
Real-time Plane-Sweep with local strategy

Vincent Nozick Sylvain Michelin Didier Arquès

SISAR team,
Marne-la-Vallée University, ISIS Laboratory,
6 cours du Danube, France, 77 700 Serris

{vnozick,michelin,arques}@univ-mlv.fr

ABSTRACT
Recent research in computer vision has made significant progress in the reconstruction of depth information
from two-dimensional images. A new challenge is to extend these techniques to video images. Given a small set
of calibrated video cameras, our goal is to render on-line dynamic scenes in real-time from new viewpoints. This
paper presents an image-based rendering system using photogrametric constraints without any knowledge of the
geometry of the scene. Our approach follows a plane-sweep algorithm extended by a local dynamic scoring that
handles occlusions. In addition, we present an optimization of our method for stereoscopic rendering which
computes the second image at low cost. Our method achieves real-time framerate on consumer graphic hardware
thanks to fragment shaders.

Keywords
Image-based rendering, plane-sweep, fragment shaders.

1. INTRODUCTION
Given a set of images from different viewpoints of a
scene, we set out to create new views of this scene
from new viewpoints. This reconstruction problem is
treated from several approaches. Some methods
focus on the geometry of the scene while others use
photogrametric properties. These methods can also
differ on the number of input images, on the visual
quality of the views created and on computation
time. Most of the past work in this field concerns
static scenes and tries to improve reconstruction
accuracy, but past years, dynamic scene
reconstruction has become a more important research
area.

Figure 1 : A real-time reconstruction example

from four cameras

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Journal of WSCG, ISSN 1213-6972, Vol.14, 2006
WSCG’2006, January 30-February 3, 2006
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

In this paper, we present an overview of image-based
real-time rendering for static and dynamic scenes.
We detail one of these known as the plane-sweep
algorithm, and present an adaptation of this method
that handles occlusion. Our method achieves real-
time framerate on consumer graphic hardware using
fragment shaders. We also introduce an computation
optimization of our method for stereoscopic
rendering.

2. RELATED WORK
This section surveys previous work on real-time
image-based rendering (IBR) techniques and real-
time reconstruction for static and dynamic scenes.

Real-time rendering
Some image-based methods like the Plenoptic
modeling [MB95], the Lumigraph [GGSC96] and the
Light Field rendering [LH96] provide real-time
photorealistic rendering using a large set of input 2D
image samples. Nevertheless these methods require
considerable off-line processing before visualization
so the handling of dynamic scenes becomes very
difficult. Schirmacher et al. [SLS01] extend a
Lumigraph structure with per-pixel depth
information using a depth-from-stereo algorithm and
reach interactive-time at the cost of visual quality.

Depth-from-stereo algorithms [SS02] like SRI SVS
[BBH03] provide real-time depth-maps computation
from two input video streams without any special
purpose hardware. However they do not provide a
real-time rendering method synchronized with the
real-time depth-map.

Other reconstruction methods such as texture-
mapped rendering [PKV00] provide fluid navigation
in the reconstructed scene but they require lengthy
computation time before visualization.

Dynamic scene rendering
These last methods compute new views of a scene in
real-time but most of them begin with a significant
preprocessing which prevents them from computing
dynamic scenes. In recent years, alternatives to this
preprocessing problem and new solutions have been
ardently investigated.

A first solution to this problem is to make a
preprocessing on a set of videos rather than on a set
of images. This allows navigation in dynamic scenes
in real-time but these methods can only render
playback video. Kanade et al. choose this approach
with their Virtualized RealityTM System [KRN97]
and achieve real-time rendering with a collection of
51 cameras mounted on a geodesic dome of 5 meters
diameter. Zitnick et al. proposed a color-
segmentation based stereo algorithm [ZBUWS04]

providing high visual quality image in real-time from
a set of 8 or more cameras but again, this method
involves preprocessing.

Some other real-time techniques handle on-line video
flows. Matusik et al. provide an efficient real-time
rendering method with their image-based visual hulls
[MBRGM00] using a set of four cameras. This
method shades visual hulls from silhouette image
data but therefore can not handle concave objects.

Finally, some methods like [IHA02] are based on
color matching between different views, according to
the epipolar constraint. Collins [C96] introduces the
plane-sweep algorithm and provides basic
reconstruction from binary images. Yang et al.
[YWB02] extend this method to color-images and
present a real-time implementation using graphic
hardware. Woetzel et al. [WJKR04] adapt this
method for real-time depth-mapping and introduce a
first approach to handling occlusions. Geys et al.
[GKV04] use a plane sweep algorithm to generate a
crude depth map cleaned up using a graph-cut
algorithm.

Our algorithm belongs to the latter family. We will
first expose the basic plane-sweep algorithm and
[YWB02, WJKR04, GKV04] contribution. Then we
will detail our method.

Figure 2 : Plane-sweep algorithm with two
input cameras cam1 and cam2. M is a point
of an object lying on one of the planes Dm
in front of the virtual camera camx. The
input cameras will project M's color on the
same pixel of Dm.

3. PLANE-SWEEP ALGORITHM
The initial plane-sweep algorithm was introduced in
1996 by Collins [C96]. He first applied an edge
detector filter on the input images and provided a
geometric reconstruction of the scene from these
binary images. The following overview is an
adaptation of this method to color-images.

Overview
Given a small set of calibrated images from video
cameras, we wish to generate a new view of the
scene from a new viewpoint. Considering a scene
where objects are exclusively diffuse, we first place
the virtual camera and divide space in parallel planes
Di in front of the camera as shown in Figure 2. We
project the input images onto each plane Di in a back
to front order. Let's consider a visible object of the
scene lying on one of these planes at a point M. The
input cameras will project on M the same color
(i.e. the object color). Therefore, points on the planes
Di where projected colors match together potentially
correspond to an object of the scene.

Let I1 ... In denote a set of n calibrated images. Ix is
the new image to be computed and camx is its virtual
pinhole projective camera. We define a near plane
and a far plane parallel to camx image plane such that
all the objects of the scenes lie between near and far.
For each pixel of each plane Di, a score and a color
are computed according to the matching of the
colors. The plane-sweep algorithm can be explained
as follows :

• initialize Ix’s score

• for each plane Di from far to near

→ project all the input images I1...In on Di
as textures

→ project Di multi-textured on Ix
→ for each pixel p of Ix

- compute a score and a color according to
the coherence of the colors from each
camera's contribution

- if the score is better than the previous ones
then update the score and the color of p

• draw Ix

Figure 3 shows samples of multitextured planes Di.
When a plane pass through an object of the scene,
this object becomes sharp on the multitextured
image. This is the case for the wood head on the top
right image.

What this method does in effect is comparing
epipolar lines between the input images from each
pixel of Ix. This method also provides depth-maps by
drawing Di's depth rather than a color.

Figure 3 : Pictures associated to four planes Di
using four input images

Like several IBR techniques, this basic algorithm
does not handle occlusion since the score is only
computed according to the coherence of a small set
of colors. We present in section 4 a modification of
this algorithm that handles occlusion.

Classical score computation
Yang et al. [YWB02] propose an implementation of
the plane-sweep algorithm using register combiners.
For the scoring stage, they choose a reference camera
cambase that is closest to camx and compare the
contribution of each input image with the reference
image. Each pixel score is computed by adding the
Sum of Squared Difference (SSD) from each input
images. The SSD (1) compares the luminance of a
pixel Yi of an input image Ik with the corresponding
luminance Ybase from the reference camera.

()(,) 2
i base i base

i
SSD Y Y Y -Y=∑ (1)

For more robustness, they use mipmapping to
combine the pixels' score with a score computed
from the same images with a lower level of detail.
According to the small number of instructions, this
method provides good speed results, however the
input cameras have to be close to each other and the
navigation of the virtual camera should lie between
the viewpoints of the input cameras, otherwise the
reference camera may not be representative of camx.
Lastly, there may appear discontinuities in the
computed images when the virtual camera moves and
changes its reference camera. They propose a register
combiners implementation and reach real-time
rendering for dynamic scenes using five input
cameras.

Woetzel et al. [WJKR04] propose a plane-sweep
system that provides real-time depth-maps. Contrary
to Yang et al. [YWB02], they do not choose a
reference camera but they still compare the input
images by pairs. They compute the SSD of each pair
of input images and sort out the contribution of the

two worse scores. It is a first step to handling
occlusions but this method applies the same
treatment to each pixel without selecting those which
are concerned by occlusion and those which are not.
They propose a real-time depth-map method but do
not propose any rendering algorithm. This makes the
comparison between our algorithms difficult.

The same problem of scoring and choosing colors
among a set of colors from epipolar lines has been
treated by Fitzigibbon et al. [FWZ03]. They use
priors under a large set of input images to choose the
color (and hence the depth) that corresponds best to
most of the input images. This method is well
adapted to a large set of input images and provides
good results. However it requires too much
computation time for real-time rendering.

Finally, Geys et al. [GKV04] propose a two steps
method using two input cameras. First, a plane sweep
(GPU) computes a depth map using a Sum of
Absolute Differences (SAD) from the two input
images. Then, an energy minimisation method (CPU)
cleans up the depth map. The energy function
considers temporal and spatial continuity, the
previous SAD and an occlusion term derived from a
background-foreground repartition of the scene
elements. The energy function minimisation is solved
by a graph cut method and provides a consequent
improvement of the initial depth map. View
dependent texture mapping of the two input images
is performed to create the new view. However, this
method requires a background-foreground scene
decomposition with a static background. [GV05]
introduces an adaptation of this method for three or
more cameras.

4. OUR METHOD
We propose a new implementation which makes it
possible to take into account all input images
together where other methods compute images pair
by pair. We introduce new methods using local
strategy to compute scores allowing independent
treatment of each pixel of Ix in order to handle
occlusions. We also propose a new algorithm
providing a stereoscopic pair of images with the
second view at low cost.

New scores computation
The score computation is a crucial step in the plane-
sweep algorithm. Both visual results and speedy
computation depend on it. We propose a new method
to compute a score according to all the input image
colors instead of computing by pairs. For this
purpose, we use multi-texturing functions to access
each input camera color contribution.

For each pixel of Ix, we propose a finite number of
positions X in the scene (one per plane D). A score is
computed for each position and this score depends on
the color Ci of the projections of X in each input
image. We propose three methods to compute scores.

A first possibility is to set the score as the variance of
each color Ci and the final color as the average of the
Ci. This method is easily implemented and provides
good visual results especially if the input cameras are
close together. However this method does not handle
occlusions. Indeed, a point viewed by all the input
cameras except one will have its score and its color
distorted since this camera may increase the variance
and spoil the average. Nevertheless, this method
implicitly treat occlusions when the virtual camera is
near from an input camera which projects for each
planes Di approximatively the same image.

We also propose an iterative algorithm to reject
outlier colors using a sigma clipping technique. This
method first computes the variance v of the color set
S={Ci}i=1...n, computes a score from v and finds the
color Cf ∈ S the furthest from the average. If this
color is further than a defined distance d, then it is
removed from S. This step is repeated until stability
or until S contains only 2 elements. The returned
score is the variance found in the last step. The
choice of the constant d depends on the input
cameras layout and on the scene complexity. This
algorithm can be summarized as follows :

• bool stable = false
• S = {Ci}i=1…n
• a = average(S)
• v = variance(S, a)
• score = scoreFunction(v, Card(S))
• do

→ find the farest color Cf ∈ S from a
→ if distance(Cf, a) ≥ d then

- S = S - Cf
- a = average(S)
- v = variance(S, a)
- score = scoreFunction(v, Card(S))
else stable = true

while Card(S) ≥ 2 and stable = false

The scoreFunction weighs the variances according to
Card(S) such that with equal variance, the set of
colors with the maximum cardinal is favoured. A
good score corresponds to a small variance.

Finally, we propose a third method to compute the
colors' scores. This method also begins by a variance
and an average computation in the color set

S={Ci}i=1...n. Then we find the color Cf ∈ S that is the
furthest from the average. A new variance and a new
score are computed without this color. If this score is
better than the previous one, Cf is removed from S.
This step is repeated until a good score is found or
until S contains only 2 elements. The score is set as
the variance weighed by the cardinal of S. This
algorithm can be summarized as follows :

• bool stable = false
• S = {Ci}i=1…n
• a = average(S)
• v = variance(S, a)
• score = scoreFunction(v, Card(S))
• do

→ find the farest color Cf ∈ S from a
→ a* = average(S - Cf)
→ v* = variance(S - Cf, a*)
→ score* = scoreFunction(v*, Card(S)-1)
→ if score* ≤ score then

- a = a*
- v = v*
- score = score*
- S = S - Cf
else stable = true

while Card(S) ≥ 2 and stable = false

These three methods are easily implemented using
fragment shaders. As shown in Figure 4, the two
iterative methods provide better visual results,
especially when the input camera are placed in a 1D
arc configuration which increase the occlusions
effects.

(a) (b) (c)

Figure 4: image (a) is computed using the
variance and the average, (b) using the
sigma clipping technique and (c) using the
second iterative method.

Neighborhood with mipmapping
For more robustness during the scoring stage, we
take into account the neighborhood color
contribution of each pixel. Mipmapping provides
access to the same image but with a lower level of
details (lod) and hence provides the average color of
the neighborhood of the current pixel. For each pixel

(a) (b) (c)

Figure 5: Images computed with different
mipmap levels : (a) no additional mipmap
level, (b) 1 mipmap level and (c) 2 mipmap
levels.

score, we combine the score computed using
different lods. Yang et al. [YWB02] propose a
summation over a box-filtered lod pyramid but only
one additional mipmap level works well with our
method and more mipmap levels do not improve the
visual results. This is illustrated in Figure 5.

Stereoscopic rendering
Virtual reality applications often requires
stereoscopic display to increase immersion and most
of these applications have to render the scene twice.
But a lot of information such as diffuse lighting for
example can be shared for both views. Concerning
IBR techniques, depth-mapping is often view-
dependant and hence the two new views must be
computed separately. The plane-sweep algorithm
computes local score associated to scene points. This
information can be shared for several virtual
cameras. We extend our method with a low cost
algorithm providing the second view.

Figure 6 : Each plane Di is common to

the two views, but their projection differs

Stereoscopic rendering must satisfy several
conditions concerning virtual camera parameters

[SC97]. In particular, both cameras must have their
principal ray parallel to avoid vertical parallax in the
stereoscopic image. Let camL and camR be a pair of
virtual cameras satisfying this constraint and D1...m a
set of planes parallel to these cameras' image plane.
As shown in Figure 6, the score and the color
computation of a plane Di is common for both camL
and camR. Only the projection of Di on the two
cameras will differ. The score computation is a
central task in the plane-sweep algorithm, so sharing
this stage among the two views provides a
consequent gain in computation time. Thus, our
plane-sweep method must be modified as follows :

• initialize IL and IR’s score

• for each plane Di from far to near

→ project all the input images I1...In on Di

→ render Di on two textures texScore and
texColor : for each pixel of Itmp
- compute a score and a color according to

the coherence of the colors from each
camera's contribution

→ copy texScore and texColor on Di

→ project Di multi-textured on IL and IR

→ for each pixel of IL and IR
- if the score is better than the previous one

then update the score and the color
• draw IL and IR

For each planes Di, this method first computes scores
and colors and stores them in two textures. In a
second pass, these two textures are copied on Di and
projected on the two virtual cameras. The first pass
requires off-screen rendering performed by Frame
Buffer Objects (FBO) and Multiple Render Target
(MRT). This step can also be achieved using
p-buffers with a small frame rate penalty.

Thus, this method can easily be implemented such
that all the image data stay in the graphic card and
hence avoid expensive data transfers between the
graphic card and the main memory.

Figure 7: Real-time stereoscopic pair
(cross vision)

Figure 7 shows a stereoscopic pair rendered in real-
time. Note that the fusion of the two images
decreases the imperfection impact of the images.

As illustrated in Table 1, stereoscopic rendering
achieves a 15% frame rate decrease instead of the
50% expected by rendering twice the scene.

Implementation
Input cameras are calibrated using the gold standard
algorithm [HZ04]. We implemented our method on
OpenGL 2.0 and we use OpenGL Shading Language
for the scoring stage.

For more accuracy, the texture coordinates are
computed using projected textures directly from the
camera projection matrices. We use multitexturing in
order to get access to each texture during the scoring
stage. Each score is computed with fragment
shaders using mipmapping. They are stored in
the gl_FragDepth and the colors in the
gl_FragColor. Hence we let OpenGL select best
scores with the z-test and update the color in the
frame buffer.

To compute a depth-map rather than a new
 view, we just set the gl_FragColor to the
gl_FragCoord.z value.

Most of the work is done by the graphic card and the
CPU is free for others tasks.

5. RESULTS
We tested our methods on an Athlon AMD 1GHz
with a Nvidia GeForce 6800GT. We used four tri-
CCD Sony DCR-PC1000E cameras for the input
images acquisition. The white balance is essential
in a plane-sweep algorithm. Indeed, we must
homogenize the camera color range such that any
point in the scene is seen with the same color from
each camera. For our tests, we used the manual white
balance provided by the tri-CCD cameras but for
more accuracy, we planed to use a color calibration
method as proposed by Magnor [M05].

Table 1 shows the framerate we obtain with 4 input
cameras.

Number
of plans D

Simple
variance

Method
1 and 2

Stereo-
scopic

10 140 85 91 110

30 43 28 30 38

50 30 17 18 25

100 15 9 9 13
Table 1. Frame rate in frame per second for a

320x240 image from 4 input cameras.

(a) (b)

(c) (d)

Figure 8: Number of planes used for each
scene : (a) 5 planes, (b) 10 planes, (c) 30
planes and (d) 50 planes

The computation time depends on the number of
planes we choose to discretize the scene. Our tests
indicate that after 50 planes, the quality difference
becomes neglible (Figure 8).

We are presently working on examples of on-line
dynamic scenes.

6. CONCLUSION
This paper presents a plane-sweep method that
allows real-time rendering of on-line dynamic
scenes. Except for near and far planes, it does not
require any prior knowledge of the scene. This
method can be implemented on every consumer
graphic harware that supports fragment shaders and
therefore frees CPU for other tasks. Furthermore, our
scoring method enhances robustness and implies
fewer constraints on the position of the virtual
camera, i.e. it does not need to lie between the input
camera's area.

We propose to extend our research in optimisation of
Di planes repartition in order to reduce its amount
without depreciating the visual result. We also intend
to achieve a better stereo viewing result by producing
pairs of virtual cameras with non symetric projection
pyramid in order to save space on the edges of the
stereo images [GPS94].

7. REFERENCES
[BBH03] Myron Z. Brown, Darius Burschka, and

Gregory D. Hager. Advances in Computational
Stereo, IEEE Transactions on Pattern Analysis
and Machine Intelligence, pages 993-1008, 2003.

[C96] Robert T. Collins, A Space-Sweep Approach to
True Multi-Image Matching, in proc. Computer
Vision and Pattern Recognition Conf., pages358-
363, 1996.

[FWZ03] Andrew Fitzgibbon, Yonatan Wexler and
Andrew Zisserman, Image-based rendering using
image-based priors, 9th IEEE International
Conference on Computer Vision (ICCV 2003),
pages 1176-1183, 2003.

[GGSC96] J. Gortler, R. Grzeszczuk, R. Szeliski and
M. F. Cohen, The lumigraph, SIGGRAPH, pages
43-54, 1996.

[GKV04] Indra Geys, T. P. Koninckx and L.
Van Gool, Fast Interpolated Cameras by
combining a GPU based Plane Sweep with a
Max-Flow Regularisation Algorithm, in proc. of
second international symposium on 3D Data
Processing, Visualization & Transmission -
3DPVT'04, pages 534-541, 2004.

[GPS94] V.S. Grinberg, G. Podnar and M. Siegel,
Geometry of Binocular Imaging, Stereoscopic
Displays and Virtual Reality Systems, Vol. 2177,
pages 56-65, 1994.

[GV05] Indra Geys and L.Van Gool, Extended view
interpolation by parallel use of the GPU and the
CPU, in proc. of IS&T SPIE, 17th annual
symposium on electronic imaging - videometrics
VIII, vol. 5665, pages 96-107, 2005.

[HZ04] Richard Hartley and Andrew Zisserman,
Multiple View Geometry in Computer Vision,
second edition, Cambridge University Press,
ISBN: 052154051, 2004.

[IHA02] M. Irani, T. Hassner and P. Anandan.
“What does the scene look like from a scene
point?”, Proc. ECCV, pages 883-897, 2002.

[KRN97] Takeo Kanade, Peter Rander and P. J.
Narayanan, Virtualized Reality: Constructing
Virtual Worlds from Real Scenes, IEEE
MultiMedia, volume 4, pages 34-47, 1997.

[LH96] Marc Levoy and Pat Hanrahan, Light Field
Rendering, SIGGRAPH, pages 31-42, 1996.

[M05] Marcus A. Magnor, Video-Based Rendering,
Editor : A K Peters Ltd, ISBN : 1568812442,
2005.

[MB95] Leonard McMillan and Gary Bishop,
Plenoptic Modeling: An Image-Based Rendering
System, SIGGRAPH, pages 39-46, 1995.

[MBRGM00] Wojciech Matusik, Chris Buehler,
Ramesh Raskar, Steven J. Gortler and Leonard
McMillan, Image-Based Visual Hulls, in proc
ACM SIGGRAPH, pages 369-374, 2000.

[PKV00] M. Pollefeys, R. Koch, M. Vergauwen and
L. Van Gool, Automated reconstruction of 3D
scenes from sequences of images, ISPRS Journal
Of Photogrammetry And Remote Sensing (55)4,
pages 251-267, 2000.

[SC97] StereoGraphics Corporation, Developer's
Handbook : background on creating images for
CrystalEyes and SimulEyes, StereoGraphics
Corporation, 1997.

[SLS01] Hartmut Schirmacher, Ming Li and Hans-
Peter Seidel, On-the-fly Processing of
Generalized Lumigraphs, Proc.
EUROGRAPHICS 2001, Eurographics
Association, pages 165-173, 2001.

[SS02] Daniel Scharstein and Richard Szeliski,A
Taxonomy and Evaluation of Dense Two-Frame
Stereo Correspondence Algorithms, IJCV, 47,
pages 7-42, 2002.

[WJKR04] Woetzel, Jan, Koch and Reinhard, Multi-
camera real-time depth estimation with
discontinuity handling on PC graphics hardware,
in proc. of 17th International Conference on
Pattern Recognition (ICPR 2004), pages 741-744,
2004.

[YWB02] Ruigang Yang, Greg Welch and Gary
Bishop, Real-Time Consensus-Based Scene
Reconstruction using Commodity Graphics
Hardware, in proc. of Pacific Graphics, pages
225-234, 2002.

[ZBUWS04] C. Lawrence Zitnick, Sing Bing Kang,
Matthew Uyttendaele, Simon Winder and
Richard Szeliski, High-quality video view
interpolation using a layered representation, in
proc. ACM SIGGRAPH, pages 600-608, august
2004.

