
Reusing frames in camera animation

Àlex Méndez-Feliu
Universitat de Girona

Institut d’Informàtica i Aplicacions
Edifici P4, Campus de Montilivi

17071, Girona, Spain

amendez@ima.udg.es

Mateu Sbert
Universitat de Girona

Institut d’Informàtica i Aplicacions
Edifici P4, Campus de Montilivi

17071, Girona, Spain

mateu@ima.udg.es

László Szirmay-Kalos
Technical University of Budapest

Informatics Building, B320
1117 Pázmány P. sétány 1/D.

Budapest, Hungary

szirmay@iit.bme.hu

ABSTRACT

Rendering an animation in a global illumination framework is a very costly process. Each frame has to be computed with high
accuracy to avoid both noise in a single frame and flickering from frame to frame. Recently an efficient solution has been
presented for camera animation, which reused the results computed in a frame for other frames via reprojection of the first hits
of primary rays. This solution, however, is biased since it does not take into account the different probability densities that
generated the different contributions to a pixel. In this paper we present a correct, unbiased solution for frame reuse. We show
how the different contributions can be combined into an unbiased solution using multiple importance sampling. The validity
of our solution is tested with an animation using path-tracing technique, and the results are compared with both the classic
independent approach and the previous unweighted, biased, solution.

Keywords: Animation, Ray tracing, Path reuse, Global illumination, Path tracing

1 INTRODUCTION
In global illumination an image can be computed by
tracing paths from the eye (or observer position) trough
the pixels that compose the image plane towards the
surfaces of the scene. In the path-tracing technique,
from the hit point in the scene a random walk is fol-
lowed, gathering the energy at every new hit point. The
main drawback of these Monte Carlo random walks is
the high number of paths needed to obtain an accept-
able result. To obtain an animation or a sequence of
frames in a global illumination framework with produc-
tion quality, we need to cast many rays per pixel. Each
frame has to have high accuracy to avoid both noise in
the frame and flickering from frame to frame. An effi-
cient solution to reduce this cost has been presented for
camera animation [9]. Computation for one frame is
reused for other frames via reprojection of the first hit
of the eye ray to neighbour eyes positions. Although
very computationally efficient, this solution is biased,
as it does not take into account the different probabil-
ity densities that generated the different contributions
to a pixel. In this paper we improve on this solution
by presenting an unbiased method for frame reuse. Our
approach is a follow-up of previous research on path
reuse [2, 17, 16]. We show how the different contri-

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

Journal of WSCG, ISSN 1213-6972, Vol.14, 2006
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

butions can be combined to an unbiased solution using
multiple importance sampling [20]. We test our solu-
tion with an animation using the path-tracing algorithm
for global illumination, and compare it with a classic
independent solution and the previous unweighted, bi-
ased, technique. Although the results are shown in this
paper for the path-tracing algorithm, the validity of our
technique is general.

This paper is organized as follows. In the next sec-
tion we will refer to previous work on reusing frames in
animation and on reusing paths in the context of radios-
ity and global illumination. Path-tracing is also shortly
revisited. The theoretical foundation and algorithms of
our techniques for reusing frames are presented in sec-
tion 3. In section 4 details about the implementation
and costs of our algorithm are explained. In section 5
results are presented that illustrate the benefits of our
technique, and in the last section we present the con-
clusions and future work.

2 PREVIOUS WORK
2.1 Path-tracing algorithm
Random walks are a Monte Carlo common tool to solve
second kind Fredholm integral equation [15, 7, 12]. For
instance, they are used in global illumination and ra-
diosity [1, 5] to solve the rendering equation [11]. Path-
tracing [11], distributed ray-tracing [4], bidirectional
path-tracing [13, 20], photon map [10] and Metropolis
[22] are main global illumination techniques using ran-
dom walk. In the path-tracing technique (see Fig.1a)
an image is computed by tracing paths from the eye
(or observer position) trough the pixels that compose
the image plane towards the surfaces of the scene. To

avoid a huge variance, from each hit point ray(s) are
directed towards the light sources to gather light. The
random walk can be terminated upon different termina-
tion conditions. Russian roulette is the most used ter-
mination technique. At a hit point, we decide at ran-
dom whether to terminate or follow the path. Another
possibility is to accumulate the albedos of visited hit
points and stop when the accumulated albedo is below
a given threshold. Path-tracing is a general, unbiased
simple technique to compute global illumination, rela-
tively easily to implement and very much appropriate
to test improvements in global illumination, although
more sofisticated techniques have been introduced like
Metropolis and bidirectional path-tracing. On the other
hand, shooting random walk solves the adjoint equation
by simulating the trajectories of photons from the light
sources, and hybrid methods like bidirectional path-
tracing combine both shooting and gathering. The cost
of a random walk simulation is mainly the cost of com-
puting the next hit point, that is, the point visible from
the old hit point in the sampled direction.

The main drawback of these Monte Carlo random
walks is however the high number of paths needed to
obtain an acceptable result. As the variance of the es-
timators is proportional to N−1 with N the number of
paths, it makes necessary the use of many paths, of the
order of millions, to obtain an acceptable noiseless im-
age. This is still more dramatic in an animation com-
putation, due to the high number of frames to be com-
puted. Thus achieving some sort of path reusing can
reduce the computational cost.

2.2 Reusing paths
Bidirectional path-tracing [13, 20] can be considered as
the first attempt to reduce the cost by reusing paths.
This method joins sub-paths belonging to the same
pixel or to the same source point. However, the idea
of the reuse of full paths and for different states (i.e.,
pixels, patches or light sources) was first presented by
John Halton in [6] in the context of the random walk
solution of an equation system. This technique was ap-
plied by Bekaert et al. in the context of path-tracing
in [2, 16] (see Fig.1a), combined with multiple im-
portance sampling [21, 20] to avoid bias. Pixels were
grouped in tiles, and paths belonging to a pixel in the
tile were reused for the other pixels in the tile from the
second hit point of the path. A speed-up of one order
of magnitude was reported for fairly complex scenes.
Havran et al. [9] presented the reuse of paths in a walk-
through, that is, when the observer changes position.
Paths cast from one observer position were reused for
other neighbor positions. Their technique admitted mo-
tion blur and they applied it in the context of bidirec-
tional path-tracing. Although obtaining a high speed-
up, the method remained biased as the samples were
not weighted with the respective probability. In the

radiosity context Besuievsky [3] used the same set of
lines to expand direct illumination from different light
source positions. The source positions were packed in a
bounding box and lines crossing this box expanded the
power of all intersected positions. The drawback of this
method is that lines are wasted if the source positions
are not tightly packed. Moreover, this method is only
valid for diffuse sources. Recently path-reuse has been
applied to light source animation in [17, 18, 14].

3 FRAME REUSE
In this section the theoretical framework of our algo-
rithm is introduced. We first introduce the basic native
estimators, then we show how we can estimate the radi-
ance from a different eye and finally how the radiance
estimators obtained with paths from different eyes can
be combined by multiple importance sampling.

3.1 Estimating the native radiance
In global illumination we are interested in the integrals
Lo(i) =

∫
Ai

L(p)dp where Ai is the area of pixel i, and
L(p) is the radiance from visible scene point x that
reaches the observer at point o through point p in pixel
i . Introducing a change of integration variable [19] we
obtain

Lo(i) =

∫

S
L(x → o)G(o,x)Vi(x)

cos3 θi

f 2 dx, (1)

where the integration extends over all scene surface
points S, θi is the angle between the normal of the
screen plane and direction ω(x → o) at the center of
the pixel i, and f is the focal distance, i.e. the distance
from o to the plane of the screen. Vi(x) takes the value
of 1 if x is visible through the pixel i and 0 otherwise.
The geometric factor G(o,x) is defined as

G(o,x) = vis(o,x)
cos(Nx,ω(x → o))

d2(x,o)
(2)

where vis(o,x) is 1 if x and o see each other and 0 oth-
erwise, Nx is the normal at point x, ω(x → o) is the
direction from x to o, and d(x,o) is their distance. The
radiance L(x → o) comes from the global illumination
equation [11]:

L(x → o) = Le(x → o)+∫
Ω ρ(ω in

,x,x → o)L(x,ω in)cos(Nx,ω in)dω in (3)

where Le(x→ o) is the self emitted radiance, ρ(ω in
,x,x→

o) is the bidirectional reflectance distribution (brdf)
function at point x, incoming direction ω in 1 and outgo-
ing direction x → o. L(x,ω in) is the incoming radiance
to x in direction ω in.

1 In fact, the true incoming direction is −ω in, but we use the opposite
one to keep the reciprocity in the brdf.

x

O

y

x’

y’
O

O’

x

(a) (b)
Figure 1: (a) Reusing a path from the second hit point, y, for a single observer O, creating thus the new path
O,x′,y, . . . at the cost of the visibility test vis(x′,y). (b) Reusing the path from observer O for observer O′, at the
cost of the visibility test vis(O′

,x).

Substituting (3) into (1), and dropping constant terms
and self-emission 2, we obtain

Lo(i) =

∫

S

∫

Ω
G(o,x)Vi(x)ρ(ω in

,x,x → o)

L(x,ω in)cos(Nx,ω in)dω indx (4)

Primary estimator L̂o(i) for Lo(i) is obtained by select-
ing a point x with probability po

i (x) and then direction
ω in with probability p(ω in;x,x → o). An unbiased esti-
mator for L(x,ω in), ̂L(x,ω in), can be obtained by any
suitable technique, for instance by the random walk
path-tracing technique. Thus

L̂o(i) =
G(o,x)Vi(x)ρ(ω in

,x,x → o) ̂L(x,ω in)cos(Nx,ω in)

po
i (x)p(ω in;x,x → o)

(5)

With importance sampling we select probabilities

po
i (x) ∝ G(o,x)Vi(x)

and

p(ω in;x,x → o) ∝ ρ(ω in
,x,x → o)cos(Nx,ω in)

Inthis case the estimator becomes:

L̂o(i) = a(x,x → o)Ωi
̂L(x,ω in) (6)

where Ωi (solid angle subtended by pixel i) and a(x,x→
o) (albedo) are the probabilities normalization constants.
Estimator (5) is the unbiased native estimator for a
pixel, that is, the one obtained by sending rays from
the observer through the pixel.

2 Self emission can be easily dealt with separately.

3.2 Estimating the radiance from a differ-
ent eye

Consider now a different observer o′ (see Fig.1b). This
observer will see x through a different pixel, j. We can
obtain a (biased) estimator for Lo′(j) reusing the value
obtained for the radiance at x with estimator ̂L(x,ω in)
(this comes to reusing the path from x supposing the
estimator is a random walk, see Fig. 1b). The estimator
for pixel j from eye o′ obtained with a ray started from
eye o is given by the following expression:

̂Lo′ ,i(j) =
G(o′,x)Vj(x)ρ(ω in

,x,x → o′) ̂L(x,ω in)cos(Nx,ω in)

po
i (x)p(ω in;x,x → o)

(7)

Note that the probabilities used in the denominator are
the native probabilities used to find point x from eye o
through pixel i, but they should be normalized with re-
spect to pixel j as seen from eye o′. We have then to
normalize po

i (x) with respect to the new eye. Let us
drop the assumption that probability po

i (x) depends on
pixel i as seen from o and through which the ray was
generated (this is an approximation, considering pixels
on a spherical screen). The corresponding normaliza-
tion condition should be fulfilled

∫

S
po(x)V j(x)dx = 1 (8)

where V j(x) = 1 if point x is visible from o′ trough pixel
j and 0 otherwise. Suppose now that we distribute eye
rays from o with probability proportional to G(o,x). To
obtain probabilities po(x) we have to find the normal-
ization constant given by the integral:

I =
∫

S
G(o,x)V j(x)dx (9)

Integral (9) can be interpreted as the solid angle from
o that sees the portion of the scene seen from the solid
angle subtended by pixel j from eye o′ (Ω j), see fig.

O’

O

I

x
jΩ

∆S

Figure 2: Here is shown in a graphical way the interpre-
tation of equation (9). Ω j is the solid angle subtended
by pixel j, and I is the solid angle through which eye o
sees what eye o′ can see through Ω j.

2. Observe that when o = o′ integral (9) is equal to
Ω j. Integral (9) is not known and computing it (using
Monte Carlo integration) would require sending a lot of
rays from o and comparing the visible or unoccluded hit
points from o′ to the total unoccluded+occluded. Lack-
ing this information, we make the assumption that we
have no visibility problems. Thus, given hit x from
o obtained with probabilities proportional to G(o,x),
and taking into account that without occlusions ∆Ω j =
G(o′,x)∆S and ∆I = G(o,x)∆S, the normalization con-
stant (9) is approximated by

I ≈
Ω jG(o,x)
G(o′,x)

(10)

Expression (10) is used to normalize po
i and estimator

(7) (having dropped the dependence on the pixel i) thus
becomes

̂Lo′ (j) =
G(o′ ,x)ρ(ω in

,x,x→o′) ̂L(x,ω in)cos(Nx,ω in)
G(o′ ,x)

Ω jG(o,x) G(o,x)p(ω in;x,x→o)

=
Ω jρ(ω in

,x,x→o′) ̂L(x,ω in)cos(Nx,ω in)
p(ω in;x,x→o)

(11)

and for a diffuse hit point ρ (and thus neither p) de-
pends on the incoming eye ray, thus it becomes simply

̂Lo′(j) = Ω jL̂(x) (12)

where L̂(x) is the estimated radiance from hit point x.

3.3 Combining paths
In [9] an unweighted combination of estimators of kind
(5) and (7) was done, resulting in a biased estimator.
We present now a strategy that gives an unbiased esti-
mator. For each pixel and frame, we keep accumulated

radiance value and native ray estimators (among many
other data useful for our computation, see 4.3) gen-
erated with probability po

i (x)p(ω in;x,x → o)). When
hits from neighbour frames can be reused for this pixel
(suppose estimator ̂Lo, j(i), generated with probability
po j

j (x j)p(ω in, j;x j
,x j

→ o j)), we combine them using
multiple importance sampling with the native estima-
tor. This gives the new unbiased estimator:

L̂o(i) = ∑
j

po j

j (x j)p(ω in, j;x j
,x j

→ o j) ̂Lo, j(i)

∑k pok
k (x j)p(ω in, j;x j

,x j → ok)
(13)

We show now how this estimator is applied.
For the sake of simplicity, and without loss of gener-

ality, consider only two observers O1 and O2
3. In this

case estimator (13) becomes estimator (14) for observer
O1, using the approximation (12) for the estimator and
also (9) for the normalization constant in the weights.
We have taken the approximation that all pixels subtend
the same solid angle. Remember also that the visibility
boolean function is included in the G function. Con-
sider first the particular case for diffuse hit pixels.

L(O1) = G(O1,x1)

G(O1,x1)+G(O2,x1)
G(O1,x1)
G(O2,x1)

L(x1)

+
G(O2,x2)

G(O1,x2)
G(O2,x2)
G(O1 ,x2)

+G(O2,x2)
L(x2)

= 1
2 L(x1)+ 1

2 L(x2)

(14)

Thus approximation (10) for the normalization con-
stant leads to the simple unweighted estimator when we
deal only with diffuse hits, and this is why Havran et al.
solution [9] works well for diffuse surfaces.

For the non-diffuse general case, using again approx-
imation (10) allows us to eliminate all G terms, and us-
ing estimator form (11) we obtain

L(O1) =
ρ(ω in,1;x1,x1→O1)L(x1,ω in,1)cos(Nx1 ,ω in,1)

p(ω in,1;x1,x1→O1)+p(ω in,1;x1,x1→O2)

+
ρ(ω in,2;x2,x2→O1)L(x2,ω in,2)cos(Nx2 ,ω in,2)

p(ω in,2;x2,x2→O1)+p(ω in,2;x2,x2→O2)

(15)

where L(x1,ω in,1) and L(x2,ω in,2) are the incoming ra-
diances to x1 from direction ω in,1 and to x2 from direc-
tion ω in,2.

4 IMPLEMENTATION
4.1 Algorithm
Once we hit a point in the scene from the eye, we can
reuse this information for all the other frames in our
camera animation, but only if the point is visible from
the other eyes. For this reason and also because of
memory restrictions, we are only interested in reusing

3 For a clearer explanation we also drop here the albedo and solid angle
Ω

for i = firstFrame to lastFrame do
currentEye = getEye(i)
for all pixel in images[i] do

hit=traceRay(currentEye, pixel)
for j = firstFrame to lastFrame do

reuseHitinImage(hit,images[j])
Algorithm 1: The algorithm for the hit harvest phase,
considering only the group of neighbouring frames.

the hit with the closest neighbouring frames, as the
probability of being visible is much higher.

We will consider two phases in the computation of
our animation frames. The first one is the hit harvest
(see algorithm 1), where we find the native hit points,
compute the rest of the gathering path, connect every
hit point with the other eyes to see if they can be reused,
and finally, if it is the case, we add a pointer to it in the
list of outer hits of the corresponding pixel. Meanwhile,
additional probabilities and reflectances needed for the
computation are kept in memory. The second phase is
the image computation itself, in which we use all the
stored information, including the native and outer hits
for every pixel to compute the final pixel color.

As a few seconds animation involves hundreds of
frames, it is not feasible to keep all them in memory
at the same time. We have two possible strategies.
The first one is to reuse a hit in the n previous and
subsequent frames keeping in memory all information
needed for the final computation, that will be done once
we know we are not reusing more hits for that frame,
that is, the (actual − n)th frame. But as we can see
in equations (15) and (13), for every hit that will be
used in a pixel computation, we need to use all proba-
bilities in combination with all the eyes that have been
used in the other hits for that pixel. This means keeping
in memory also information for frames previous to the
(actual − n)th, or recompute these probabilities every
time we need them. This is a waste of time or a waste
of memory.

The second strategy consists in considering a group
of 2n + 1 neighbour frames and reuse every native hit
in all the other frames in the group, no matter if it is the
first one, the last one or the one in the middle. When
we are done for the group, instead of moving to the next
2n+1 frames, we can move just one frame, overlapping
2n frames, but without deleting the previous results for
the frames that are still active. This previous results
can be simply averaged with the new ones. This is the
strategy we follow.

4.2 Cost analysis
Now we analyze the relative cost of the animations with
and without reuse. Suppose we cast nr rays per pixel
and reuse n f frames at once. The cost of tracing an eye
ray is ce, the cost of computing the illumination at the

hit point in the scene is cl , and the cost of a visibility
test is cv. In the case of no reuse, the cost of comput-
ing n f frames is n f n′r(ce + cl). In the reusing case the
cost is n f nr(ce +cl)+n f (n f −1)nrcv, where the second
term in the sum accounts for reusing all rays. In the op-
timal case a ray through a pixel would be equivalent to
a native ray, and we compare thus the cost of two an-
imations with equal number of rays per pixel, that is,
n′r ' n f nr. The relative cost for this case is:

n f n f nr(ce + cl))

n f nr(ce + cl)+n f (n f −1)nrcv
=

n f nr(ce + cl)

nr(ce + cl)+(n f −1)nrcv
=

n f (ce + cl)

(ce + cl)+(n f −1)cv
(16)

This last expression has the limiting value (ce+cl)
cv

when n f tends to infinite. Supposing cl � ce, limit ef-
ficiency will be cl

cv
.

Observe that the above limit efficiency is an upper
bound, as on the one hand not all rays will be able to be
reused, and on the other hand the variance associated
with a reusing frames estimator is higher than with an
independent one, because in the independent estimator
we have the benefit of importance sampling.

A second, and very important, independent increase
in efficiency comes from the reduction in flickering
from frame to frame. This reduction is due to that reuse
of paths for different frames correlates the computa-
tions for all them. And in the way we have constructed
our algorithm there is no flickering shown when pass-
ing from a group of reused frames to the following one,
as we interleave them.

4.3 Memory use
We need a huge amount of memory to keep track of
all our computation. We have to keep not only all the
images for the current group being computed (includ-
ing native reflectances and hits), but also the lists of
outer hits for every pixel and all possible combinations
of probabilities and reflectances per pixel and frame.

Same as before, suppose we use nh hits per pixel and
reuse n f frames at once. Images are made of w × h
pixels, so we have a total number of pixels npix = w×

h×n f .
For every pixel we keep the final color and the num-

ber of samples to add and average every result. We
also need the list of outer hits for every pixel. The to-
tal nodes of outer hits are nnod = nh × npix × (n f − 1)
and are distributed in lists among all the pixels. Ev-
ery node contains four integers: the image number, the
pixel (w and h) and the number of sample, thus it can
point towards the data we need to reuse from another
image. For every native hit in a pixel we have to keep

the native direct and indirect gathered radiance, cosinus
weighted, and a n f -vector containing all probabilities
and reflectances if we combined the hit with the rest of
eyes.

Just to see the numbers in a concrete example, if we
are using 2 samples for every one of the 800×600 pix-
els and reusing groups of 7 images, we get 3360000
pixels (800× 600× 7), each containing a final color
(3 floats), the number of samples (one integer) and a
pointer to the list of nodes. We have 40320000 nodes
(2×800×600×7×6), four integers and a pointer each.
We also have the 6720000 native radiances to reuse
(direct and indirect, 3 floats each) and 47040000 (2×
800× 600× 72) probabilities (1 float) and reflectances
(3 floats). If we assume each float, integer and pointer is
4 bytes, we need a total memory of 1787520000 bytes
for this structure. That’s almost all the memory of our
2Gb pentium 4.

5 RESULTS
We have applied the proposed algorithm to an anima-
tion computed using path tracing. The frame resolu-
tion is 800× 600 pixels. We rendered 48 frames, for
a 2 seconds animation4. For every pixel, we used 2
samples and reused them in groups of seven neighbour
frames. As these groups are overlapped, we get a maxi-
mum average in number of samples of 98 (2×72). The
actual average is less than that (between 85 and 90) be-
cause some reuses are lost (they can lie out of frame
or be hidden by other objects) and it mainly depends
on distances between different neighbour eyes, i.e. the
smoothness of the camera movement. If camera move-
ment is not smooth or the number of neighbour frames
to reuse is too high this ratio decreases, and noticeable
differences of noise between different parts of the same
image might appear. In our example, as our camera
movement corresponds to a zooming of a glossy phong
brdf vase, the pixels in the center of the images get more
samples than those lying near the borders. This can
be interpreted as an advantage, as perception focuses
in the center of the image when zooming, some kind
of perception driven sampling is performed. The first
frames and the last ones present more noise because
they cannot be overlapped with previous (in the case of
the first ones) or subsequent (for the last ones) groups of
frames. Computing time was approximately 40 hours,
for a PentiumIV with 2 Gigabytes of memory. That
is 50 minutes per frame. A single path tracing image
without reuse and with 98 samples per pixel takes more
than 5 hours to compute. It is more than 6 times faster,
and it can be even faster if we reuse more frames. If
we compare this animation with the one computed with
Havran et al. method [9], we can appreciate almost no

4 Animations can be found in
http://ima.udg.es/˜amendez/TIC2001/gal_hitreuse.html.

differences. This is because we have reused very few
frames and they are very close to each other.

We have computed a second animation with a higher
number of reusing frames to prove more clearly the dif-
ferences between the methods. In this case one hit is
reused in 17 frames. We used 2 samples per hit, so we
get a maximum average in number of samples of 578
(2×172). The actual average is about 500 due to loss of
reuses. Due to memory restrictions, resolution is now
reduced to 320×240 pixels. Computation time is about
16 hours. This is 20 minutes per frame, almost 8 times
faster than the computation time of a single path tracing
image with 500 samples per pixel (155 minutes). If we
look at Havran et al. version of the same animation we
clearly appreciate more noise in the vase in the form of
glittering.

In Fig. 3 we show the same frame (the middle frame
in our second animation) obtained with three differ-
ent computations. In the first one (image a) an image
with no reuse has been computed using 500 samples per
pixel. It takes more than two and a half hours to com-
pute. Image b) shows biased Havran et al. [9] version
for reuse of frames. Time computation results in about
18 minutes per frame. Image c) is the result of our un-
biased version. It takes 20 minutes to compute, a little
more time than b), but we need much more memory.
Both images b) and c) present more noise than image a)
near the border due to loss of reuses. Image b) presents
more noise than image c) in the vase and other glossy
objects. Diffuse objects look the same in images b) and
c).

In Fig. 4, details for the vase are shown. First image
a) is computed with no reuse and 15 samples per pixel.
Image b) is biased and computed with the Havran et al.
[9] version and image c) is computed with our unbiased
method. Both are computed with 2 samples per pixel
and reuse of three fairly separated frames, i. e., a maxi-
mum average in number of samples of 18 (2×32). We
clearly see much more noise in image b).

6 CONCLUSIONS AND FUTURE WORK
We have presented in this paper an efficient unbiased
method to combine frames in camera animation. It con-
sists in reusing the incoming radiance information of
a hit point for the neighbouring frames of the anima-
tion. The different probabilities are taken into account
and multiple importance sampling technique is used to
correctly combine the different samples. Our method
makes the difference when using non-diffuse materials,
because the diffuse ones distribute reflected rays with
equal probabilities in all directions, and when the sep-
aration between reusing frames increases. In diffuse
cases or when reusing frames are very close, other bi-
ased methods can work fine. The main drawback of our
method is the large amount of memory needed for the
computation.

The new method has been demonstrated with an ani-
mation of a camera in a scene that contains a vase with
a glossy brdf, computing the global illumination using
the path-tracing technique.

Future work will be addressed to increase the effi-
ciency of our approach using coherence in visibility
computation, by guessing on the one hand the visibil-
ity for one observer from the results for neighbour ob-
servers and on the other hand by using an acceleration
schema similar to [8]. We will also try to combine both
the benefits of this approach and the reuse of paths for
light source animation [18]. Combination with an adap-
tive sampling technique, i.e., using more native sam-
ples for those pixels that come with not enough outer
hit samples, because they are occluded by other objects
or because they lie near the bounder of the image.

ACKNOWLEDGEMENTS
This project has been funded in part with Gametools
project from the European VIth Framework, with grant
number TIN2004-07451-C03-01from the Spanish Gov-
ernment and with Hungarian-Spanish Joint Action num-
ber HH2004-0011.

REFERENCES
[1] Philippe Bekaert. Hierarchical and Stochastic Algorithms for

Radiosity. PhD thesis, Department of Computer Science,
Katholieke Universiteit Leuven, Leuven, Belgium, 1999.

[2] Philippe Bekaert, Mateu Sbert, and John Halton. Accelerating
path tracing by re-using paths. In Rendering Techniques 2002
(Proceedings of the Thirteenth Eurographics Workshop on Ren-
dering), pages 125–134, June 2002.

[3] Gonzalo Besuievsky. A Monte Carlo Approach for Animated
Radiosity Environments. PhD thesis, Universitat Politecnica de
Catalunya, Barcelona, Spain, 2001.

[4] Robert L. Cook, Thomas Porter, and Loren Carpenter. Dis-
tributed Ray Tracing. In Computer Graphics (ACM SIGGRAPH
’84 Proceedings), volume 18, pages 137–145, July 1984.

[5] Philip Dutre, Philippe Bekaert, and Kavita Bala. Advanced
Global Illumination. AK Peters Limited, 2003.

[6] John Halton. Sequential monte carlo techniques for the solution
of linear systems. Journal of Scientific Computing, 9(2):213–
257, 1994.

[7] J. Hammersley and D. Handscomb. Monte Carlo Methods.
Chapman and Hall, London, 1979.

[8] Vlastimil Havran, Jiri Bittner, and Hans-Peter Seidel. Exploit-
ing temporal coherence in ray casted walkthroughs. In Pro-
ceedings of the Spring Conference on Computer Graphics 2003
(SCCG 2003), April 2003.

[9] Vlastimil Havran, Cyrille Damez, Karol Myszkowski, and
Hans-Peter Seidel. An efficient spatio-temporal architecture for
animation rendering. In Proceedings of Eurographics Sympo-
sium on Rendering 2003, pages 106–117. ACM SIGGRAPH,
June 2003.

[10] Henrik Wann Jensen. Global Illumination Using Photon Maps.
In Rendering Techniques ’96 (Proceedings of the Seventh Eu-
rographics Workshop on Rendering), pages 21–30. Springer-
Verlag/Wien, 1996.

[11] James T. Kajiya. The Rendering Equation. Computer Graphics
(ACM SIGGRAPH ’86 Proceedings), 20(4):143–150, August
1986.

[12] M.H. Kalos and P.A. Whitlock. Monte Carlo Methods. John
Wiley & Sons, 1986.

[13] Eric P. Lafortune and Yves D. Willems. Bi-directional Path
Tracing. In H. P. Santo, editor, Proceedings of Third Interna-
tional Conference on Computational Graphics and Visualiza-
tion Techniques (Compugraphics ’93), pages 145–153, Alvor,
Portugal, December 1993.

[14] Àlex Méndez-Feliu and Mateu Sbert. Combining light anima-
tion with obscurances for glossy environments. Computer Ani-
mation and Virtual Worlds, 15(3-4):463–470, july 2004.

[15] R.Y. Rubinstein. Simulation and the Monte Carlo Method. Wi-
ley Series in Probabilities and Mathematical Statistics, 1981.

[16] Mateu Sbert, Philippe Bekaert, and John Halton. Reusing paths
in radiosity and global illumination. Monte Carlo Methods and
Applications, 10(3-4):575–586, 2004.

[17] Mateu Sbert, Francesc Castro, and John Halton. Reuse of paths
in light source animation. In Proceedings of Computer Graph-
ics International 2004 (CGI ’04), pages 532–535. IEEE Com-
puter Society, June 2004.

[18] Mateu Sbert, Laszlo Szecsi, and Laszlo Szirmay-Kalos. Real-
time light animation. Computer Graphics Forum (Eurographics
2004 Proceedings), 23(3):291–299, September 2004.

[19] László Szirmay-Kalos, Mateu Sbert, Roel Martínez, and
Robert F. Tobler. Incoming first-shot for non-diffuse
global illumination. In Spring Conference on Computer
Graphics, Budmerice, Slovakia, 2000. Available from
http://www.fsz.bme.hu/˜szirmay/puba.htm.

[20] Eric Veach. Robust Monte Carlo Methods for
Light Transport Simulation. PhD thesis, Stan-
ford University, December 1997. Available from
http://graphics.stanford.edu/papers/veach_thesis.

[21] Eric Veach and Leonidas J. Guibas. Optimally Combining Sam-
pling Techniques for Monte Carlo Rendering. In Computer
Graphics Proceedings, Annual Conference Series, 1995 (ACM
SIGGRAPH ’95 Proceedings), pages 419–428, 1995.

[22] Eric Veach and Leonidas J. Guibas. Metropolis light trans-
port. In Computer Graphics (ACM SIGGRAPH ’97 Proceed-
ings), volume 31, pages 65–76, 1997.

(a) (b) (c)
Figure 3: Here we show the same frame (the middle frame in our animation) obtained with three different com-
putations. In the first one (image a) an image with no reuse has been computed. It takes more than 2,5 hours
to be computed. Image b) shows Havran et al. [9] version for reuse of frames and takes 18 minutes to compute.
Image c) is the result of our unbiased version and takes 20 minutes. The unbiased c) version uses much more
memory. Images b) and c) presents noise near the border due to loss of reuses, and image b) presents noise in
glossy objects due to biased computation.

(a) (b) (c)
Figure 4: The differences between the methods are clearly appreciated for non-diffuse materials when we reduce
the computation time (noise is higher, consequently) and the separation between frames increases. Here we
see the details of the vase for the 800× 600 image when reusing only 3 frames fairly separated. First image
a) is computed with no reuse. Image b) is biased and computed with Havran et al. [9] version and image c) is
computed with our unbiased method. We clearly see much more noise in image b).

