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ABSTRACT

Displaying multidimensional information has always been a challenge. Projecting multiple dimensions into a two dimensional
display is one of the core tasks of information visualization. The human visual system is limited to a low number of dimensions
and therefore the human-oriented projection does not easily combine the whole information contained in the original space.
This paper introduces a new interaction tool, that implants the n-dimensional information into a low dimensional view and
bridges the projection space with the original space in an intuitive and simple way. In one direction the tool performs n-
dimensional data-driven brushing based on screen space interaction. In the opposite direction it allows for interactive visual
exploration of the original multidimensional space in an infovis display. The implementation is presented using a standard
scatterplot but it can be extended to many other infovis techniques as the concept does not depend on the screen space configu-
ration.
Keywords: Information visualization, brushing, selection, multiple dimensions, interaction, scatterplot.

1 INTRODUCTION
analysis of multidimensional information is a widely
spread and important task. Many domains generate and
handle data of multiple attributes e.g. physical simu-
lations, biochemical data or stock market information.
The raw data themselves contain a lot of knowledge
but almost none of it reveals without analysis. Many
techniques were developed to support the knowledge
discovery and two basic directions of research can be
observed. One of them exploits the processing power
of computers to work out the knowledge in an auto-
matic way using statistical or data mining methods. The
drawbacks of the automatic methods are usually lack of
semantics or non-linear logic. Therefore the second ap-
proach takes advantage of abstract thinking and domain
knowledge of human and often uses visualization-based
interfaces to analyze the data. Both human and com-
puter have their own qualities that predetermine them
each for specific (and usually different) tasks.

In data analysis domain these two powerful proces-
sors are now being used in conjunction and the resulting
techniques try to take the best of both worlds to com-
plete their tasks. The power, storage and precise com-
putations of a machine are being combined with the in-
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Figure 1: A complex n-dimensional segmentation per-
formed in a simple scatterplot. These overlapping and fuzzy
segments would require arduous effort to select if only stan-
dard brushing was applied. Please refer to [23] for full color
figures.

tuition, experience-based judgment and common or do-
main knowledge.

One of the advantages of computers over humans is
the ability to handle high-dimensional information. To
compensate for this, the broadest information channel
(the human visual system) is popularly used to com-
municate between computers and humans. Numerous
visualization systems operate these days to support this
type of information exchange. But when exploring mul-
tidimensional information through the means of com-
puter visualization, one usually faces the problem of
the low dimensional graphical interface between the hu-



man and the computer [20] Our solution presents a way
to combine user-driven analysis with the power of au-
tomatic processing in order to effectively observe, ex-
plore and analyze multidimensional information in any
common visualization technique (Figure 1).

1.1 Multidimensional visualization
Numerous solutions for visualization of multivariate
data exist but, no matter how precise they are, eventu-
ally they bring up the question of how much does a low
dimensional projection correspond to its original mul-
tidimensional source. The link between the 2D display
and the original nD data leads through the projection.
The action (be it either a selection or an observation)
performed in the display extrapolates to the data space
in order to match the original multidimensional context.
Even though the re-projection extends the 2D action
into nD, its nature remains two-dimensional. Another
2d action (usually using a different view) has to be pre-
sented to refine the action and such a refinement often
has to be performed several times to satisfyingly ap-
proximate the desired nD action through a combination
of multiple 2D actions [22], [2].

The tool presented in this paper, called the similarity
brush, combines automatic and human-based process-
ing in a way that overcomes the dimensionality bottle-
neck of a computer display. This is feasible using the
presumption that the samples similar one to another are
often parts of the same structure regardless of their di-
mensionality. This enables to bridge the screen space
and the data space through similarity information that
captures the nD structures inside the data. Thus high-
dimensional relations can be explored by user in a sin-
gle 2D display and the interaction with the 2D display
connects directly to the original data space where auto-
matic techniques take place. The similarity brush pro-
vides a new means to focus user attention and to steer
the exploratory process inside a multidimensional envi-
ronment.

The fact that various similarity measures used to ab-
stract multidimensional information have been heavily
investigated in the data mining society [15], [16] cre-
ates a reliable theoretical background for abstracting
the nD information and makes the presented concept
a promising framework for visual exploration of multi-
dimensional data.

The tool and the idea behind it are further explained
in Sections 3 and 4. Examples of using the similarity
brush together with comments on them can be found in
Section 5. The related work is addressed in Section 2.

2 RELATED WORK
The need for an accurate display of multivariate data
is one of the most motivating stimuli for information
visualization. The techniques that visualize multivari-
ate information are basically twofold. Either they re-

duce the number of dimensions (by dimension sub-
setting or dimension reduction) so that intuitive visu-
alization methods can be used or they display all di-
mensions using various sophisticated designs [9] (di-
mensional stacking, dimension embedding or axis re-
configuration.) Dimension reduction techniques such
as principal component analysis [10], self organizing
maps [11] or multidimensional scaling [13] produce a
low-dimensional representation of the data while trying
to preserve most of the multidimensional information.
In our approach this information is condensed in a func-
tion that describes similarity between two data entries.

The similarity brush uses this function to produce a
data-based selection that is derived from a user speci-
fied screen-based brush. The idea of data-driven brushes
was successfully implemented in the structure based
brushes [9] to perform selection in data space, but a hi-
erarchical structure for the data had to be provided be-
forehand. An attempt to perform data-driven brushing
was presented by Martin and Ward [14]. Their solution
operates only on the two-dimensional data subspace
identical to the screen space and the brush is eventually
ruined by being transformed to a combination of regular
one-dimensional value-based queries, which naturally
includes many undesired entries into the result.

Our approach protects the multidimensional nature
of a data-driven brush and works without any a priori
given hierarchy. Moreover it stores separate informa-
tion about the screen-based brush and the derived data-
driven brush to enable further refinement in both the
data space and the screen space. These two brushes are
combined using a framework described in Section 3.2.
The framework extends and formalizes various pre-
vious approaches to brush combination [5], [21] and
balances the combination of two different information
spaces.

2.1 Interaction
One way to deal with the limitations of an infovis dis-
play leads through changing the parameters of the vi-
sualization or performing user-driven operations on the
data. Manipulation with the display is a crucial part of
the visual exploration. Especially if the data are mul-
tivariate and the user has to change his focus, operate
with different views, refine his actions or adjust the dis-
play to fit his/hers needs. As described in [7], through a
realtime interaction with the display the user immerses
himself in the data and if the connection between his
actions and the reaction of the display is appropriate,
even complex structures can be perceived in a 2D dis-
play [12].

An important part in interactive exploration is defin-
ing the area of interest. This paper addresses this
problem by combining nD brushes and 2D interaction,
which allows to perform multidimensional selection



Figure 2: The basics of similarity brushing – primary selection inside the remote sensing data set is conducted on screen
as a combination of different local brushes (marked yellow.) The data-driven selection (marked red) is derived from it by
decreasing the similarity threshold.

operation using only standard interaction metaphors
like brushing or dynamic queries [1], [24].

In a wide area of data analysis tasks the area of in-
terest is not known beforehand and the exploratory pro-
cess involves looking for interesting structures or pat-
terns in the data. The hereby presented approach takes
advantage of another well-known metaphor – the Magic
Lens [4] – and uses it to integrate information of nD na-
ture into the screen space. The examples demonstrating
the advantages of these new interaction options can be
found in Section 5.

2.2 Scatterplot
We chose Scatterplot to illustrate the benefits of the
similarity brush, as it is a popular and very powerful
visualization technique. Scatterplot [3] is plainly an or-
thographic projection of n-dimensional data space into
a two-dimensional subspace determined by particular
two of the original dimensions. The greatest advan-
tage of the scatterplot lies in the ability to show two-
dimensional relations in an instant thanks to the projec-
tion that preserves the basic spatial relations. The draw-
back of the simplicity of the scatterplot are the limita-
tions of the displayed dimensions. Structures exceeding
the two specified dimensions or those that are overplot-
ted might get lost in the scatterplot. A different view
is usually necessary to improve the visualization. The
similarity brush overcomes this limitation and provides
valuable information from "behind the scenes". With
the help of the similarity brush many new structures that
could not be seen before are revealed, mainly those of
higher dimensionality or with unsharp and overlapping
borders.

3 SIMILARITY BRUSHING
In this section we describe our new approach to jointly
operate in visualization space as well as also in data
space when interacting with the data, e.g., while select-
ing data subsets of special interest or during interactive
data exploration. Below, we first describe the basic idea
of Similarity Brushing before we go into details.

3.1 Similarity Brushing – The Basic Idea
For similarity brushing we consider a visualization sce-
nario in which an n-dimensional dataset D (with n
usually being around 5 to 50) is visualized in an m-
dimensional visualization space V (with m < n and m
usually being 2 or 3), i.e., a scenario in which the visu-
alization transform p : D → V introduces a loss of di-
mensionality. As well known also from a lot of related
work, it is difficult (or sometimes even impossible) to
properly represent the n-dimensional relations between
the data items of D in the m-dimensional visualization.
Through p, it is usually well possible that data items,
which are far apart from each other in the n-space, lie
near to each other in the mD visualization. Accordingly,
it easily can happen that data substructures (like data
clusters), which clearly are delimited in n-space, show
up intermingled in the visualization and therefore can-
not be visually differentiated apart from each other.

Similarity brushing now enables the user to jointly
address structures in the visualization, i.e., data struc-
tures which are preserved by transform p, as well as
also structures, which only show up in the original nD
data space. The basic idea of similarity brushing is as
follows:

Working in visualization space: First, the user inter-
actively marks a certain structure in the visualization
(like in standard brushing) to select some data items
for further investigation. The prime example here is
that the user marks the core of a data structure of
interest in the visualization. This can be one data
point only, an entire subset of the data, or even a
larger part of the visualized data items.

Working in data space: Next, the user extends this
first brush to also include further data items which
are similar to the already selected data items. The
important thing here is that now a distance metric for
the nD data space is used (instead of measuring dis-
tances in visualization space). Thereby, only those
data items are added to the original brush which
also are near to the previously selected ones in the
n-space. To continue our prime example, the user



would thus extend his/her first (quite conservative)
selection to also include all other data items of the
spotted data structure (but without touching all those
data items which only seem to be part of the struc-
ture, but not really are – at least in terms of distances
in n-space). An example is depicted in Figure 3.

The advantage of similarity brushing is that we can ex-
ploit the advantages of the visualization as well as of a
data-centered approach (such as data mining): (1) The
mD data visualization usually provides the user with a
very intuitive interface to the data – the user literally
sees the data in front of him/her. The human visual
system is very powerful in detecting interesting struc-
tures/subsets in such a visualization. Accordingly, it
is very useful to allow the visualization-based selec-
tion of data items (as long used under the term brush-
ing). (2) Our approach to extend (not substitute) this
interaction also to data space allows to overcome situa-
tions where disadvantages of the visualization become
apparent such as the loss of dimensionality that leads to
ambiguities in the visualization.

We see several key applications of this concept of
similarity brushing to ease the interactive visual anal-
ysis of n-dimensional data as described below:

nD substructure brushing: The most straight-forward
application of similarity brushing, as already ad-
dressed in the example above, is the interactive se-
lection of nD data substructures, which are nicely
delimited in n-space (but not in m-space, i.e., in
the visualization space). As described above, the
procedure is to (1) select a visually well-separated
core subset of the structure under investigation and
then (2) extend this brush to also include the other
(visually not so well-delimited) data items of the re-
spective data substructure. The result of such an ac-
tion can be seen in Figure 3.

(n− k)D subspace brushing: The substructure brush-
ing described before does not necessarily have to
consider the full dimensionality of the data set. Of-
ten there are features that reside inside a certain
(n− k)D subspace of the original data domain but
are lost if the whole set of dimensions is considered.
The similarity brush allows for user-driven selection
of dimensions to use to evaluate the similarity.

Interactive nD exploration: Another very useful ap-
plication of similarity brushing is the interactive vi-
sual analysis of high-dimensional properties of the
nD data. This can be achieved by interactively mov-
ing the visualization-based mD brush over the visu-
alization and at the same time watching what data
items get selected through the brush extension based
on the nD distance metric. Examples of the applica-
tion used to discover hidden relations are presented
in Figure 4.

Figure 3: An nD similarity-based selection in the geochemi-
cal data [8] renders as sparse and scattered in 2D. It is even
overlapped by different unselected items. Obviously it would
be very hard and too laborious to select this structure using
only conventional brushing.

Iterative brush refinement: The fourth interesting ap-
plication of similarity brushing is the option for it-
erative brush refinements. In this application, the
two-step process of similarity brushing are extended
to form a process of alternately working in visual-
ization and data space. For example, a brush can
be started in visualization space as described above,
then the brush can be extended to nD (again as
above). But instead of stopping here, the user could
go back to visualization space, e.g., alter the visu-
alization setup by choosing a different visualization
mapping p first and then again restrict the brush to
only contain a subset of the currently selected data
items (an AND operation with a second brush, for
example).

Below, we now present a formal framework of how to
integrate the selections in visualization space and those
in data space.

3.2 Similarity Brushing – A Unified
Framework

First we recall that we assume an nD data space D and
an mD visualization space V , as well as a visualization
transform p : D → V . In the following, we will now
consider the two parts of similarity brushing, i.e., the
visualization-based brushing as well as the data space
based consideration of distances between data items.

For mD brushing (part 1), we assume that brush-
ing interactions result in the assignment of a so-called
degree-of-interest (DOI) function bV to all the data
items – bV (di) is 1 if data item di is brushed, i.e., se-
lected, and 0 if not. Often, bV will be such a function
to either map to 1 or 0, but nothing else (either a data
item is brushed, or not). However, in many applica-
tions, it also makes sense to allow bV to map to the en-



tire interval [0,1] – called smooth brushing in the work
of Doleisch et al. [6]. Even though we will in the mean-
time assume the bV is either 0 or 1, we will further be-
low demonstrate that all the here presented framework
also works fine with a smooth brush bV .

For nD extensions to our mD brushes, we assume
to have a nD×nD metric < ., . >D∈ R+ available in
data space to compute distances between nD data items
(with < di,d j >D= 0 ⇔ di = d j). In a first approach,
we will consider the nD extension of an mD brush bV to
be defined as follows: all data items di, which not yet
are brushed by bV , i.e., with bV (di) = 0, are checked
whether there exists any other (brushed) data item d j,
i.e., with bV (d j) = 1, which is near enough, i.e., with
< di,d j >D < dmax. If such a near and brushed data
item d j can be found, then di is added to the brush.

In our unified framework, we formulate mD brushing
and nD extensions of mD brushes as follows. In addi-
tion to brush bV we assume a non-visual “brush” bD to
map nD distances to 1 (or 0), depending on whether the
distance yields an inclusion within the extended brush
(or not, respectively). We now integrate bV and bD to
yield a combined brush b for all data items d i, depend-
ing on whether they are part of the extended similarity
brush:

b(di) = 1−min
j

((1−bD(<di,d j >))+ (1−bV(d j)))

(1)
In other words, to evaluate whether a data item d i is
part of the extended similarity brush b, all data items
d j are checked (at least in principle; in practice it is
sufficient to check only those with bV (d j) > 0 – all the
others cannot generate a b > 0): If there is at least one
data item d j which (1) lies in the original brush, i.e.,
bV (d j) = 1, and which (2) is near enough to data item
di, i.e., bD(di,d j) = 1, then also b is 1. This, of course,
also holds if di itself lies in the original brush bV . There
are a number of nice properties of this integration to be
mentioned:
Boundedness of b – The ((1−bD(.))+ (1−bV(.)))-

argument of the min is bounded (for an arbitrary
j) between 0 and 2 (which potentially could lead to
negative bs). But for j = i, bD(<di,d j >)= bD(0)=
1. This yields that ((1−bD)+ (1−bV)) is bounded
between 0 & 1 for j = i. Accordingly, the entire
min-expression cannot become more than 1 which
consequently yields that 0 < b < 1.

Preservation of bV – With the same line of argumen-
tation as above we can show that b(di) ≥ bV (di),
i.e., for data items which already lie within the orig-
inal brush, the extended brush cannot exclude them
anymore.

Smooth brushing compliance – Equation (1) also holds
for smooth brushes, i.e., bV ∈ [0,1] and bD ∈ [0,1].
The ((1−bD)+ (1−bV))-expression can also be in-
terpreted as a sum of two distances, one measured

in visualization space (1−bV ) and one measured in
data space (1− bD). If the sum is small enough,
then the resulting b can become greater than 0 which
means that the respective point is included within the
extended similarity brush b.

For the implementation, a number of optimizations can
be realized, of course, to speed up the calculation of
b. First, only those data items d j need to be checked
with a non-zero bV (this most oftenly is a comparably
small number). Second, data items d i, which are too
far away from brush bV after projection p, do not need
to be evaluated since they can never generate a b > 0.
Practice shows that only a relatively small number of
data items actually have to be checked to compute b.

4 SIMILARITY BRUSH WORKFLOW
The process of data exploration using the similarity
brush is user-driven and constructed in a way that the
user can take advantage of the automatic methods dur-
ing the whole process. In the first stage a primary se-
lection (depicted in yellow) is performed in the screen
space using usual brushes and their various combina-
tions (AND, OR, NOT). The secondary selection is a
data-driven brush derived from the primary selection
and is depicted in red. The last parameter is the sim-
ilarity threshold that, basically, determines the extent of
the selection.

The selection process can be iterated or refined to
support complex data exploration tasks. Let’s consider
real world data (Figure 2). These data contain many
outliers that for many reasons are usually considered an
undesired feature of the data. To remove the outliers,
we select several among them on screen and then ex-
tend this selection in the data space to include all the
outliers. This selection can than be refined in other di-
mensions to include more outliers or remove entries that
are of interest with respect to a different projection. Af-
ter that the outliers, which are now selected using the
similarity brush, can be removed and the data analysis
can continue.

4.1 Advanced Interaction
To support the visual exploration tasks such as segmen-
tation or classification a number of other functionali-
ties is present. Any performed selection can be stored
as a segment which excludes its entries from further
brushing and is marked by a different color. In addi-
tion, every segment can be broken apart which reverses
the segmentation process and returns its entries back
to the data domain. With the support for unsharp and
overlapping features provided by the similarity brush
this allows for efficient user-based data-driven classifi-
cation or segmentation of multidimensional data. (see
example)



Figure 4: Major changes in the underlying structure discovered using the realtime exploration feature. The assumed indiffer-
ent region (first picture) in the bottom left of the scatterplot is evidently compiled of two separate structures (second and third
picture.) The fourth picture proves the smaller structure being identical with the class number seven.

5 EXAMPLES
In the following sections, several examples illustrate the
using of similarity brush to discover interesting multi-
dimensional behavior or to easily perform complicated
brushes. The data sets for these examples are the remote
sensing data [19] obtained from SPOT satellites [17]. It
contains 5 distinct channels (SPOT, magnetics, 3 bands
of radiometrics) combined for a particular region in
Western Australia. The second data set contains geo-
chemical data [8] of concentration of multiple elements
in a series of observed samples. The last one is one of
the Statlog datasets [18] and contains samples produced
by image processing together. It is a data set that is usu-
ally used for training automated techniques and thus it
also includes classification information (brickface, sky,
foliage etc.) We used this classification to partially eval-
uate relevance of our exploration.

5.1 Separate structures
Interesting topology can be discovered in a 2D dis-
play using the similarity brush. For example sudden
changes in the brushes generated by two areas imply
that these areas are separate structures in the original n-
dimensional space. This can be explored using the re-
altime exploration feature of the similarity brush. The
user moves the primary brush (often only a point se-
lection) over the display and observes the changes of
the secondary brush. An area in the image process-
ing data, that was previously considered homogeneous,
turned out to consist of two separate structures (Fig-
ure 4.) To illustrate the relevance of the data-driven
brush we compared this new information to the classi-
fication provided with the data set. The entries encom-
passed in the brush fully correspond to those segments
of the source images that depict grass.

5.2 Subspace relations
Unlike the previous example, the structures don’t only
have to be separate in the full dimensionality of the
original data domain. Two different three-way combi-
nations (SPOT, Magnetics, Uranium and SPOT, Tho-
rium, Uranium) of dimensions were used to create two

Figure 5: Two different subsets of dimensions were used to
compute similarity information. This resulted in two different
data-driven brushes (red) given the same primary selection
(yellow).

different similarity measures. Given the same screen-
based primary selection (samples with very high potas-
sium values) two data-driven selections were derived
from that (Figure 5) and we observe differences be-
tween them. The most significant difference is that a
change in the set of considered dimensions splits the
dense U-shaped cluster into two, revealing its two-fold
intrinsic nature. The left part (with low thorium val-
ues, evaluated using SPOT, Magnetics, Uranium) and
the right part (with high thorium values, evaluated us-
ing SPOT, Thorium, Uranium). The left part is much
more similar to the samples with high potassium values
with respect to the magnetics characteristics. Unlike
that, the right part is more similar to the high potassium
samples with respect to the concentration of thorium.

Using only usual visualization the cluster would prob-
ably be considered homogeneous. The real nature of the
cluster could be discovered using automatic data min-
ing, but without user interaction the analysis of such a
knowledge would require additional human-based ef-
fort.

5.3 Anomalies
The geochemical data contains an interesting entry that
was discovered using the similarity brush. When inves-
tigating the data set using the realtime similarity brush,
one entry was found to generate no secondary brush.
Even though this entry is not depicted as an outlier (in



Figure 6: Complex, unsharp and overlapping segments are seldom feasible when conventional brushing techniques are
applied. With similarity brush the segmentation of the remote sensing data set took less than a minute and required only
simple interaction. Please refer to [23] for full color pictures.

any projection of the geochemical data) it is not simi-
lar to any of the remaining entries unless a very loose
threshold is chosen. It is a hot candidate for a multidi-
mensional outlier – a sample that lies within a reason-
able range of neighbors in every projection, but the sets
of the neighbors change over the dimensions (imagine
a point in the centre of a hollow sphere-shaped shell.)
This makes it isolated if the full dimensionality of the
space is taken into account.

5.4 Interactive segmentation
Automated techniques are often used to perform seg-
mentation tasks. But the automated techniques in many
ways benefit from the domain knowledge, intuition and
abstract thinking of the human user. In conjunction
with the similarity brush, the user has the ability to
incorporate his capabilities into the segmentation pro-
cess by specifying interactively the core of the seg-
ments and the difference tolerance level within a seg-
ment. This gives him a two-fold advantage over the
automated techniques. First, the user can specify com-
plex and sophisticated starting points for the segmenta-
tion process via creating the primary selection. Second,
the user can at any time refine his selections, backtrack
the steps and change the decisions he/she made. These
actions are rarely performed in an automatic segmenta-
tion process.

In addition, the similarity brush interleaves the se-
mantic identification process with the segmentation pro-
cess. If a computer performs data segmentation auto-
matically, it often produces segments without an actual
meaning and additional human-based processing has to
take place in order to identify the semantics of the seg-
ments. In interactive segmentation provided by similar-
ity brushing the segment starts as a specific core that is
user-specified and thus correspond to some real world
knowledge provided by the human.

The Figure 6 shows the results of user-based segmen-
tation on a dense multidimensional data set. The result-
ing segments are consistent and prove to be compact

in all views (only three are depicted here though.) The
segments have sparse boundaries and overlap in most
of the views, which is a common property among real
world multivariate data, and would be difficult to mark
out using only conventional screen-based brushes.

6 EXTENDING THE CONCEPT
The similarity information computed from all the di-
mensions of a data set offers hints about the nD nature
of the information. As a concept, this can be easily
incorporated into other popular displaying techniques,
such as the parallel coordinates or the histograms. Also
possible extensions of the concept could be used in sci-
entific or flow visualization.

The design allows for arbitrary similarity functions to
be used. Among the most popular ones are the spatial
distance measures (Euclid, Chebychev, Manhattan, Ma-
halanobis.) Another option is to use information gained
from e.g. fuzzy clustering or other automated data min-
ing techniques. Such techniques detect items of similar
properties in the set and group them together. The simi-
larity of two samples could thus be evaluated using this
information.

Another promising extension is to allow new samples
to "join" the screen-based brush if they are close enough
or follow other given criteria. This would allow for the
chaining effect known from data mining and structures
of even more complex shapes could be addressed.

7 CONCLUSION
The tool presented in this paper uses a combination of
visual and automatic data-mining to introduces a new
way to integrate n-dimensional information into a low
dimensional display. By interaction with the similar-
ity brush, the user gets to directly touch the multi-
dimensional structures in their original space instead
of having to only approximate this by numerous low-
dimensional actions. This interaction technique can be
used to enhance visual exploration of multidimensional



data. As shown by the examples, complex multidimen-
sional topology can be observed even in a simple scat-
terplot by using the similarity brush. With the use of
the similarity brush for visual exploration, extra infor-
mation can be provided that might help the user to steer
his precious attention in further visual exploration ac-
tions.

This intuitive tool does not encumber the user’s per-
ception by generating visual overload and can be suc-
cessfully used in many displays. We believe that the
similarity brush may well become a useful interaction
tool for exploring multidimensional data in many future
applications.
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