
Volume Wires : A Framework for Empirical Non-linear
Deformation of Volumetric Datasets

S.J. Walton and M.W. Jones
Swansea University

cssimon@swansea.ac.uk m.w.jones@swansea.ac.uk

ABSTRACT

We introduce a new framework for non-linear, non-reconstructive deformation of volumetric datasets. Traditional techniques
for deforming volumetric datasets non-linearly usually involve a reconstruction stage, where a new deformed volume is recon-
structed and then sent to the renderer. Our intuitive sweep-based technique avoids the drawbacks of reconstruction by creating
a small attribute field which defines the deformation, and then sending it with the original volume dataset to the rendering stage.
This paper also introduces acceleration techniques aimed at giving interactive control of deformation in future implementations.

Keywords: Volume rendering, Volume deformation, Swept volumes, Curves, Volume Animation, Nonlinear deformation,
Attribute distance field

1 INTRODUCTION
Research in the area of volume graphics is mainly con-
centrated on visualisation techniques. Tools and API’s
for volume modeling [SK00] and visualisation [WC01]
exist, but there is a lack of tools and techniques for
interactively manipulating these datasets. For surface-
based graphics, a huge variety of tools exist (such as
Maya and Character Studio) for the manipulation and
rendering of such objects. It would be beneficial to the
volume graphics community to bring some of the con-
cepts of such powerful animation tools to working with
volume datasets.

Volumetric deformation techniques have been recently
documented in the literature [CCI+05]. Deforming vol-
umetric datasets is viewed as a more complex problem
than surface-based deformation due to the size of the
data. Even if one extracts a subset of this data (a vol-
ume object) with segmentation techniques [Lak00], the
number of voxels to be deformed is still a limiting fac-
tor. Some approaches rely on either converting to an
intermediate representation (using marching cubes to
convert to a mesh structure) and then deforming that
representation, or reconstructing (voxelising) a newly
deformed volume dataset to be passed to the rendering
stage.

This paper introduces a new software-based method
to deform a volumetric dataset non-linearly without
converting to a mesh geometry or using expensive vol-

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

Journal of WSCG, ISSN 1213-6972, Vol. 14, 2006
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

ume reconstruction techniques. Our work concentrates
on empirical deformation with the aim of producing a
simple to use volume deformation and animation tool.

2 RELATED WORK
We split the related work into two logical areas - vol-
ume deformation and swept volumes.

2.1 Volume deformation
Spatial Transfer Functions [CSW+03] were introduced
by Chen et al . They define a framework for specifying
spatial transformation and deformation for volume ob-
jects. A spatial transfer function defines the geometrical
transformation of every point in the volume. Typically,
a backward-mapping operation must be performed (the
inverse of the deforming function) to find out where to
sample in the dataset based on the current sample point
on the ray. Depending on the complexity of the func-
tion, the computational cost can be high.

Similar non-reconstructive approaches involve plac-
ing ray deflectors in the scene [KY95] which deform
the ray as it passes through the volume, but its use is
rather limited, and specifying the deflectors is typically
unintuitive as the user must think in terms of the reverse
effect. Hardware-accelerated methods that work with
isosurfaces exist such as in [WRS01], however, speci-
fying the deformations is still unintuitive for the user,
and isosurface property restrictions exist. Other tech-
niques such as the 3D chainmail algorithm [Gib97] rely
on moving the individual voxels and then splatting the
newly-positioned voxels to the screen [Wes90]. These
methods still (e.g. for animation purposes) do not al-
low for intuitive deformation on a large scale from the
perspective of the user.

More recent work by Gagvani [GS01] has allowed for
the widely-used IK-skeleton deformation methods to be

utilised in volume graphics, whereby an entire new vol-
ume is reconstructed and then rendered. The algorithm
is costly when the size of the dataset is large (for ex-
ample, the visible human), as for the case of an anima-
tion, a new dataset must be created for each frame. A
small animation can easily run over 50GB when stored
on disk.

Prakash and Wu [WP99] animated the visible human
using Finite Element Methods and clustering for seg-
menting the dataset into blocks. A hardware acceler-
ated manipulation system called VolEdit [SSC03] al-
lows the user to interactively manipulate the IK-skeleton
and see the results in real-time. Since the transforma-
tions are linear, cracks can appear at joint areas. The
VolEdit system solves this problem using mid-plane ge-
ometry. Part of the motivation for our work in this paper
has been to solve this problem with a software based,
non-reconstructive method.

2.2 Swept volumes
A swept object is produced when some template is
swept along a trajectory through space. The template
to be swept can be a static template such as a 2D im-
age, or a dynamic template that changes through the
sweep. Complex swept objects can be achieved by scal-
ing [BvNP89] or rotating the template as it is swept.
If the template varies as with slices through an axis of
a volume dataset, then the result is a volume dataset
swept along a new trajectory.

Much work has been published on swept volumes
with an excellent review of techniques given in [AMBJ00].
The amount of work published is a reflection of the dif-
ficulty of some of the associated problems with sweep-
ing techniques – in particular, the problem of determin-
ing properties of a swept object such as its boundary
and volume. Early work on swept solids by Kajiya
[Kaj83], and Wijk [vW84] go into some detail on meth-
ods for ray-tracing swept solids defined with arbitrary
paths. Sealy and Wyvil [Sea97] describe how to vox-
elise new volume objects by sweeping contours along a
curve, which is achieved by recursively subdividing the
curve.

In [WC02], 2D images are swept along a path de-
fined by a Bézier curve to reconstruct a volume. The
volume is rendered using direct volume rendering. The
authors also discuss attempts to directly evaluate the re-
sulting deformation without reconstructing a volume,
but unfortunately such evaluation is expensive (since it
involves using numerical root finding methods), restric-
tive, and problematic (e.g, singularity conditions on an
axis where an image is swept around the axis).

A swept volume is produced when a swept object is
voxelised [Sea97]. The new volume can then be ren-
dered using any volume visualisation technique. The
disadvantage of reconstructing a volume from a sweep
is the space requirement – a new volume must be pro-

duced and either stored in memory or on disk. For an
animation, this is multiplied by the number of frames
if the user wishes to retain the intermediate data to re-
render the animation at a later date, with new view pa-
rameters or lookup functions.

3 DISTANCE FIELDS AND ATTRIBUTE
PROPAGATION

Since a distance field technique is required for our
method, we present a brief overview. Distance fields
[SJ01] have been widely used for a variety of applica-
tions in the volume domain, such as morphing [BW01],
voxelisation [Jon96] [JS00], and skeletonisation [GS01].
A distance field dataset D representing a surface S is de-
fined as D : R

3 → R, and for p ∈ R
3,

D(p) = min{| p−q |: q ∈ S} (1)

where || is the Euclidean norm and q are the near-
est points on the surface. Each voxel in the field con-
tains a value that represents the minimum distance to
the surface of interest in the data. In the case of vol-
ume data, we may be interested in a particular isosur-
face representing, for example, the bone surface in a
medical dataset. We can sign the value depending on
whether the voxel is inside the target surface - becom-
ing a signed distance field. A fast method of computing
this field is by using the distance transforms [SJ01] to
propagate local distances.

It follows that if we can propagate the minimum dis-
tances to a surface in this way, any related attributes of
the surface (e.g. colour, as in [BM99]) can also be prop-
agated. These additional attributes can be stored at each
voxel in the distance field. The field then becomes:

D(p) = (min{| p−q |: q ∈ S},a1, . . . ,an) (2)

where a1, . . . ,an are our additional attributes. If only
the attributes are of interest then the distance value at
each voxel may be discarded, thus saving typically 4
bytes per voxel if using floating-point precision. In our
method, we discard the distance values as they are not
needed in later stages.

4 METHOD DESCRIPTION
Our approach is based on the idea of sweeping a vol-
ume object along an arbitrarily defined path, although
the approach may also be viewed from the standpoint
that the deformed path has the effect of deforming the
surrounding volume object. Because no reconstruction
takes place, the deformation and rendering stages are
closely coupled. Figure 1 gives a high-level overview
of the system. The method is not limited to specific
classes of curve or any other trajectory definitions, ex-
cept for the requirement that it can be parametrically
evaluated, satisfying the general form:

α (t) = (αx(t),αy(t),αz(t)) (3)

The deformed dataset is evaluated at render time using
an attribute field, and can be rendered easily with a ray-
casting renderer using backward-mapping operations.

Volume
Dataset

User-defined
wires

Attribute Field
generation

stage

Attribute
Field

Rendering stage

Image

Figure 1: System overview

4.1 Specifying the deformation
From the user’s point of view, the specification of the
deformation is conceptually similar to that of wire de-
formers in Maya. We are therefore extending this
surface-based deformation technique to work neatly
with volumetric datasets. Such a transition is not triv-
ial due to the entirely different data representation (dis-
cretely sampled vs. surface based). In addition, an im-
portant difference is that we are not deforming the data
itself and sending it to the rendering stage.

In our method, the user defines a base wire close to
or inside the object to be deformed, and also an ob-
ject classification function for the wire β(p ∈ R

3) →
[true, f alse] which determines the associated volume
object. The wire is then transformed via translations,
rotations, and curve deformation and this has the ef-
fect of deforming the volume object defined by β in the
wire’s specified region of influence.

The method permits scaling and rotation values at ar-
bitrary points on the wire. For example, an angle of
θ = 0 at one end of the wire and θ = π at the other will
produce the effect of the object being twisted along the
path (linearly interpolating the θ values). The length of
the base wire and the modified wire need not be equal,
which allows for compression and expansion of the data
along the trajectory of the wire.

Figure 2(a) gives an overhead view of the user-defined
base wire on the CT carp dataset. Figure 2(b) shows
that the user has modified the wire, pulling one end
of the wire in the negative y-axis direction. Finally,
Figure 2(c) shows the resulting render from this defor-
mation. In this example, the wires are Bézier curves.
The base wire in this instance acts as the backbone of

y

x

(a) The base wire

y

x

(b) Modifying the wire

y

x

(c) The resulting render

Figure 2: Fish deformation

the carp. Deforming this backbone and then rendering
the result would result in a new pose for the carp, as
the surrounding soft tissue would be deformed around
the backbone. The backbone could be derived semi-
automatically using a simplified distance field thinning
technique [GS01] (choosing the strongest segment) or
watershed segmentation technique [Lak00].

5 BUILDING DEFORMATION DATA
In this stage, the deformation information from the
wire-specification stage is encoded into an attribute
field, which is then sent with the original volume object
to the rendering stage. The attribute field is a volumetric
dataset (γ,ε) where γ maps voxels to their correspond-
ing wire and ε maps voxels to the t-value (see equation
3) of the closest point on that wire. For certain classes
of curve (e.g. Catmull-Rom splines), the segment index
also needs to be stored.

The attribute field need not be the same scale as the
volume. In our research we have found that produc-
ing an attribute field of 1/8th size (half each dimen-
sion) produces results very close visually to the full
size field. Additional considerations regarding reduced
scale fields and example images are given in a later sec-
tion.

For each base wire, we associate a set of planes P (see
Figure 3) aligned with the trajectory of the wire. The
plane dimensions are automatically defined to tightly
fit the target object defined by classification function β
within the wire’s region of influence. To generate the
attribute field, an empty field is initialised over the do-
main of the union of each of the wires’ region of in-

t=0
t=1

Figure 3: Planes defined along wire

fluence. A mapping is now defined between planes on
the base wire and planes on the modified wire, essen-
tially the planes are copied based on their t-value. For
each plane on the modified wire, we look at the attribute
field voxels touched by the plane. If the plane touches
a voxel, then a flag is set with that voxel.

The optimal number of planes can be calculated from
an approximation of the wire’s length. For parame-
terised curves, the length can be approximated with pre-
cision p by:

| α |=
p

∑
i=2

| α (
i
p
)−α (

i−1
p

) | (4)

where || is the Euclidean norm.

5.1 Voxel Initialisation
Each wire is now voxelised into the attribute field.
When a new cell is entered by the wire, each of the
eight surrounding voxels’ γ (the wire reference) and ε
(closest t-value) attributes are set, and also the distance
d from the voxel to the point defined by ε, as shown
in Figure 4. The closest point on the wire is calculated
by subdividing the subset of the curve inside the voxel
(as in equation 4), and this calculation can be achieved
with parametrically-defined precision1. If a voxel has
already been set in a previous cube (as with v4), then
the new and current minimum distances are compared
and the minimum taken. This is denoted by the greyed-
out vector in Figure 4 where d ′ < d.

d'd

cubencuben-1 cuben+1

w0

ε = d'
w0γ =

V4

Figure 4: Pre-propagation voxel initialisation

Once this process is complete for all wires, the dis-
tances and associated attributes are propagated using a
distance transform method, and the distance values are

1 This is a fairly fast and accurate way to approximate the closest point
on a curve. Spline implicitization [Sha03] or other methods [Sch90]
could be used if more precision is required, at the expense of addi-
tional complexity.

discarded. The propagation only takes place with vox-
els flagged in the previous step, so large areas of the
field can be skipped. It is this propagation that removes
the need for a costly backward evaluation at each voxel.

6 RENDERING THE DEFORMATION
To render the deformation, a standard ray-casting ap-
proach is followed, with rays cast into the attribute field
instead of the volume object. We choose a ray-casting
approach to ensure a possible straightforward GPU im-
plementation for Geforce 6 based cards. All voxels in
the field which have not been flagged are ignored. At
each sample point psample on the ray, the wire refer-
ence w from the nearest voxel is noted. For the cur-
rent sample point psample, the wire parameter value t is
trilinearly interpolated from the eight surrounding vox-
els. The mapping achieved between the base wire and

pcurve
p
curve

p
sample

psample

w

rayi

rayj

(a) The modified wire

p'
sample

w

p'
sample

p'curve

p'curve

(b) The base wire

w

p'
sample

p'curve

p'curve

p'
sample

rayi

rayj

(b) The effective path of rays i and j

Figure 5: The mapping between wires

the deformed wire is illustrated in Figure 5. Given the
wire reference w and t-value t, we can calculate the
closest point on the modified wire and build a vector
to it, becoming psample → pcurve. To obtain the ac-
tual sample point in the volume dataset from this, vec-
tor psample → pcurve is mapped onto the base wire, be-
coming p′

sample → p′curve by using the t-value. This is
demonstrated in Figure 5 where two sample points on
rayi and ray j are mapped from the modified wire (a) to
the base wire (b). p′

sample is now our new sample point

in the dataset. The final effect of rayi and ray j’s trajec-
tories being deformed is shown in (c).

If the attribute field has been scaled with respect to
the volume object, then the density of sample points in
the field must be modified accordingly. We also must
deal with cases where a cube’s eight vertices give dif-
ferent wire references, as in Figure 6. The interpolated
t-value at psample would be inaccurate for either choice
of wire (a or b). We have looked at fast methods for
recovering a t-value (such as taking averages of the ma-
jority wire), but we have found that the decision at these
voxels contributes little to the final image quality ex-
cept with very low scale fields. In the resulting images
(given later), we simply choose the wire and t-value at
the closest voxel to psample.

rayi

a 0.1 a 0.1

a 0.2

a 0.2

a 0.1

b 0.1

b 0.0

a 0.1

psample

Figure 6: Differing wire reference problem

6.1 Calculating the new normals
Once the the new sample point has been calculated, a
new normal at that point is required if we are to ac-
curately light the deformed object. One way to achieve
this would be to use central differences using backward-
mapped points, but this is clearly an expensive opera-
tion. Therefore, to compute the deformed normal, we
first compute the normal n at the new sample point
p′sample obtained in the backward-mapping stage. This
normal can be calculated using central differences in the
original volume dataset at p′

sample. To obtain a new nor-
mal n′, we transform n by the inverse of the backward-
mapping transformation obtained for the current sample
point. n′ is then sent to a lighting equation.

7 OPTIMISATION AND THE DELIN-
EATION PROBLEM

Problems may arise when the user wishes to deform two
objects that are in close proximity – perhaps by pulling
the two objects apart to separate them. We illustrate
this problem in Figure 7. Figure 7(a) shows two objects
x and y, and Figure 7(b) shows a slice of the objects
(the slice is shown half-way down the objects in (a)). In
this case, a plane of target object x’s wire (shown as a
dotted rectangle) has overlapped object y. Part of object
y will therefore be included in the deformation of object
x, since y is within x’s plane. This is unlikely to be what
the user would have intended in this case.

If the user has defined multiple wires inside the vol-
ume dataset, it is likely that they wish to treat the dataset

wa wb

x
y

(a) (b)

Figure 7: The delineation problem

as a set of disjoint volume objects as defined by func-
tion β . It would be favourable for the system to be able
to automatically delineate the objects in Figure 7 with-
out the user resorting to volume segmentation methods
[Lak00], which are typically very difficult to work with.

7.1 Plane masks
To solve the problem discussed above, plane masks are
introduced. Once the planes are defined on the wire,
a 2.5D seed fill2 is performed on each of the planes to
generate a 2D bit-mask, which is then stored with the
plane.

Figure 8 shows a selection of these masks defined
along the wire for the CT carp dataset, with an object
classification function β set to identify the outer skin
area with a simple value threshold. The resolution of
the mask can be varied by parameter s, and the memory
requirement for each wire in bytes is calculated as:

n

∑
p=1

(a(p)∗ s)
8

where n is the number of planes on the wire, a gives the
area of the plane, and s is a resolution scale multiplier.
Values of s below 1 give a sparse mask, values above
give a fine mask and therefore greater precision, at the
expense of a greater storage overhead and preprocess-
ing time.

Figure 8: Masks defined along wire

The algorithm automatically hunts for an appropriate
seed point by searching inside the plane area outwards
from the wire. The condition for a fill at each pixel in
the bit-mask is the wire’s β function. If a suitable seed
point is not found, then the plane is removed from the

2 Essentially, a 2D image cutting through the volume dataset - the 2D
bit-mask is filled, and the part of the volume touched by the plane
used to identify the target object.

list, as no object data has been found within the plane’s
subsection of the volume. To ensure that data at the
edges is not skipped, we also apply a morphological
dilation operation to the mask. Voxels in the attribute
field are now only flagged if the plane mask bit at that
point is 1 (See Figure 9).

Figure 9: A Plane mask flagging voxels

This solution is effective in that not only does it solve
the delineation problem, but it also further reduces the
number of flagged voxels in the scene, which reduces
rendering time. Backward-mapping operations are now
only performed on voxels whose resulting new sample
positions lie within the target object (or slightly out).
Table 1 gives the number of non-flagged voxels ignored
for some example deformations. Note that we do not
include samples outside of the field boundaries in the
figures.

Dataset # Sample pts # Pts ignored % ignored
CT Carp 26,011,195 15,523,566 59.7%
Visman 45,461,270 39,253,862 86.3%

Table 1: Voxels ignored while rendering

7.2 Speed / Storage / Accuracy trade-offs
Each voxel in the attribute field requires three attributes.
The first is γ : the wire reference, the second is ε : the
t-value on the wire, and the third is a bit for the flag that
denotes a voxel has been swept. If we assume floating-
point precision on the t-value, we have a minimum of 5
bytes per voxel including 7 bits for the wire reference
with a maximum of 128 wires in the scene. This storage
requirement can be reduced by using integer precision
on the t-value. Below is an example 2-byte per voxel
solution for Catmull-Rom spline wires.

Bits Range of values Data
1 2 swept flag
4 16 w : wire reference
4 16 s : segment index on w
7 128 integer t-value on s

The integer precision on the t-value has another ad-
vantage. The points at each integer offset on the wire
can be cached before the rendering stage and then used
during rendering to avoid expensive curve evaluation at
each sample point (the points are chosen by subdivid-
ing the curve as in equation 4). The wire point calcu-
lation is now reduced to a simple array lookup. If we

wish for greater precision still, linear interpolation can
be performed between values. The same technique can
be used for the wire normals : for each modified wire
point p, the difference between the wire normal at p
and the normal at the same t-value on the base wire is
calculated, and stored.

8 IMPLEMENTATION
The method has been implemented in C++ on GNU /
Linux x86. To assist with rapid testing, and to demon-
strate the simplicity of specifying deformations, we
have built a simple user interface using the GTK+ li-
brary. The interface allows the user to view the volume
dataset from multiple angles interactively and quickly
define and deform wires. The user can also specify an
animation by deforming the wire differently for an arbi-
trary number of frames. The wires can be saved to disk
for later retrieval, and rendered into a series of images
which can be encoded into a movie.

9 RESULTS
To give a more accurate representation of the overhead
of our method implementation, we first give the timings
for a software ray-casting volume rendering algorithm
written in C++ with very few optimisations (see table
2), and then modify it to work with our method (re-
sults in table 3). Preprocessing refers to the attribute
field generation stage, which also includes mask gen-
eration, curve lookup table generation, and other pre-
render data discussed in previous sections. The differ-
ence in the timings gives the overhead of calculating
the attribute field and transforming sample positions in
each case.

The base wire and deformed wires are identical to
give the same number of sample positions during vol-
ume rendering (thus ensuring a fair comparison). The
deformation is therefore the identity deformation. The
viewing parameters and image size of 512x256 are also
constant. The timings are based on a P4 at 3.2GHz with
512MB RAM.

Dataset Render time
CT Carp 5.74 secs
Tubes 2.59 secs
Visman torso 4.31 secs

Table 2: Standard rendering times

Dataset Preprocessing Render Total
CT Carp 1.78 12.65 14.43
Tubes 0.96 4.81 5.77
Visman torso 2.97 22.87 25.84

Table 3: Deform/render times

The timings were performed using all acceleration
techniques discussed, but the majority of code has not

yet been optimised. The tables show that the overhead
in the rendering stage is far higher than the preprocess-
ing stage. The biggest factor in the cost of attribute field
generation is the size of the field, as more propagation
must take place.

Figure 12 shows the visible human rendered with the
same deformation (the head has been pulled back), with
differing attribute field to dataset ratios. 1:1 (same di-
mensions) predictably gives the most pleasing repro-
duction, while a 1:4096 (each dimension is 1/16th the
size) field gives a blocky appearance due to trilinear in-
terpolation taking place in the large gaps between vox-
els. We also give the time for attribute field generation
for each.

10 CONCLUSION
We have introduced a new software-based framework
for non-linear, non-reconstructive deformation of volu-
metric datasets. The framework brings a much-needed
intuitive deformation method to the field of discretely
sampled object representations. The lack of such meth-
ods available for volume deformation severely hampers
the area, and we feel that this framework goes some
way to correct this.

We have shown that the method requires only a small
memory storage overhead, and avoids the discussed dis-
advantages of reconstruction-based methods. The spec-

Figure 10: CT Carp deformation

Figure 11: Visible human deformation

(a) ratio 1:1, time 11.74s

(b) ratio 1:8 (1:2 dim), time 4.45

(c) ratio 1:64 (1:4 dim), time 2.61s

(d) ratio 1:512 (1:8 dim), time 2.17s

(e) ratio 1:4096 (1:16 dim), time 2.12s

Figure 12: Attribute field scales

ification of such deformations can be easily defined
without knowledge of the internal algorithms that de-
form the data. The problem of delineating volume ob-
jects to deform independently is also handled in a sim-
ple manner.

In addition, the standard ray-casting approach to vol-
ume rendering can be used to render the result with only
minor modifications to the rendering engine. This fa-
cilitates the method’s integration into the volume defor-
mation and rendering pipeline. We have recently imple-
mented the rendering stage on the GPU by loading the
attribute field as a 3D texture, so the total time required
is now little more than the field generation overhead.

11 ACKNOWLEDGEMENTS
This work has been supported by EPSRC grant GR /
S44198. The authors would also like to acknowledge

Stefan Roettger’s volume library [Roe], and the Na-
tional Library of Medicine’s Visible Human project.

REFERENCES
[AMBJ00] K. Adbel-Malek, D. Blackmore, and

K. Joy. Swept volumes: Foundations, per-
spectives, and applications. In Interna-
tional Journal of Shape Modeling, 2000.

[BM99] D.E. Breen and S. Mauch. Generat-
ing shaded offset surfaces with distance,
closest-point and color volumes. In Pro-
ceedings of the International Workshop on
Volume Graphics, pages 307–320, March
1999.

[BvNP89] W. F. Bronsvoort, P. R. van Nieuwen-
huizen, and F. H. Post. Display of pro-
filed sweep objects. The Visual Computer,
5(3):147–157, 1989.

[BW01] D. E. Breen and R. T. Whitaker. A level-set
approach for the metamorphosis of solid
models. IEEE Transactions on Visualiza-
tion and Computer Graphics, 7(2):173–
192, 2001.

[CCI+05] M. Chen, C Correa, S Islam, M. W. Jones,
P.Y. Shen, D Silver, S. J. Walton, and
P. J. Willis. Deforming and animating dis-
cretely sampled object representations. In
Eurographics 2005 STAR Reports, pages
113–140, Dublin, Ireland, August 2005.

[CSW+03] M. Chen, D. Silver, A. S. Winter, V. Singh,
and N. Cornea. Spatial transfer functions –
a unified approach to specifying deforma-
tion in volume modeling and animation. In
Proc. Volume Graphics 2003, pages 35–44,
Tokyo, Japan, 2003.

[Gib97] S. Gibson. 3D chainmail: a fast algorithm
for deforming volumetric objects. In Proc.
1997 Symposium on Interactive 3D Graph-
ics, pages 149–154, April 1997.

[GS01] N. Gagvani and D. Silver. Animating
volumetric models. Graphical Models,
63(6):443–458, 2001.

[Jon96] M. W. Jones. The production of vol-
ume data from triangular meshes using
voxelisation. Computer Graphics Forum,
15(5):311–318, 1996.

[JS00] M.W. Jones and R.A. Satherley. Shape
representation using space filled sub-voxel
distance fields. In Vision, Modeling and Vi-
sualization, pages 316–325, 2000.

[Kaj83] J.T. Kajiya. New techniques for ray trac-
ing procedurally defined objects. In SIG-
GRAPH ’83, pages 91–102, New York,
NY, USA, 1983.

[KY95] Y. Kurzion and R. Yagel. Space deforma-
tion using ray deflectors. In Proc. 6th Eu-
rographics Workshop on Rendering 1995,
pages 21–32, Dublin, Ireland, June 1995.

[Lak00] S. Lakare. 3D segmentation
techniques for medical volumes.
http://www.cs.sunysb.edu/ mueller /
teaching / cse616 / sarangRPE.pdf, 2000.

[Roe] Stefan Roettger. The volume library.
http://www9.cs.fau.de / Persons / Roettger
/ library/.

[Sch90] P. Schneider. Solving the nearest-point-on-
curve problem. In Graphics Gems, vol-
ume 1, pages 607–612. Academic Press,
1990.

[Sea97] G. Sealy. Representing and rendering
sweep objects using volume models. In
CGI ’97, pages 22–27, Washington, DC,
USA, 1997.

[Sha03] M. Shalaby. Spline implicitization of pla-
nar curves and applications. PhD thesis,
Johannes Kepler University, 2003.

[SJ01] R.A. Satherley and M.W. Jones. Vector-
city vector distance transform. Com-
puter Vision and Image Understanding,
82(3):238–254, 2001.

[SK00] M. Sramek and A.E. Kaufman. vxt : A
c++ class library for object voxelisation. In
Volume Graphics. Springer, 2000.

[SSC03] V. Singh, D. Silver, and N. Cornea. Real-
time volume manipulation. In Proceed-
ings of the 2003 Eurographics/IEEE TVCG
Workshop on Volume graphics, pages 45–
52, 2003.

[vW84] Jarke J. van Wijk. Ray tracing objects
defined by sweeping planar cubic splines.
ACM Trans. Graph., 3(3):223–237, 1984.

[WC01] A.S. Winter and M. Chen. vlib: A volume
graphics API. In Volume Graphics 2001.
Springer-Wien New York, 2001.

[WC02] A.S. Winter and M. Chen. Image-swept
volumes. Computer Graphics Forum,
21(3):441–441, 2002.

[Wes90] L. Westover. Footprint evaluation for
volume rendering. Computer Graphics,
24(4):367–376, August 1990.

[WP99] Z. Wu and E.C. Prakash. Visible human
walk: bringing life back to the dead body.
In VG99, pages 347–356, 1999.

[WRS01] R. Westermann and C. Rezk-Salama. Real-
time volume deformations. In Comput.
Graph. Forum, volume 20, 2001.

