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ABSTRACT

Textiles usually exhibit much larger resistance to in-plane deformation than to bending deformation.
However, the latter essentially determines the formation of folds and wrinkles which in turn govern the
overall appearance of the cloth. The resulting numerical problem is inherently stiff and hence susceptible to
instability. This overview is devoted to a closer investigation of bending deformation. Approaches known
from the field of engineering can describe the problem of bending in a physically accurate way. However,
the nature of the governing equations is such that they cannot be discretised with the standard methods
currently used in cloth simulation. Since curvature is a central variable, we introduce related concepts from
differential geometry and describe the transition to the discrete setting. Different approaches are discussed
and demands on an approach for correctly modelling the bending behaviour of cloth are formulated.

Keywords cloth simulation, physically based simulation, bending

1 Introduction

The most salient characteristic of thin flexible ob-
jects is their bending behaviour. Typically, objects
from this category show a relatively large resistance
to in-plane deformations such as stretching and shear-
ing while the forces due to out-of-plane deformation,
i.e. bending, are small. However, this does not mean
that the treatment of bending is less important. On
the contrary, due to these different reactions to defor-
mation the characteristic folds and wrinkles that we
associate with garments are actually formed. Espe-
cially in the case of compressive in-plane deformation,
i.e. when buckling occurs, the bending behaviour is
crucial. Despite its importance, bending has rather
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been neglected in the physically based simulation of
clothes. In contrast, for modelling the in-plane prop-
erties of fabrics sophisticated and accurate models are
used [BHW94, EWS96]. We think that this discrep-
ancy should be addressed. While this paper provides
an introduction to the problem of bending for thin
flexible objects, we report on a related implemen-
tation and give examples of cloth for illustration in
[TWS05].

This overview starts with a look at how existing
techniques for cloth simulation deal with bending, in-
cluding the way curvature is approximated. Subse-
quently, approaches to bending dominated problems
from the field of engineering will be examined more
closely. These methods allow a description in a phys-
ically accurate way. At the same time however, the
governing equations cannot be discretised with the
standard approaches currently used in cloth simu-
lation. We will therefore consider alternative ways.
Since curvature is a central variable, we will briefly
review some related concepts from differential geom-
etry. The next section shows how a general transi-
tion to the discrete setting can be made. This work
concludes with a discussion of the presented material
and an outlook on how a physically accurate model
for bending can be devised.

2 Bending

This section starts with an overview of bending mod-
els used in physically based simulation. Although the



exact form depends on the actual method, the general
steps to set up a physically based model for elastic de-
formations on a discrete representation of an object
can be summarised as follows: first, an elastic energy
E resulting from deformation has to be determined.
This involves a material law relating strain to stress.
In the case of bending energy, this strain is a change
in curvature. By differentiation of E with respect to
nodal positions, the force acting on a vertex is ob-
tained. Lastly, if an implicit integration scheme is
used for stepping forward the system over time, the
Jacobian of the nodal forces has to be computed, too.
Therefore, second order derivatives of all terms con-
tributing to the energy have to be available. Since
the computation of these derivatives can become very
complex, some of the following methods model bend-
ing forces directly without relation to energy.

2.1 Existing Bending Models

In the seminal work of Terzopoulos et al. [TPBF87]
a model for the animation of elastically deformable
surfaces based on continuum mechanics is presented.
The authors derive an elastic strain energy depending
on nonlinear differential quantities, namely the metric
and curvature tensors. The associated partial differ-
ential equations are discretised in space using finite
differences on a regular quadrilateral grid. Although
this approach is based on a physically sound theory,
it was not widely adopted in the computer graphics
community, due to its significant computational com-
plexity. In the following years, approaches for the
simulation of deformable surfaces like cloth mainly
relied on particle and mass-spring systems. For mod-
elling forces due to bending deformation, most of
these methods use some kind of angular measure to
approximate curvature. Breen et al. [BHW94] were
among the first to use a coupled particle system in
cloth simulation. The authors present an approach
based on energy potentials for modelling the static
drape of cloth. Departing from linear beam theory
(see section 3), they first derive the bending energy
between two successive edges in a rectangular discreti-
sation. Curvature is approximated by fitting a circle
through the three points involved. For large bend-
ing deformations, a different measure is used which
in sum yields a biphasic curvature expression. Breen
et al. model bending energy using data obtained
from measurements with the Kawabata Evaluation
System (KES) [Kaw80]. The corresponding nonlin-
ear stress-strain curves are approximated numerically
with quadratic fits. Once energies are set up at the
nodes, the gradients have to be computed to obtain
nodal forces. The approach presented by Eberhardt
et al. [EWS96] extends this work to the dynamic
range. Computation times are greatly reduced using
sophisticated integration schemes. Eberhardt et al.
do not explicitly approximate curvature but directly

use the angle as a deformation measure.
Volino et al. [VCMT95] use a mass-spring system

inspired by continuum mechanics. The basic bending
element is formed by two adjacent triangles from the
underlying unstructured grid. To determine curva-
ture, a circle fitting inside the two triangles is found
using the dihedral angle. The curvature over an el-
ement is then obtained as the inverse of the circle’s
radius. The authors point out that the curvature has
to be limited to a certain maximum to prevent bend-
ing forces from growing to infinity. The actual forces
are deduced from the geometry of the involved trian-
gles using linear beam theory. Baraff et al. [BW98]
use the same basic bending element as in [VCMT95].
Following their proposed computational framework,
a constraint expression for bending energy is derived.
This essentially corresponds to an energy term which
depends quadratically on the dihedral angle.

A different approach to cloth simulation was pro-
posed by Eischen et al [EDC96, EB00]. Their method
is based on the nonlinear shell theory derived by
Simo et al. [SFR89]. A four node bilinear element
with nodal displacements and director rotations as
the primary unknowns is used for discretisation (see
[SFR89]). In the context of shell theory, curvature
is directly accessible through bending strains and
does not need not be approximated otherwise. Like
in [BHW94] Eischen et al. use measured data ob-
tained from the KES and approximate the curves
with a 5th-order polynomial fit. In sum, the approach
leads to highly nonlinear equilibrium equations which
have to be solved, for example, with the Newton-
Raphson procedure. This solver is coupled with an
adaptive arc length control to account for limit or bi-
furcation points in the solution due to buckling insta-
bilities. The proposed method is limited to the static
case and does not account for dynamic effects. For
subsequent comparison, Eischen et al. [EB00] present
a particle-based approach based on principles found
in continuum mechanics. Like Breen et al. they use a
regular quadrilateral discretisation along with linear
elasticity theory. However, they derive forces directly
without explicit resort to energy potentials. Bending
forces are computed using linear beam theory which
again results in a linear moment-curvature relation-
ship. The angle formed by two consecutive edges is
taken as a direct measure for curvature. The authors
state that the results of the two methods cannot be
visually distinguished on the scale of the images they
produced.

More recently, Choi et al. [CK02] proposed a bend-
ing model based on assumptions on the buckling be-
haviour of fabric. Departing from a quadrilateral
mass-spring system, the basic bending element con-
sists of an interleaved spring. The authors advocate
that compressive in-plane forces on textiles lead to
large out-of-plane deflections once a critical loading is
reached. For the notoriously unstable post-buckling



state the buckled shape is predicted as a circular arc of
constant length and curvature. With this assumption,
the curvature can be computed analytically without
angular expressions appearing. Hence, linear beam
theory can be applied to derive the bending energy.
Lastly, the authors derive expressions for force vectors
and Jacobians at the nodes required in an implicit
time integration scheme.

Bridson et al. [BMF03] proposed another deriva-
tion of bending forces for cloth animation. Again,
two adjacent triangles form the basic bending ele-
ment. With the requirement that bending forces
should neither cause in-plane deformation of the fab-
ric nor lead to rigid body motions, they derive the
directions and relative magnitudes for the four bend-
ing force vectors of an element. These vectors are
then scaled with a bending stiffness constant and the
sine of the dihedral angle. An additional scaling fac-
tor accounts for anisotropy of the mesh. For the nu-
merical time integration, Bridson et al. suggest to
use a mixed implicit-explicit integration scheme in
which the (comparably small) bending forces can be
handled in an explicit manner while viscous damping
forces are treated implictly. Thus, the computation
of the complicated derivatives of the bending forces
is avoided.

While most of the previous approaches use a
rather rough curvature approximation, Grinspun et
al. [GH+03] presented a method which is based on a
sound curvature derivation. Their work extends ex-
isting cloth simulators to the range of objects with
a strong resistance to bending deformation. To this
end, a discrete flexural energy potential is established
using differential geometry (see section 5). Again, the
basic bending element consists of two adjacent trian-
gles. The energy derives from an approximation to
the squared difference of mean curvature in the cur-
rent and initial configuration. A drawback of this ap-
proach is that the derivatives of the bending energy
are intricate to compute. Because of this complexity,
the authors suggest the use of an automatic differen-
tiation system.

Yet another way to treat bending was proposed by
Etzmuß et al. [EKS03]. They use a discrete approxi-
mation of the surface Laplacian to model curvature.
This has some aspects in common with the discrete
mean curvature computation described in section 5.
In the context of a linear finite element approach the
Laplacian is computed for each element and projected
onto the corresponding vertex normals. The element
contributions are summed up to give the pointwise
value for every vertex.

2.2 The Concept of Bending

Common deformation modes in 3D continuum me-
chanics are stretching and shearing. These modes are
orthogonal to each other: pure stretching does not

lead to shear deformation and vice versa. The point-
wise view of (3D) continuum mechanics does not ac-
count for bending since it is indifferent of shape. The

Figure 1: Whether an object can be bent depends
mainly on its shape.

ability to bend an object is, however, closely related
to its shape, or more precisely, to the proportion of
its extents in the different dimensions. Consider e.g.
a thin plate as shown in Figure 1. Here, one direction
can be distinguished, in which the lengths are clearly
inferior to those in the orthogonal directions. In this
case, the intuitive bending deformation is such that
it causes as little in-plane deformation as possible –
a pure change in curvature. For a parametric surface
which can be thought of as an infinitely thin plate this
bending deformation can be determined analytically
(see section 4). We examine the notion of bending for
objects with finite thickness subsequently.

2.3 Bending with Finite Thickness

For a cylindrically bent plate (see Fig. 1), we can
– without loss of generality – restrict our investiga-
tions to a thin slice. Thus, we arrive at a geome-
try corresponding to the classical beam element. A
cross-sectional view of such a beam is shown in Fig-
ure 2. It can be seen that during deformation the
bottom layer is stretched while the top layer is com-
pressed (cf. [Kee99]). We can reasonably assume that
the maximum values of tension and compression oc-
cur on the boundary layers. If we further assume
that the induced stresses vary monotonically between
these maxima we arrive at an axis with zero stress,
the so called neutral axis (see Figure 2). These ge-

Figure 2: Beam geometry. a) Cross-sectional view
of bending deformation. b) Linearly varying stresses
through the thickness and neutral axis.

ometric relations motivate an analytic treatment of
the problem in which the neutral axis is the primary
parametrisation domain. This dimension reduction is
the starting point for the theory of beams and plates
which is introduced next.



3 Linear Elasticity of Beams
and Plates

This section presents models for bending dominated
problems known from engineering sciences. The sim-
plest model corresponding to our interests is the 1D
linear elastic beam. As we have seen in section 2,
many existing approaches to bending in cloth simula-
tion rely on this model. Because the stretching defor-
mation of the neutral-axis is assumed to be negligible,
the central unknown is the lateral deflection w of the
neutral axis. The kinematic constraints leading to
the common Euler-Bernoulli beam derive from the
Kirchhoff-Love Assumptions: lines that are initially
normal to the neutral axis remain straight, normal,
and unstretched. The deformed state of the beam
can be described by the displacements u0 and w0

of the neutral axis and a rotation θ of the normal
(see Figure 3). The horizontal and vertical displace-

Figure 3: Displacements u0 and w0 of the neutral axis
and cross-sectional rotation θ for a deformed beam
element.

ments of any material point in the beam are given by
u(x, z) = u0(x) − zθ(x), w(x, z) = w0(x) , and the
generalised strain follows as εx = ∂u

∂x = ∂u0
∂x − z ∂θ

∂x
(see [ZT00a]). Because normal lines are assumed to
remain unstretched, the strain εz in this direction can
be neglected. Using the second assumption, the trans-
verse shear strain εxz equally vanishes.

With the strain defined, the stress now follows by
the use of an appropriate constitutive law. For a lin-
ear elastic material law the stress is

σx =
E

1− ν2
εx , (1)

where E is Young’s modulus and ν is Poisson’s ratio.
The bending moment around the horizontal axis is
obtained as

M = D
∂θ

∂x
=

Eh3

12(1− ν2)
∂2w0

∂x2
. (2)

Note the term ∂2w0
∂x2 which, for small deflections w0,

is actually the curvature κ of the beam. Thus,
equation (2) can be written in a clearer manner as
M = Dκ . This linear moment-curvature relationship
is exploited by some approaches in cloth simulation
to directly model bending forces (e.g. [VCMT95]).

The governing equations are established by consid-
ering the forces acting on a differential beam element
(Fig. 4). The beam is in equilibrium if the transverse

Figure 4: Distributed lateral forces q, transverse shear
force V , and bending moment M acting on a differ-
ential beam element dx.

internal force V (or shear resultant) and the exter-
nal distributed load q are in balance. Along with
the moment equilibrium this leads to the equilibrium
equation of the Euler-Bernoulli beam

Eh3

12(1− ν2)
∂4w

∂x4
= −q . (3)

The above formulations directly carry over to cylin-
drically deformed plates. They can as well be trans-
lated to the general case of (doubly curved) thin
plates (see [ZT00b]). In engineering, thin plate el-
ements are used to support lateral loads. Because
curvature now occurs in both transverse directions,
one speaks of the neutral surface, or simply mid-
surface, in analogy to the neutral plane. Again, it
is assumed that the stretch deformations of the mid-
surface are negligible. Hence, the primary unknown
is again the lateral deflection w. However, the deflec-
tion now varies in both x and y direction which ren-
ders the problem two-dimensional. For thin plates,
the governing equation turns out to be

Eh3

12(1− ν2)

(
∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+

∂4w

∂y4

)
= −q . (4)

This is a biharmonic equation involving fourth or-
der partial derivatives. Investigating the correspond-
ing strains it can be seen, that second order deriva-
tives of the (lateral) displacement field are required.
The thin plate equations have been used in computer
graphics, too. For instance, they appear in a com-
mon minimisation problem from variational design
(see e.g. [WW98]). Despite its demands on continu-
ity, the thin plate approach can be used in physically
based simulation. Since this theory does not take
into account in-plane deformations it has to be aug-
mented by an appropriate membrane model for this
purpose. This conjunction can be found in the class
of Kirchhoff-Love thin shell theories.

As already mentioned in the introduction, in most
of the existing techniques for the simulation of thin
flexible objects, the displacement basis required in
thin plate analysis is not available. Nevertheless,
many approaches make use of the Euler-Bernoulli
beam equations to model bending, for example, di-
rectly along the edges of the underlying mesh. It is
also possible to set up bending energies for the dis-
crete setting, say, in terms of mean-curvature (see
[GH+03]). All of the methods that rely on such a
physical model must necessarily use some kind of



curvature measure. Therefore, it is worth investi-
gating what properties a reasonable curvature mea-
sure should have. To this end, we will proceed with
some relevant material from differential geometry in
the next section.

4 Curvature from Differential
Geometry

The following concepts from differential geometry are
mainly based on [Opr97] and [MDSB03]. The reader
interested in a more detailed discussion is referred to
the original work. Let S be a surface (2-manifold)
embedded in 3D space with a parametric description

r(θ1, θ2) = (x(θ1, θ2), y(θ1, θ2), z(θ1, θ2)) , (5)

where θ1 and θ2 are surface coordinates. At any point
p on the surface, the two tangent base vectors are
spanned by the partial derivatives of the mapping (5)
with respect to the surface coordinates

aα =
∂r
∂θα

. (6)

The surface normal at this point is simply the cross-
product. Curvature expressions for S at a point p are
derived from lines on the surface defined as follows:
for every direction êϕ in the tangent plane let cϕ de-
note the curve that results from the intersection of S
with the plane spanned by the surface normal n at p
and êϕ (see Figure 5).

Figure 5: The surface curve cϕ is the intersection of
the surface S with the plane spanned by the normal
n and the unit direction vector êϕ.

The curvature of cϕ is called the normal curvature κN

of S in the direction êϕ. The minimum and maximum
of these values are called the principal curvatures κ1

and κ2. By integration over all unit directions the
mean curvature at p is obtained as

κH =
1
2π

∫
2π

κN (ϕ)dϕ =
κ1 + κ2

2
, (7)

where the last equality follows from κN (ϕ) =
κ1 cos2(ϕ) + κ2 sin2(ϕ). A different expression for

mean curvature is given by the mean curvature nor-
mal

κHn = lim
diam(A)→0

∇A
2A

, (8)

where A is an infinitesimal area around a point and
diam(A) is its diameter (see [MDSB03]).

Another important local property of a surface is
the Gaussian curvature κG which is defined as the
product of principal curvatures κG = κ1 · κ2 . The
Gaussian curvature is independent of the surround-
ing embedding of the surface: it measures only in-
trinsic curvature and is not affected by pure bending
deformations as shown e.g. in Figure 1. Therefore,
Gaussian curvature is not an appropriate measure for
bending deformation. In contrast, normal and mean
curvatures measure inextensional, extrinsic deforma-
tion and thus reflect changes due to pure bending.
The following section gives an idea of how these quan-
tities can be transferred to the discrete setting of tri-
angle meshes.

5 Discrete Curvature

Almost every reasonable bending model used in the
simulation of flexible materials incorporates some
measure of curvature. Of course, every such model
must necessarily result in a discrete formulation -
whether it is derived from a partial differential equa-
tion or not. Hence, the interest in a discrete curvature
measure is obvious. In the continuous case the cur-
vature tensor provides a scalar value for every unit
direction at every point of a surface. A discrete coun-
terpart should give these data at distinct features (say
vertices or edges) of the mesh as an average over the
pointwise values of its attributed surface part. This
value can then be plugged into the desired bending
energy equation, from which forces are derived for
every vertex in the (triangle) mesh in the usual way.
Furthermore, it is desirable for computational aspects
that the operator is easy to evaluate. It should have
minimal support, i.e. only require information from
a small local neighbourhood. Lastly, the operator
should be independent of the actual discretisation of
the surface. Of course, a central question is what
kind of curvature should be measured? In the pre-
vious section we have seen that Gaussian curvature
is inappropriate. For simple isotropic materials the
mean curvature is sufficient and we will focus on this
quantity. However, if anisotropic material behaviour
is desired, the full curvature tensor will most likely be
needed.

There has been abundant work on defining and
computing discrete differential quantities, e.g. [PP93,
Tau95a] and more recently [CSM03]. A concise and
sound derivation of a complete set of discrete differ-
ential operators for triangulated 2-manifolds can be
found in the work of Meyer et al. [MDSB03]. We take
this work as a basis for the following overview.



5.1 The Laplacian and Derived Oper-
ators

Loosely spoken, curvature is related to second order
derivatives. A commonly known differential opera-
tor based on second order derivatives is the Laplace
Operator which in 2D Euclidean space is defined as

∆ =
∂2

∂x2
+

∂2

∂y2
. (9)

The discrete approximation of this operator on a reg-
ular quadrilateral grid can be expressed by the 5-point
star

L1 =

0 1 0
1 −4 1
0 1 0

 , (10)

which is the result of taking second order finite
differences in both dimensions. The generalisation
of the Laplace operator from Euclidean space to
2-manifolds with Riemannian metric is called the
Laplace-Beltrami operator. This is of interest here,
because its discretisation leads to the mean curvature
normal operator [Pol02a]. The question that arises is
how this operator can be discretised on unstructured
triangle meshes. Taubin [Tau95b] suggested to use
an approximation which was later called the umbrella
operator

LU =
1
m

∑
j∈N(i)

xj − xi , (11)

where N(i) is the set of neighbours of vertex i and
m is the sum of the neighbour’s valences. The ad-
vantage of this formulation is that it is linear in the
vertex positions, just as the Laplacian on a regular
quadrilateral setting. The drawback, however, is that
it requires a specific parametrisation of the surface to
be valid [KCVS98]. An extensions that accounts for
irregularities is available but then the formulation is
no longer linear [Fuj95]. As discussed subsequently, a
more accurate approach is available in this case.

5.2 Discrete Differential Quantities

Generally, properties at a vertex of a mesh can be
defined as spatial averages on the continuous surface
around this vertex. Meyer et al. point out that with
a consistent definition, the spatial averages will con-
verge to the pointwise definition of the quantity in
the limit. To this end, an appropriate area A has to
be chosen, first. For a continuous function f defined
on a surface S, an average value favg over the area A
can be obtained as

favg =
1
A

∫
A

f du dv . (12)

If such an average is to be assigned to every vertex of
a triangle mesh M resulting from a discretisation of
S, an appropriate definition for the area A is impor-
tant. It is desirable that the choice of A results in a

(disjoint) partition of M. Therefore, A must lie in-
side the 1-ring neighbourhood of xi and the borders
∂A must cross the edges in their midpoints. It re-
mains to choose which point the borders should pass
through in the interior of a triangle. As two possibili-
ties the barycenter or the circumcenter of the triangle
can be chosen (cf. Figure 6). Selecting the circumcen-
ter leads to a partitioning of M into Voronoi regions.
Meyer et al. show that Voronoi regions are preferable

Figure 6: Alternative partitionings for a triangle. a)
The border of any tiling must cross the mid-points
of the edges. b) The barycenter is taken as interior
point. c) Tesselation resulting from choosing the cir-
cumcenter as interior point.

over barycentric tilings, since they minimise the ap-
proximation error. Additionally, this partition is also
useful for computing vertex masses needed for simu-
lation (cf. [EKS03]). They derive a simple formula for
the area AV of the Voronoi region for vertex xi as

AV =
1
8

∑
j∈N(i)

(cot αij + cot βij) ‖xi − xj‖2 , (13)

where αij , βij are the inscribed angles as shown in
Figure 7. In case there is an obtuse triangle in the 1-
ring neighbourhood, additional adjustments are nec-
essary.

Figure 7: a) Voronoi region of a vertex. b) Angles for
weighting edge (xi − xj).

With an appropriate area for spatial averaging, the
mean curvature normal operator H can be estab-
lished. It is related to mean curvature as

H(x) = 2κH(x)n(x) . (14)

Using the induced triangle metric, the mean curvature
normal operator can be expressed as∫

A
H(x)dA = −

∫
A

(
∂2x
∂u2

+
∂2x
∂v2

)
du dv , (15)

where u and v describe a conformal (i.e. angle pre-
serving) space parametrisation. With the definition
of the Voronoi area (13) and additional transforma-
tions (see [MDSB03]), equation (15) turns into

Hv(x) =
1

2AV

∑
j∈N(i)

(cot αij+cotβij)(xi−xj) , (16)



where the subscribt v signifies that the operator is
vertex-related. This expression provides a simple and
accurate way to determine mean curvature on trian-
gular meshes. The operator requires only information
from a small local neigbourhood and can be evaluated
efficiently. Note, however, that it is nonlinear in terms
of the involved vertex positions. As well as for ver-
tices the mean curvature can also be defined on the
edges of the mesh (see [Pol02b]). This may be more
convenient for implementation issues.

6 Discussion

As we have seen there are quite a lot of approaches to
modelling bending energy for the simulation of thin
flexible objects. Most of them use only a rough cur-
vature approximation mainly derived from angular
deformations while others use a more sophisticated
approach based on discrete curvature measures.

With the expressions from the previous section it
is possible to set up approximate bending energies
on discrete surface representations. These can then
be used to compute force vectors and Jacobians at
the vertices, needed in a simulation context. A re-
lated implementation was demonstrated in [GH+03].
It must, however, be noticed that this model does
not result from a discretisation of the thin plate (or
shell) equations and is thus not as accurate as these
methods known from engineering sciences. The corre-
sponding energy expressions as well as first and sec-
ond order derivatives are nonlinear in terms of the
vertex positions. The computation of the deriva-
tives bears additional complexity such that the over-
all costs will be higher than for standard approaches.
Furthermore, using only mean curvature limits the
application to isotropic materials. Computing the full
curvature tensor would mean additional costs.

A question arising at this point is: what compu-
tational demands has an accurate approach based on
physically more accurate models (e.g. the Kirchhoff-
Love thin shell equations)? In order to reproduce the
behaviour of thin flexible objects for a broad range of
materials and independent of resolution, continuum
mechanics are indispensable. Because of the short-
comings of finite difference schemes, the finite element
approach will most likely be the method of choice for
discretisation. Although these ingredients are com-
monly considered too costly for computer graphics,
according to Hauth [Hau04] an efficient implemen-
tation leaves only a factor roughly between two and
three when compared to standard approaches.

Basically, the thin plate equations impose certain
smoothness requirements on the displacement field
used in a finite element approach. More precisely, the
displacement field has to be C1-continuous. As a di-
rect consequence the linear finite element approach
presented by Etzmuß et al. cannot be simply ex-
tended to support the thin plate equations. The con-

struction of an element type which provides a C1-
continuous displacement interpolation on its domain
is not complicated. However, ensuring the continu-
ity across elements is a major difficulty. Recently,
a new paradigm for the finite element simulation of
thin shells was introduced to the engineering commu-
nity by Cirak et al. [COS00]. Using subdivision basis
functions, they construct an element type with nodal
displacements as only variables. The authors present
a formulation of the thin shell equation which is linear
in displacements. Hence, this is a promising way for
the physically accurate modelling of bending in cloth
simulation. In [TWS05] we therefore present an ac-
curate and yet efficient approach to cloth simulation
based on the work of Cirak et al.
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