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ABSTRACT 
Recent research in computer vision has made significant progress in the reconstruction of depth information 
from two-dimensional images. A new challenge is to extend these techniques to video images. Given a small set 
of calibrated video cameras, our goal is to render on-line dynamic scenes in real-time from new viewpoints. This 
paper presents an image-based rendering system using photogrametric constraints without any knowledge of the 
geometry of the scene. Our approach follows a plane-sweep algorithm extended by a local dynamic scoring that 
handles occlusions. In addition, we present an optimization of our method for stereoscopic rendering which 
computes the second image at low cost. Our method achieves real-time framerate on consumer graphic hardware 
thanks to fragment shaders. 
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1. INTRODUCTION 
Given a set of images from different viewpoints of a 
scene, we set out to create new views of this scene 
from new viewpoints. This reconstruction problem is 
treated from several approaches. Some methods 
focus on the geometry of the scene while others use 
photogrametric properties. These methods can also 
differ on the number of input images, on the visual 
quality of the views created and on computation 
time. Most of the past work in this field concerns 
static scenes and tries to improve reconstruction 
accuracy, but past years, dynamic scene 
reconstruction has become a more important research 
area. 

  

  

 

 
Figure 1 : A real-time reconstruction example 

from four cameras 
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In this paper, we present an overview of image-based 
real-time rendering for static and dynamic scenes. 
We detail one of these known as the plane-sweep 
algorithm, and present an adaptation of this method 
that handles occlusion. Our method achieves real-
time framerate on consumer graphic hardware using 
fragment shaders. We also introduce an computation 
optimization of our method for stereoscopic 
rendering. 

2. RELATED WORK 
This section surveys previous work on real-time 
image-based rendering (IBR) techniques and real-
time reconstruction for static and dynamic scenes. 

Real-time rendering 
Some image-based methods like the Plenoptic 
modeling [MB95], the Lumigraph [GGSC96] and the 
Light Field rendering [LH96] provide real-time 
photorealistic rendering using a large set of input 2D 
image samples. Nevertheless these methods require 
considerable off-line processing before visualization 
so the handling of dynamic scenes becomes very 
difficult. Schirmacher et al. [SLS01] extend a 
Lumigraph structure with per-pixel depth 
information using a depth-from-stereo algorithm and 
reach interactive-time at the cost of visual quality. 

Depth-from-stereo algorithms [SS02] like SRI SVS 
[BBH03] provide real-time depth-maps computation 
from two input video streams without any special 
purpose hardware. However they do not provide a 
real-time rendering method synchronized with the 
real-time depth-map. 

Other reconstruction methods such as texture-
mapped rendering [PKV00] provide fluid navigation 
in the reconstructed scene but they require lengthy 
computation time before visualization. 

Dynamic scene rendering 
These last methods compute new views of a scene in 
real-time but most of them begin with a significant 
preprocessing which prevents them from computing 
dynamic scenes. In recent years, alternatives to this 
preprocessing problem and new solutions have been 
ardently investigated. 

A first solution to this problem is to make a 
preprocessing on a set of videos rather than on a set 
of images. This allows navigation in dynamic scenes 
in real-time but these methods can only render 
playback video. Kanade et al. choose this approach 
with their Virtualized RealityTM System [KRN97] 
and achieve real-time rendering with a collection of 
51 cameras mounted on a geodesic dome of 5 meters 
diameter. Zitnick et al. proposed a color-
segmentation based stereo algorithm [ZBUWS04] 

providing high visual quality image in real-time from 
a set of 8 or more cameras but again, this method 
involves preprocessing. 

Some other real-time techniques handle on-line video 
flows. Matusik et al. provide an efficient real-time 
rendering method with their image-based visual hulls 
[MBRGM00] using a set of four cameras. This 
method shades visual hulls from silhouette image 
data but therefore can not handle concave objects. 

Finally, some methods like [IHA02] are based on 
color matching between different views, according to 
the epipolar constraint. Collins [C96] introduces the 
plane-sweep algorithm and provides basic 
reconstruction from binary images. Yang et al. 
[YWB02] extend this method to color-images and 
present a real-time implementation using graphic 
hardware. Woetzel et al. [WJKR04] adapt this 
method for real-time depth-mapping and introduce a 
first approach to handling occlusions. Geys et al. 
[GKV04] use a plane sweep algorithm to generate a 
crude depth map cleaned up using a graph-cut 
algorithm. 

Our algorithm belongs to the latter family. We will 
first expose the basic plane-sweep algorithm and 
[YWB02, WJKR04, GKV04] contribution. Then we 
will detail our method. 

 

 

Figure 2 : Plane-sweep algorithm with two 
input cameras cam1 and cam2. M is a point 
of an object lying on one of the planes Dm 
in front of the virtual camera camx. The 
input cameras will project M's color on the 
same pixel of Dm. 



3. PLANE-SWEEP ALGORITHM 
The initial plane-sweep algorithm was introduced in 
1996 by Collins [C96]. He first applied an edge 
detector filter on the input images and provided a 
geometric reconstruction of the scene from these 
binary images. The following overview is an 
adaptation of this method to color-images. 

Overview 
Given a small set of calibrated images from video 
cameras, we wish to generate a new view of the 
scene from a new viewpoint. Considering a scene 
where objects are exclusively diffuse, we first place 
the virtual camera and divide space in parallel planes 
Di in front of the camera as shown in Figure 2. We 
project the input images onto each plane Di in a back 
to front order. Let's consider a visible object of the 
scene lying on one of these planes at a point M. The 
input cameras will project on M the same color 
(i.e. the object color). Therefore, points on the planes 
Di where projected colors match together potentially 
correspond to an object of the scene. 

Let I1 ... In denote a set of n calibrated images. Ix is 
the new image to be computed and camx is its virtual 
pinhole projective camera. We define a near plane 
and a far plane parallel to camx image plane such that 
all the objects of the scenes lie between near and far. 
For each pixel of each plane Di, a score and a color 
are computed according to the matching of the 
colors. The plane-sweep algorithm can be explained 
as follows :  

• initialize Ix’s score 

• for each plane Di from far to near 

→ project all the input images I1...In on Di  
as textures 

→ project Di multi-textured on Ix 
→ for each pixel p of Ix  

- compute a score and a color according to 
the coherence of the colors from each 
camera's contribution 

- if the score is better than the previous ones 
then update the score and the color of p 

• draw Ix 
 

Figure 3 shows samples of multitextured planes Di. 
When a plane pass through an object of the scene, 
this object becomes sharp on the multitextured 
image. This is the case for the wood head on the top 
right image.  

What this method does in effect is comparing 
epipolar lines between the input images from each 
pixel of Ix. This method also provides depth-maps by 
drawing Di's depth rather than a color. 

  

  

Figure 3 : Pictures associated to four planes Di 
using four input images 

Like several IBR techniques, this basic algorithm 
does not handle occlusion since the score is only 
computed according to the coherence of a small set 
of colors. We present in section 4 a modification of 
this algorithm that handles occlusion. 

Classical score computation 
Yang et al. [YWB02] propose an implementation of 
the plane-sweep algorithm using register combiners. 
For the scoring stage, they choose a reference camera 
cambase that is closest to camx and compare the 
contribution of each input image with the reference 
image. Each pixel score is computed by adding the 
Sum of Squared Difference (SSD) from each input 
images. The SSD (1) compares the luminance of a 
pixel Yi of an input image Ik with the corresponding 
luminance Ybase from the reference camera. 

( )( , ) 2
i base i base

i
SSD Y Y Y -Y=∑   (1) 

For more robustness, they use mipmapping to 
combine the pixels' score with a score computed 
from the same images with a lower level of detail. 
According to the small number of instructions, this 
method provides good speed results, however the 
input cameras have to be close to each other and the 
navigation of the virtual camera should lie between 
the viewpoints of the input cameras, otherwise the 
reference camera may not be representative of camx. 
Lastly, there may appear discontinuities in the 
computed images when the virtual camera moves and 
changes its reference camera. They propose a register 
combiners implementation and reach real-time 
rendering for dynamic scenes using five input 
cameras. 

Woetzel et al. [WJKR04] propose a plane-sweep 
system that provides real-time depth-maps. Contrary 
to Yang et al. [YWB02], they do not choose a 
reference camera but they still compare the input 
images by pairs. They compute the SSD of each pair 
of input images and sort out the contribution of the 



two worse scores. It is a first step to handling 
occlusions but this method applies the same 
treatment to each pixel without selecting those which 
are concerned by occlusion and those which are not. 
They propose a real-time depth-map method but do 
not propose any rendering algorithm. This makes the 
comparison between our algorithms difficult. 

The same problem of scoring and choosing colors 
among a set of colors from epipolar lines has been 
treated by Fitzigibbon et al. [FWZ03]. They use 
priors under a large set of input images to choose the 
color (and hence the depth) that corresponds best to 
most of the input images. This method is well 
adapted to a large set of input images and provides 
good results. However it requires too much 
computation time for real-time rendering. 

Finally, Geys et al. [GKV04] propose a two steps 
method using two input cameras. First, a plane sweep 
(GPU) computes a depth map using a Sum of 
Absolute Differences (SAD) from the two input 
images. Then, an energy minimisation method (CPU) 
cleans up the depth map. The energy function 
considers temporal and spatial continuity, the 
previous SAD and an occlusion term derived from a 
background-foreground repartition of the scene 
elements. The energy function minimisation is solved 
by a graph cut method and provides a consequent 
improvement of the initial depth map. View 
dependent texture mapping of the two input images 
is performed to create the new view. However, this 
method requires a background-foreground scene 
decomposition with a static background. [GV05] 
introduces an adaptation of this method for three or 
more cameras. 

4. OUR METHOD 
We propose a new implementation which makes it 
possible to take into account all input images 
together where other methods compute images pair 
by pair. We introduce new methods using local 
strategy to compute scores allowing independent 
treatment of each pixel of Ix in order to handle 
occlusions. We also propose a new algorithm 
providing a stereoscopic pair of images with the 
second view at low cost. 

New scores computation 
The score computation is a crucial step in the plane-
sweep algorithm. Both visual results and speedy 
computation depend on it. We propose a new method 
to compute a score according to all the input image 
colors instead of computing by pairs. For this 
purpose, we use multi-texturing functions to access 
each input camera color contribution. 

For each pixel of Ix, we propose a finite number of 
positions X in the scene (one per plane D). A score is 
computed for each position and this score depends on 
the color Ci of the projections of X in each input 
image. We propose three methods to compute scores. 

A first possibility is to set the score as the variance of 
each color Ci and the final color as the average of the 
Ci. This method is easily implemented and provides 
good visual results especially if the input cameras are 
close together. However this method does not handle 
occlusions. Indeed, a point viewed by all the input 
cameras except one will have its score and its color 
distorted since this camera may increase the variance 
and spoil the average. Nevertheless, this method 
implicitly treat occlusions when the virtual camera is 
near from an input camera which projects for each 
planes Di approximatively the same image. 

We also propose an iterative algorithm to reject 
outlier colors using a sigma clipping technique. This 
method first computes the variance v of the color set 
S={Ci}i=1...n, computes a score from v and finds the 
color Cf ∈ S the furthest from the average. If this 
color is further than a defined distance d, then it is 
removed from S. This step is repeated until stability 
or until S contains only 2 elements. The returned 
score is the variance found in the last step. The 
choice of the constant d depends on the input 
cameras layout and on the scene complexity. This 
algorithm can be summarized as follows : 

• bool stable = false 
• S = {Ci}i=1…n 
• a = average(S) 
• v = variance(S, a) 
• score = scoreFunction(v, Card(S)) 
• do 

→ find the farest color Cf ∈ S from a 
→ if distance(Cf, a) ≥ d then 

- S = S - Cf 
- a = average(S) 
- v = variance(S, a) 
- score = scoreFunction(v, Card(S)) 
else stable = true 

while Card(S) ≥ 2 and stable = false 

 

The scoreFunction weighs the variances according to 
Card(S) such that with equal variance, the set of 
colors with the maximum cardinal is favoured. A 
good score corresponds to a small variance. 

Finally, we propose a third method to compute the 
colors' scores. This method also begins by a variance 
and an average computation in the color set 



S={Ci}i=1...n. Then we find the color Cf ∈ S that is the 
furthest from the average. A new variance and a new 
score are computed without this color. If this score is 
better than the previous one, Cf is removed from S. 
This step is repeated until a good score is found or 
until S contains only 2 elements. The score is set as 
the variance weighed by the cardinal of S. This 
algorithm can be summarized as follows : 

• bool stable = false 
• S = {Ci}i=1…n 
• a = average(S) 
• v = variance(S, a) 
• score = scoreFunction(v, Card(S)) 
• do 

→ find the farest color Cf ∈ S from a 
→ a* = average(S - Cf) 
→ v* = variance(S - Cf, a*) 
→ score* = scoreFunction(v*, Card(S)-1) 
→ if score* ≤ score then 

- a = a* 
- v = v* 
- score = score* 
- S = S - Cf 
else stable = true 

while Card(S) ≥ 2 and stable = false 

 

These three methods are easily implemented using 
fragment shaders. As shown in Figure 4, the two 
iterative methods provide better visual results, 
especially when the input camera are placed in a 1D 
arc configuration which increase the occlusions 
effects. 

  
(a) (b) (c) 

Figure 4: image (a) is computed using the 
variance and the average, (b) using the 
sigma clipping technique and (c) using the 
second iterative method. 

Neighborhood with mipmapping 
For more robustness during the scoring stage, we 
take into account the neighborhood color 
contribution of each pixel. Mipmapping provides 
access to the same image but with a lower level of 
details (lod) and hence provides the average color of 
the neighborhood of the current pixel. For each pixel 
 

 
(a) (b) (c) 

Figure 5: Images computed with different 
mipmap levels : (a) no additional mipmap 
level, (b) 1 mipmap level and (c) 2 mipmap 
levels. 

score, we combine the score computed using 
different lods. Yang et al. [YWB02] propose a 
summation over a box-filtered lod pyramid but only 
one additional mipmap level works well with our 
method and more mipmap levels do not improve the 
visual results. This is illustrated in Figure 5. 

Stereoscopic rendering 
Virtual reality applications often requires 
stereoscopic display to increase immersion and most 
of these applications have to render the scene twice. 
But a lot of information such as diffuse lighting for 
example can be shared for both views. Concerning 
IBR techniques, depth-mapping is often view-
dependant and hence the two new views must be 
computed separately. The plane-sweep algorithm 
computes local score associated to scene points. This 
information can be shared for several virtual 
cameras. We extend our method with a low cost 
algorithm providing the second view. 

 
Figure 6 : Each plane Di is common to 

the two views, but their projection differs 

Stereoscopic rendering must satisfy several 
conditions concerning virtual camera parameters 



[SC97]. In particular, both cameras must have their 
principal ray parallel to avoid vertical parallax in the 
stereoscopic image. Let camL and camR be a pair of 
virtual cameras satisfying this constraint and D1...m a 
set of planes parallel to these cameras' image plane. 
As shown in Figure 6, the score and the color 
computation of a plane Di is common for both camL 
and camR. Only the projection of Di on the two 
cameras will differ. The score computation is a 
central task in the plane-sweep algorithm, so sharing 
this stage among the two views provides a 
consequent gain in computation time. Thus, our 
plane-sweep method must be modified as follows : 

• initialize IL and IR’s score 

• for each plane Di from far to near  

→ project all the input images I1...In on Di 

→ render Di on two textures texScore and 
texColor : for each pixel of Itmp 
- compute a score and a color according to 

the coherence of the colors from each 
camera's contribution 

→ copy texScore and texColor on Di 

→ project Di multi-textured on IL and IR 

→ for each pixel of IL and IR 
- if the score is better than the previous one 

then update the score and the color 
• draw IL and IR 

 

For each planes Di, this method first computes scores 
and colors and stores them in two textures. In a 
second pass, these two textures are copied on Di and 
projected on the two virtual cameras. The first pass 
requires off-screen rendering performed by Frame 
Buffer Objects (FBO) and Multiple Render Target 
(MRT). This step can also be achieved using  
p-buffers with a small frame rate penalty. 

Thus, this method can easily be implemented such 
that all the image data stay in the graphic card and 
hence avoid expensive data transfers between the 
graphic card and the main memory. 

 

Figure 7: Real-time stereoscopic pair  
(cross vision) 

Figure 7 shows a stereoscopic pair rendered in real-
time. Note that the fusion of the two images 
decreases the imperfection impact of the images. 

As illustrated in Table 1, stereoscopic rendering 
achieves a 15% frame rate decrease instead of the 
50% expected by rendering twice the scene. 

Implementation 
Input cameras are calibrated using the gold standard 
algorithm [HZ04]. We implemented our method on 
OpenGL 2.0 and we use OpenGL Shading Language 
for the scoring stage. 

For more accuracy, the texture coordinates are 
computed using projected textures directly from the 
camera projection matrices. We use multitexturing in 
order to get access to each texture during the scoring 
stage. Each score is computed with fragment  
shaders using mipmapping. They are stored in  
the gl_FragDepth and the colors in the 
gl_FragColor. Hence we let OpenGL select best 
scores with the z-test and update the color in the 
frame buffer. 

To compute a depth-map rather than a new 
 view, we just set the gl_FragColor to the 
gl_FragCoord.z value. 

Most of the work is done by the graphic card and the 
CPU is free for others tasks. 

5. RESULTS 
We tested our methods on an Athlon AMD 1GHz 
with a Nvidia GeForce 6800GT. We used four tri-
CCD Sony DCR-PC1000E cameras for the input 
images acquisition. The white balance is essential  
in a plane-sweep algorithm. Indeed, we must 
homogenize the camera color range such that any 
point in the scene is seen with the same color from 
each camera. For our tests, we used the manual white 
balance provided by the tri-CCD cameras but for 
more accuracy, we planed to use a color calibration 
method as proposed by Magnor [M05]. 

Table 1 shows the framerate we obtain with 4 input 
cameras. 

Number 
of plans D 

Simple 
variance 

Method 
1 and 2 

Stereo-
scopic 

10 140 85 91 110 

30 43 28 30 38 

50 30 17 18 25 

100 15 9 9 13 
Table 1. Frame rate in frame per second for a 

320x240 image from 4 input cameras. 



  
(a) (b) 

 
(c) (d) 

Figure 8: Number of planes used for each 
scene : (a) 5 planes, (b) 10 planes, (c) 30 
planes and (d) 50 planes 

The computation time depends on the number of 
planes we choose to discretize the scene. Our tests 
indicate that after 50 planes, the quality difference 
becomes neglible (Figure 8). 

We are presently working on examples of on-line 
dynamic scenes. 

6. CONCLUSION 
This paper presents a plane-sweep method that 
allows real-time rendering of on-line dynamic 
scenes. Except for near and far planes, it does not 
require any prior knowledge of the scene. This 
method can be implemented on every consumer 
graphic harware that supports fragment shaders and 
therefore frees CPU for other tasks. Furthermore, our 
scoring method enhances robustness and implies 
fewer constraints on the position of the virtual 
camera, i.e. it does not need to lie between the input 
camera's area. 

We propose to extend our research in optimisation of 
Di planes repartition in order to reduce its amount 
without depreciating the visual result. We also intend 
to achieve a better stereo viewing result by producing 
pairs of virtual cameras with non symetric projection 
pyramid in order to save space on the edges of the 
stereo images [GPS94]. 
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