two previous

graphs. It forms a U-shaped function, as was expected

of the two composing graphs, and shows how changing
the disc radius makes the optimum value of Q change
smoothly to create an inner sphere which encases the
disc. When Q becomes near to 1, the number of spheres
increases exponentially and the time can be seen to di-
verge in Q = 1, which would mean an infinite number
of spheres.

The figures show values between 0.6-0.7 as being a
good compromise, because it is below 1 on Figure 7
(left) and near the point where the gradient becomes im-
portant, and the value in the graph of Figure 7 (center)
is quite low also. The result is coherent with practical
experiments [Las04].

It was seen above that for a sufficiently large nP, the
number of recalculations is fixed and the time depends
only on nR.

The time to intersect the disc to the rays in the in-
ner sphere, on the other hand, does depend both on nR

and nP and is therefore O(nR nP). The hidden constant,
d2/r2

0, can, in practice, make this algorithm quite effi-
cient.

If the disc radius is approximately equal to distance
between irradiance samples, which would be desirable
according to Section 2.1, the efficiency of the algorithm
can be proven to increase.

The supposition that the disc radius is approximately
equal to the distance between samples will therefore be
added.

For small nP (so the limit on recalculations is not
reached), since the disc radius is approximately the dis-
tance between irradiance samples, then k is approxi-
mately:

k ≈ logQ

(

1
3
√

nP

)

= logQ−1
3
√

nP (11)

Now, to calculate the order of efficiency of the algo-
rithm, the value of some important quantities is shown,
and finally the time of the whole algorithm is expanded
and the efficiency is calculated. The value of ni, number
of rays in sphere i is

ni = nRQ2i (12)

The time to recalculate sphere i is

ti = t nR Q2i−2 (13)

The number of recalculations of sphere i:

mi = Q−3i (14)

The time to recalculate sphere i in the whole algorithm
is

mi ti = t nR Q−i−2 (15)

Finally, the time of the whole algorithm is then

k

∑
i=1

mi ti =
tnR

Q2

(

3
√

nP −1
1−Q

)

= O(nR
3
√

nP) (16)

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Q

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Time

Figure 7: Left: Number of recalculations of sphere cache as a function of Q and Disc Radius. Center: Time to
intersect the disc to the rays in the inner sphere, as a function of Q. Right: Recalculation time of sphere cache as
a function of Q and Disc Radius.

4.2 Disc indexing
The disc diameter provides a useful minimum size for
the voxels in the disc indexing technique. Dividing a
voxel of this size creates voxels in which most of the
discs belong to all child voxels. This makes the inter-
section time with the new voxels higher than the origi-
nal combined voxel.

To illustrate the problem, imagine we were to calcu-
late the radiance on each of the vertexes of the mesh in
Figure 8. Remember though that DETP is independent
of geometry. There is a disc centered in each of the ver-
texes of the scene. As the disc size grows, it becomes
apparent that space partitioning will not help.

 8%4%1% 2%

Figure 8: Discs in a typical mesh

Since disc indexing can be used with different index-
ing techniques, the order of complexity depends on the
technique used. However, [RKJ96] proves that the or-
der of complexity of a grid, a binary tree and an octree is
the cubic root of the number of cells for the three tech-
niques. [SKM98] studies the average complexity for
ray shooting for other techniques. Evidence suggests
that most indexing techniques have the same order of
efficiency in the average case. We will use an octree as
a indexing technique in our analysis due to its perfor-
mance in generic scenes.

The relative size of the side of a voxel at a depth k
with respect to the side of the whole scene is 21−k. If we
set the disc diameter as the side of the smallest voxel,
we get

21−k = 2 d (17)

k = b− log2 dc (18)

There are therefore 8k voxels. A uniform distribution
of the irradiance samples mean there are nP/8k samples
per voxel, and therefore, the intersection time between
one ray and one voxel is nP u/8k. Since each ray tra-
verses a line of these voxels (2k voxels), and the origin
must be found by traversing the tree (k steps) the mean
time for this method is

T = u k nR nP/4k (19)

If we make the voxel size similar to the disc size, k =
O(log2

3
√

nP),. The algorithm is then O(nR 3
√

nP lognP).
If we use a balanced space partitioning structure, ac-

cording to [ABCC02], traversing to a neighbor node
can be done in O(1). Then the performance of disc in-
dexing becomes O(nR 3

√
nP).

This efficiency is higher than that of the sphere cache,
which is O(nRnP), for a large nP. For small nP, in which
the distance between irradiance samples is similar to the
disc radius, the efficiency is the same as that of sphere
cache.

5 CONCLUSIONS
According to the empirical study of the techniques, the
ratio of the mean distance between irradiance samples
and the disc radius defines zones in which the algo-
rithms are adequate. Disc indexing is optimal if this
ratio is smaller than 2; sphere cache is optimal if this
ratio is larger than 6. In the intermediate zone, sphere
cache is better if the rays in the inner sphere fit the pro-
cessor’s cache. A universal optimal algorithm would
calculate this ratio and the mean number of rays in the
inner sphere and would select the best technique with
this data.

The results of the theoretical study are the proof that
basic DETP and sphere cache are O(nR nP), and that
sphere cache with point sorting, although O(nR nP), has
a hidden constant proportional to d2/r2

0, which is the
fraction of rays in a sphere whose radius is that of the
discs. Since this value is quite small, the algorithm is
quite fast in practice. For small scenes, this last algo-
rithm was also proven to be O(nR 3

√
nP). It was also

proven that the radius factor should be between 0.6 and
0.7.

Disc indexing is O(nR 3
√

nP lognP) for unbalanced
trees and O(nR 3

√
nP) for balanced trees.

6 FUTURE WORK
We plan to use the BART [LAM00] benchmarking in
the empirical study to investigate the border between
the different useful zones of each algorithm. Some
more studies should be done on other algorithms re-
lated to Density Estimation on the Tangent Plane, such
as Variable Radius [Las04], which allows the size of the
discs to change on account of the number of rays in the
vicinity (like Photon Maps). In order to extend this ap-
proach to be able to compare it to different Density Esti-
mation techniques (such as Photon Maps, or Ray Maps
for Global Illumination [HBHS05] by Havran et al.), a
study of variance and error should be added, and the al-
gorithms compared by examining the error or variance
as a function of computing time.

The framework presented in this article should be
used as a basis for the automatic estimation of parame-
ters in DETP. Finally more realistic models of the dis-
tribution of the irradiance samples and the rays should
be studied.

7 ACKNOWLEDGEMENTS
This work has been supported by the research project
coded TIN2004-07672-C03-02 (Spanish Commission
for Science and Technology). We would like to thank
Miguel Vega for his help, and anonymous reviewers for
their comments.

REFERENCES
[ABCC02] B. Aronov, H. Brönnimann, A. Y. Chang, and Y. Chi-

ang. Cost prediction for ray shooting. In SCG ’02, pages
293–302. ACM Press, 2002.

[ABCC03] B. Aronov, H. Brönnimann, A. Y. Chang, and Y. Chi-
ang. Cost-driven octree construction schemes: An ex-
perimental study. In SCG ’03, pages 227–236. ACM
Press, 2003.

[AK89] J. Arvo and D. Kirk. A Survey of Acceleration Tech-
niques, chapter 6, pages 201–262. Academic Press, San
Diego, 1989.

[Arv86] James R. Arvo. Backward Ray Tracing. In ACM SIG-
GRAPH ’86 Course Notes - Developments in Ray Trac-
ing, volume 12, pages 259–263, 1986.

[Hav01] V. Havran. Heuristic Ray Shooting Algorithms. Ph.d.
thesis, Department of Computer Science and Engineer-
ing, Czech Technical University in Prague, 2001.

[HBHS05] V. Havran, J. Bittner, R. Herzog, and H.-P. Seidel. Ray
maps for global illumination. 16th Eurographics Sym-
posium on Rendering, 2005.

[HP02] Heinrich Hey and Werner Purgathofer. Advanced ra-
diance estimation for photon map global illumination.
Computer Graphics Forum, 21(3):541–546, 2002.

[HP03] V. Havran and W. Purgathofer. On comparing ray shoot-
ing algorithms. Computer and Graphics, 27, Issue
4:593–604, August 2003.

[HPP00] V. Havran, J. Přikryl, and W. Purgathofer. Statistical
comparison of ray-shooting efficiency schemes. Tech-
nical Report TR-186-2-00-14, Institute of Computer

Graphics and Algorithms, Vienna University of Tech-
nology, may 2000.

[Jen96] H.W. Jensen. Global illumination using photon maps.
In Rendering Techniques’96, pages 21–30. Springer-
Verlag, 1996.

[Jen01] Henrik Wann Jensen. Realistic Image Synthesis using
Phothon Mapping. AK Peters, 2001.

[LAM00] J. Lext, U. Assarsson, and T. Moeller. Bart: A bench-
mark for animated ray tracing. Technical report, Dept.
of Computer Engineering, Chalmers University of Tech-
nology, Goeteborg, 2000.

[Las04] Miguel Lastra Leidinger. Stochastic Rendering Tech-
niques for Complex Environments. PhD thesis, Univer-
sity of Granada, 2004.

[LURM02] M. Lastra, C. Ureña, J. Revelles, and R. Montes. A
particle-path based method for Monte-Carlo density es-
timation. Poster at: 13th EUROGRAPHICS Workshop
on Rendering, 2002.

[PM92] S.N. Pattanaik and S.P. Mudur. Computation of global
illumination by Monte Carlo simulation of the particle
model of light. Proceedings of 3rd Eurographics Ren-
dering Workshop, Bristol, 1992.

[RKJ96] Erik Reinhard, Arjan J. F. Kok, and Frederik W. Jansen.
Cost prediction in ray tracing. In Rendering Techniques
’96, pages 41–50. Springer-Verlag, June 1996.

[RLGM03] J. Revelles, M. Lastra, R.J. García, and R. Montes. A
formal framework approach for ray-scene intersection
test improvement. In WSCG’2003, 2003.

[San02] L. Santalo. Integral Geometry and Geometric Proba-
bility. Cambridge University Press, 2 edition, October
2002.

[SKM98] L. Szirmay-Kalos and G. Márton. Worst-case versus
average case complexity of ray-shooting. Computing,
61(2):103–131, 1998.

[SS92] K. Sung and P. Shirley. Ray tracing with the BSP tree. In
David Kirk, editor, Graphics Gems III, pages 271–274.
Academic Press, 1992.

[WHSG97] B. Walter, P. M. Hubbard, P. Shirley, and D. P. Green-
berg. Global illumination using local linear density es-
timation. ACM Transactions on Graphics, 16(3):217–
259, July 1997.

[WRC88] Gregory J. Ward, Francis M. Rubinstein, and Robert D.
Clear. A ray tracing solution for diffuse interreflec-
tion. In SIGGRAPH ’88: Proceedings of the 15th an-
nual conference on Computer graphics and interactive
techniques, pages 85–92, New York, NY, USA, 1988.
ACM Press.

