
Conceptual design of a programmable geometry generator

Jesús Gumbau
Universidad Jaume I, Spain

jgumbau@sg.uji.es

Miguel Chover
Universidad Jaume I, Spain

chover@uji.es

ABSTRACT

Current real-time graphics architecture lacks a method for procedural geometry generation inside the GPU, so that the limited
bus bandwidth doesn’t get involved. This document describes the conceptual design of a user-programmable geometry gene-
rator unit. This unit is capable of generating new geometry (vertices and indices) by processing a set of input data. This new
geometry can be passed through the graphics pipeline to be rendered normally. This is done completely inside the GPU.

Keywords: Pipeline, buffer, GPU, shaders, vertices, fragments.

1 INTRODUCTION

Programmable parts of the present graphics hardware
are designed to transform the properties of input pri-
mitives (vertices or fragments), through small user pro-
grams (also known as “shaders”). However, they are
unable to generate new primitives inside the graphics
pipeline. This work introduces the conceptual design
of a hardware unit capable to generate geometry, in-
side the GPU, computed from an arbitrary set of input
data. This unit will be called General-Purpose Geo-
metry Generator (or GPGG). It is designed to run in a
completely transparent way to the present design of the
graphics pipeline, so that the generated geometry can
be treated normally by the pipeline.

2 HOW THE GPGG WORKS

The GPGG can be defined as a programmable geome-
try generation unit designed to work completely inside
de GPU. By having this unit inside the GPU, the gene-
rated data can be directly sent from the GPGG to the
graphics pipeline. Thus, there is a minimal AGP/PCIE
bus traffic and thus, no limitations due to the common
bus bandwith bottleneck.

The input data that the GPGG can read is defined as
a set of generic data that can be stored in any format.
It is also possible that the unit doesn’t require any kind
of input data, so the input data stream is not manda-
tory. The input data stream is divided in a number of
separated input data channels, implemented as different
hardware buffers in the GPU. Note that we are talking
about general input data, without defining any kind of
format for it. This is due to the fact that the GPGG is

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

Posters proceedings ISBN 80-86943-04-6
WSCG’2006, January 30 – February 3, 2006
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

a general-purpose geometry generator, each buffer can
have its own data format.

The processing data unit must have the ability to ite-
rate between input channels, compute the new geome-
try and generate an output. This should be a user-
programmable processor specially designed to work
this way. It needs an instruction set generic enough
to do any kind of computation from input data and the
ability to write into buffers stored in graphics hardware
memory: output data channels.

Output data is the result of the geometry generation
process. Unlike input data, output data forma must be
either vertices or indices. Output data is dumped over
memory buffers accessible from the 3D API, so that the
result of the generation can be used to feed the graphics
pipeline and then the geometry can be rendered. Out-
put data is also divided in different data channels or
streams, because the GPGG output data may need to
be stored in different buffers: vertex coordinates, tex-
ture coordinates, normals, indices or vertex attributes
for vertex programs.

3 INTEGRATION INTO THE
PRESENT ARQUITECTURE

Integration is done by conceiving the geometry genera-
tor as a processor separated from the pipeline, binding
its input and output channels to buffers stored in graph-
ics hardware. This aproach allows this integration with-
out modifications of the pipeline, just additions.

The graphics pipeline has been designed to trans-
form primitives (render process), not to generate new
ones procedurally. The scheme presented in this work
respects this idea completelly, separating the geometry
generation stage (GPGG) and the geometry representa-
tion stage (graphics pipeline). That makes this integra-
tion scheme conceptually cleaner.

Although the general rule is to communicate the
GPGG and the pipeline through hardware buffers, the
possibility to send automatically the output data to
the pipeline is also interesting. This can save a lot of
memory for applications that doesn’t really need to



Primitive 
Assembly

Vertex Shader

Geometry
Shader

Rasterizer 

Pixel Shader 

Serial Input Stream

Random access 
reads

Reusable
Output Stream

Framebuffer / RenderTarget 

Figure 1: New pipeline proposed by Microsoft

store anything in graphics memory because they need
to generate the geometry every time.

To add this capability, an output channel can be con-
figured as a bridge to the pipeline, instead if a binding
to a memory buffer.

4 GPGG APPLICATIONS
The following is a list of possible real world applica-
tions for the GPGG that shows its entire functionality.
The GPGG is a perfect tool to calculate the shadow vol-
umes for the Stencil Shadowing technique [1] entirely
inside the GPU. Every continous LOD technique would
benefit from the GPGG as it allows to calculate in real
time the triangle list (indices) that define a mesh in an
arbitrary level of detail.

Terrain generation [3] could use the GPGG to gene-
rate the piece of terrain seen at a given time and a ca-
mera position from a heightmap. Displacement map-
ping coulg be implemented inside the GPU using a si-
milar approach. A surface tesselator [4] could be pro-
grammed into a geometry program, setting as input data
the control points that describes a bicubic surface. The
GPGG could accept as parameters the coeficients of an
equation that represents a volume of an object and apply
the Marching Cubes method to approximate a polygo-
nal surface.

The unit could be configured to instantiate the geo-
metric primitives for plant generation, by specifying a
string, derived from an L-system, as a GPGG input.

5 CONCLUSIONS
Implementing a geometry generator in the graphics
hardware has a large amount of benefits, as previously
explained (see section 4).

Having the GPGG separated from the pipeline is be-
neficial in terms of parallelism: while one unit is ge-
nerating new geometry, the other one can process the
already generated geometry.

Even the DirectX approach (figure 1) [2] has multi-
ple geometry shader units running in parallel. The same
approach could be taken in a hardware implementation
of the GPGG by setting up multiple GPGG units run-
ning in parallel, similar to the multicore CPU systems
do.

3D API 

GPGG

Graphics

 pipeline 

Graphics

memory

Framebuffer

VBO

VBO

VBO

VBO

CPU

GPU

Figure 2: GPGG integration scheme into the current
graphics arquitecture.

This work introduces a conceptual design of a hard-
ware geometry generation unit that operates in a com-
pletelly transparent way to the current pipeline design.

The changes introduced by Microsoft to implement a
geometry generator into the pipeline for DirectX, forces
a completelly redesign of the pipeline. In contrast, the
GPGG design introduces no changes to the traditional
pipeline, only additions to the hardware graphics and
the APIs. Moreover, the possibility to access randomly
the input data makes it a more intuitive programming
model, in contrast to the per-primitive pipelined one
proposed by Microsoft.

ACKNOWLEDGMENTS
This work has been supported by the Spanish Ministry
of Science and Technology (TIN2004-07451-C03-03),
the European Union (IST-2-004363) and FEDER funds.

REFERENCES
[1] Crow, F., Shadow Algorithms for Computer Graph-

ics, Computer Graphics, 1977.

[2] Rudolph B., Glassenberg S., DirectX and Windows
Vista, PDC, 2005.

[3] Losasso, F. and Hoppe, H., Geometry clipmaps:
Terrain rendering using nested regular grids, Sig-
graph, 2004.

[4] Sfarti, A., Bicubic surface rendering, U.S. patent,
#6.563.501.


