
Soft Edges and Burning Things: Enhanced Real-Time
Rendering of Particle Systems

Tommi Ilmonen Tapio Takala Juha Laitinen
Helsinki Univ. of Technology Helsinki Univ. of Technology Helsinki Univ. of Technology

Telecommunications Software Telecommunications Software Telecommunications Software
and Multimedia Laboratory and Multimedia Laboratory and Multimedia Laboratory

Tommi.Ilmonen@hut.fi tta@cs.hut.fi Juha.Laitinen@tml.hut.fi

ABSTRACT

This paper describes two methods that can be used to enhance the looks of particle systems. These methods fit
applications that use modern graphics hardware for rendering. The first method removes clipping artifacts. These
artifacts often appear when a fuzzy particle texture intersects solid geometry, resulting in a visible, undesireable
edge in the rendered graphics. This problem can be overcome by softening the edges with proper shading algo-
rithms.
The second method of this paper presents the use of a five-component color model. The parameters of the model
are: red, green, blue, alpha and burn. The first four color components have their usual meaning while the ”burn”
parameter is used to control the additivity of the color. This color model allows particles’ alpha blending to range
from pure additive (useful for rendering flames) to normal smoke-style rendering. This method can be implemented
on most graphics hardware, even without shader support.

Keywords
Particle systems, OpenGL, Shaders

1 INTRODUCTION

Particle systems are typically used to render gaseous
phenomena. In real-time applications the particles are
rendered as polygons that have a fuzzy texture map.
This paper presents two methods that can be used to
make such rendering more attractive. Part of these ef-
fects can be implemented with any graphics process-
ing unit (GPU) while some methods need shader su-
port in the GPU.
According to our industry contacts these methods are
known in the industry and among particle system de-
velopers, but there are few if any publications about
them. This article is intended to give detailed infor-
mation on how these techniques can be integrated into
real-world applications.

This paper is organized as follows. First we cover
available publications on particle systems, then how to
render fuzzy particles that intersect solid objects and
finally how to achieve a useful blending mode for ex-
plosions and fire.

2 BACKGROUND

Particle systems were first published by Reeves
[Ree83]. Sims has later described in more detail
how to implement the dynamics of particle systems
[Sim90]. The author introduced the second order par-
ticle system that included moving force fields [Ilm03].
Few publications address the rendering of particle sys-
tems. Reeves has published methods to optimize off-
line rendering of complex particle systems [Ree85].
Some particle system papers also discuss the rendering
of particles, e.g. Burg’s introductory article on particle
systems gives an excellent overview on how to ren-
der particles on graphics hardware [Bur00] (see also
McAllister’s article on the same topic [McA00]). Burg
covers basic topics, such as texturing, alpha blending
and texture animation that are widely used throughout
the industry.



Figure 1: A fire effect. Individual fire and smoke par-
ticles are visible.

Viewer

Solid object

z

zb

size

Visible edge

Texture billboard

Particle volume

Figure 2: A particle is clipped against a solid object.
The volumetric particle is rendered as a single textured
billboard.

3 SOFT EDGES

In this section we deal with particles that represent
fuzzy objects. Typically such particles are rendered
as texture-mapped polygons. In real-time applications
the particles are usually so large that individual ones
can be identified. This is the case in for example fig-
ure 1.In these cases one can often see a sharp edge
where the particle texture is clipped against the rigid
object.
Figure 2 shows an overview of the situation. The par-
ticle is a volumetric, fuzzy object that is shown as a
billboard to the user. Where the billboard intersects a
solid object a visible edge can be seen. This rendering
artifact usually makes a particle system look much less
volumetric than intended. It also reveals the volumet-
ric particles are in fact 2D textures. One can counter
this problem by using a greater number of smaller par-
ticles. Unfortunately this approach is computationally
heavy and seldom fit for real-time applications.
A more robust method to make clipping unobtrusive
is to hide the edges with progressive alpha-blending.
For example in figure 2 the lower part of the particle

billboard should have an alpha value that goes linearly
from one to zero. This can be done with the follow-
ing pixel shader pseudo-code. In this example pcol is
the user-defined color of the particle, tcol the color of
the billboard texture at the pixel location, z the depth
value of the billboard at the pixel locations, zb the
depth in frame buffer, size represents the diameter of
the particle volume, ascale is the scaling coefficient
used to make pixels more transparent when z is close
to zb and final_color is the color of the billboard at
the pixel location (see figure 2). All colors have three
color components and an alpha value that ranges from
zero (fully transparent) to one (fully opaque).

vector4 pcol = particle_color();
vector4 tcol = texture_color();
float z = pixel_depth();
float zb = frame_buf_depth();
float size = particle_size();
float ascale = (zb - z) / size;
if(ascale > 1)
ascale = 1;

else if(ascale < 0)
ascale = 0;

vector4 final_color =
pcol * tcol;

final_color.alpha *= ascale;

The above shader cannot be implemented directly in
current PC hardware since in the modern GPU the
pixel shaders cannot read depth values from the frame
buffer. To counter this problem we use multi-pass ren-
dering:

1. Render all solid objects in the scene.

2. Copy the depth values from the frame buffer to
a depth texture.

3. Render particles back to front with a pixel
shader that reads the depth values from the depth
texture. The shader lowers the fragment’s alpha
as necessary value to achieve soft clipping.

We have done this with a pixel shader, using the
OpenGL shading language (GLSL) [Ros04]. Since
soft clipping requires more computation it is inevitably
slower than normal rendering. The performance im-
pact depends on multiple factors — the display reso-
lution, the number of particles and their size. Thus any
benchmark results are application-specific. In our tests
the frame rates dropped typically to one third when
soft edges were used with a heavy particle system (as
in figures 3 and 5). More optimized shader implemen-
tation might improve this situation. The test computer
had a 1,5 GHz AMD Athlon processor and an NVidia
5700 graphics card.



(a) Particles rendered with the default OpenGL pipeline. The
intersection edges between particles and the brick wall are
clearly visible (80 fps).

(b) Particles rendered with custom shading for soft clipping
(28 fps).

Figure 3: Hard and soft clipping. The scene and particle locations are identical in both pictures. The frame rate of
the soft clipping rendering is significantly lower.

4 ENHANCED BLENDING

The semi-transparent particle billboards need to be
blended into the background. In modern GPUs the
blending is controlled by blending functions that are a
non-programmable part of the graphics pipeline. The
two most common blend functions are additive blend-
ing and transparency blending. These functions are
defined by the following formulas, where the bg is the
RGB (red/green/blue) color of the frame buffer, fg is
the RGB color of the particle, alpha represents the
transparency of the particle (set by the user) and c is
the final color of the frame buffer after updating its
color value.
Additive blending adds luminance to the frame buffer:

c = fg ∗ alpha + bg (1)

Transparency blending changes the colors towards the
particle color:

c = fg ∗ alpha + bg ∗ (1 − alpha) (2)

The effect of these blending modes can be seen in fig-
ure 4. Both blend functions are useful in particle sys-
tems — the additive blend mode is widely used in fire
effects and the transparency blending is useful for ren-
dering smoke or fog.
We have developed a new blending function that can
be used to create both additive and transparency blend-
ing. This is called ”controlled additive” blending and
it can be used to interpolate smoothly between the ad-
ditive and the transparency functions.

Figure 4: Different blending modes, above trans-
parency blending of several red squares and below ad-
ditive blending with same colors and geometry.

Interpolation of these two blending modes offers inter-
esting new possibilites. The first is that one can make
smooth transitions between additive and transparency
blending. For example in the case of fire we can create
particles that begin as additive fire particles, but later
become transparency particles.
The second use of the controlled additive function is
to create particle colors that are slightly additive. That
is, large collection of slightly additive particles looks



Figure 5: An explosion rendered with additive blending (top), normal transparency blending (middle) and con-
trolled additive blending (bottom).

brighter than any single particle, but they will not re-
sult in white areas like with plain additive blending.
The controlled additivity is defined by the following
blend function

c = fg ∗ alpha + bg ∗ (1− alpha ∗ (1− burn)) (3)

Here the burn variable is used to control the additivity
of the function. The variable ranges from zero (trans-
parency blending) to one (additive blending). This
gives us a five-component color model composed of
red, green, blue, alpha and burn values. Since graph-
ics hardware only deals with four-component colors
and fixed blending functions we need special meth-
ods to make the hardware render the particles with this
model.
First of all we set the GPU’s blending unit to use the
following blend equation:

c = fgc + bg ∗ (1 − alphac) (4)

This equation gives the correct color values when

fgc = fg ∗ alpha (5)

and

alphac = alpha ∗ (1 − burn) (6)

Equations 5 and 6 need to be evaluated outside the
blend unit due to hardware limitations. They can be
easily calculated either in a vertex shader or in the ap-
plication code. The first alternative may be slightly
faster, but it also requires hardware with shader sup-
port.
The textures that are used in the rendering need
special processing. In general the particle billboard
texture is represented as an RGBA texture. Opening
equation 6 we see that the alpha value of the texture
has an important role in the calculations:

fg = ucol ∗ tcol ∗ talpha (7)

thus, combining equations 5 and 7:

fgc = ucol ∗ tcol ∗ talpha ∗ alpha (8)

In these equations ucol is the RGB color set by the
user, tcol is the RGB color in the texture and talpha



is the alpha value of the texture. The default OpenGL
graphics pipeline cannot calculate equation 8 directly.
The evaluation can be done either in the pixel shader
or by pre-processing the texture. We have used the
latter approach since it does not require programmable
pixel shaders and the work-load of the pixel units is
lower, resulting in potentially better performance. To
do so we pre-multiply the alpha values in the particle
texture to the RGB values. Thus

fgc = ucol ∗ tcola ∗ alpha (9)

where

tcola = tcol ∗ talpha (10)

To clarify the use of the above equations we present a
pseudo-code that calculates the colors that are trans-
mitted to the graphics hardware. In the following
code rgb is the RGB color of particle, alpha repre-
sents opacity, burn controls additivity, fgc is the RGB
color sent to the GPU and alphac is alpha value sent to
the GPU. All parameters are assumed be in the range
[0-1]. If the particle has a texture map, then the al-
pha value of the texture should be pre-multiplied to its
RGB values.

vector3 rgb = get_rgb();
float alpha = get_alpha();
float burn = get_burn();
vector3 fgc = rgb * alpha;
float alphac = alpha * (1-burn);

If one wants to use these parameters with OpenGL,
then the blending mode needs to be set to match equa-
tion 7 with the following function calls:

glBlendEquation(GL_FUNC_ADD);
glBlendFunc(GL_ONE,
GL_ONE_MINUS_SRC_ALPHA);

Once this is done the particle color can be sent to the
graphics card as a normal RGBA color:

glColor3f(fgc[0], fgc[1],
fgc[2], alphac);

So far we have assumed that particle bitmap is a four-
component RGBA texture. In this case the burn pa-
rameter is assumed to be constant for the whole bill-
board. With this parameterization the addition of the
burn parameter causes minimal performance impact.
The number of texture lookups is the same as for the
more traditional blending modes. In fact the pixel units
of the GPU are not aware of the blending, since all of
the work is done in the blend unit. The only extra cal-
culations are the calculation of proper color and alpha

parameters that need to be performed once for each
particle. We have been unable to measure any perfor-
mance loss due to these calculations — compared to
all other work required for particle system dynemics
and redering these color calculations are insignificant.
We have done this calculation in the application code,
but it could be moved to the vertex shader for poten-
tially better performance.
It is also possible to add the burn parameter to the tex-
ture, creating a five-component texture. This might
be useful for situations where one does not want the
same burn value to apply to the whole particle. This
would probably call for a separate texture with only
the burn values in it as graphics hardware cannot deal
with more than four color components per texture. A
pixel shader would be needed to carry out the calcula-
tions. The additional texture lookups would also lower
the rendering speed.

5 CONCLUSIONS

This paper has presented two techniques for rendering
particle systems on modern graphics hardware. The
soft-edge rendering method removes artifacts that ap-
pear when particles are rendered close to solid objects.
This results in greater flexibility in application pro-
gramming as developers do not need to hide or min-
imize the artifacts.
The controlled additive blending adds a new parameter
to color definitions. The new burn parameter is useful
when one needs to adjust the additivity of a particle.
This parameter can be used on all GPUs that support
the selection of blend equations with minimal perfor-
mance impact.
Both presented methods are easy to implement and
they can be used together. While these methods have
been presented in the domain of rendering particle sys-
tems they may be useful in other kinds of applications
where a particular special effect is desired.

6 ACKNOWLEDGEMENTS

This work has been funded by the Academy of Fin-
land.

References

[Bur00] van der Burg, J. Building an Advanced Par-
ticle System. In Game Developer, March
2000



[Ilm03] Ilmonen, T. and Kontkanen, J. The Second
Order Particle System, In The Journal of
WSCG, volume 11(2), pages 240-247, 2003

[McA00] McAllister, D. The Design of an API for
Particle Systems. Technical report, Univer-
sity of North Carolina, January 2000

[Ree83] Reeves, W. Particle Systems — a Technique
for Modeling a Class of Fuzzy Objects. In
Proceedings of the 10th annual conference
on Computer graphics and interactive tech-
niques, pages 359–375, 1983

[Ree85] Reeves, W. and Blau, R. Approximate and
probabilistic algorithms for shading and
rendering structured particle systems. In
Proceedings of the 12th annual conference
on Computer graphics and interactive tech-
niques, pages 313–322, 1985

[Ros04] Rost, R. OpenGL(R) Shading Language,
Addison-Wesley, 2004

[Sim90] Sims, K. Particle animation and rendering
using data parallel computation. In SIG-
GRAPH ’90: Proceedings of the 17th
annual conference on Computer graphics
and interactive techniques, pages 405–413,
1990


