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ABSTRACT 
Pedestrians implicitly cooperate by forming lanes inside dense crowd in order to facilitate flow and prevent 
complete passage blocking. Our aim is to re-enforce this self-organization phenomenon in dense crowd for the 
purpose of virtual crowd animation and navigation simplification. The mechanism of a flow grid is introduced to 
measure flow over an area. The flow grid is a perception mechanism of the surrounding area and favors dynamic 
lane formation (streams). It provides feedback to the navigation algorithm of the avatars, to enable them to 
choose a route that both meets their goal (wanted direction) and a trajectory that assists in self-organization of 
the crowd.  
A very simplified yet fairly effective navigation method suitable for dense crowds is also presented. It 
demonstrates that self-organization of the avatars can help in simplifying local navigation. The method produces 
short distance, intermediate positions ahead in time and, as a post-processing step, smoothes them out before the 
avatar needs to use them. 
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1. INTRODUCTION 
Reproducing believable crowds in virtual 

environments has always been a challenge. There are 
many research topics related to crowds. Such topics 
include character rendering, character animation, 
navigation, crowd simulation, collision avoidance, 
social behaviors and many more. 

The focus of this paper is on the collective 
behavior of pedestrians, otherwise known as self-
organization.  A dense crowd of pedestrians, all 
trying to travel to unique and independent directions, 
creates a highly dynamic, changing environment. 
The pedestrians have to continuously confront many 
surrounding avatars whose navigation constantly 

changes. It is not possible to try to predict each 
opposing pedestrian’s path, as that will probably 
change soon. Long distance path planning inside a 
dense crowd is futile. For this reason, the flow grid 
mechanism is introduced to simplify navigation and 
enable crowd self organization. 

In the next section a summary of related work on 
navigation is presented. Section 3 presents the work 
on self-organizing crowd, followed by a description 
of the mechanisms needed to make this method 
feasible in Section 4. In Section 5 the results of the 
method are presented and finally in Section 6 a 
summary is presented and future work is discussed. 

 

2. RELATED WORK 
Crowd navigation deals with the problem of 

steering an avatar inside a large amount of static and 
moving obstacles (other avatars). The complexity of 
finding a suitable path increases as the density of 
moving avatars increases. There are three different 
approaches to solving the navigation problem. These 
are path planning, reactive navigation and behavioral 
navigation. Also of great interest to navigation is the 
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computationally expensive collision detection and 
avoidance stage.  

Most papers treat avatar navigation as a one 
person steering and path finding problem. The 
motion of an avatar from a starting point to a 
destination is treated as a global navigation problem. 
Various search algorithms try to find a complete path 
from one point to another. The most popular path 
planning algorithms are the Randomized Path 
Planner [Tsa03a], Probabilistic Road Maps as in 
[Kam04],[Sun05],[Sun04] and A* based Algorithms 
and variations such as [Cla87a],[Har68a]. In general 
path-planning algorithms are not a good option for 
dense crowd navigation because continuous re-
planning would be needed due to the high number of 
dynamically moving objects. This of course would 
be inefficient. 

Significant work has been carried in reactive 
navigation. Reactive navigation includes force field 
methods, rule based methods and XZT space 
methods. Force fields have been used by [Kam04], 
[Lam04], [Met03] for collision avoidance and 
smooth steering, but force fields are expensive to 
update. Rule based systems such as [Los03], 
[Tcc02],[Tcc01],[Nie03] have proven to be 
extremely fast as they can deal with thousands of 
avatars. The behaviors produced are limited only, by 
the number of rules applied. The Thalmann’s also 
provide a good overview of previous work for 
groups in [Mus04]. Their work on emergent crowds 
is described. They model complex behaviors through 
a combination of attributes and rules, and through 
finite state machines. Their methods lack a global 
vision mechanism, thus forcing them to consider 
each neighboring avatar individually when making a 
decision. Our method will expand the rule based 
approach and add collective behavior by creating the 
mechanisms to read the collective behavior of other 
avatars in an area. XZT space methods exploit a 
space-time representation to better represent the 
movements of dynamic objects in space and time. 
The added T dimension allows for more accurate 
planning since it provides knowledge of the positions 
of all avatars ahead of time. Only a few experiments 
have been conducted with this method in [Feu00]. 
The same XZT space approach is also used by 
[Tsa03] in path planning for groups. 

In behavioral navigation researchers try to 
simulate aspects of pedestrian behavior, mainly 
grouping, staying together, path following, yielding 
etc. Flocking [Rey87] is one such example. More 
recent work on behavioral navigation, include 
behavior maps [Los03], [Tcc01a], which cause 
pedestrians to adopt specific behavior for designated 
areas, according to the behavior map. Complete 

Sociological models have been proposed by [Sul02] 
and [Vil03]. Work on groups has also been carried 
out by [Kam04] and [Tsa03] , but it focuses on path 
finding and computation optimization for groups 
rather than behavioral aspects of group.  

In crowd simulation and safety, [Sti00] presents 
extensive research with his thesis. Different 
behaviors of pedestrians in crowded areas are studied 
in detail. [Daa03] also reports on similar self-
organization and other phenomena. 

Collision detection/avoidance (CD) is one of the 
most expensive operations during navigation. 
Collision detection methods include bounding 
volume hierarchies, force fields, simple geometric 
tests, triangulation methods, proximity queries, 
occupancy maps, image-space methods and 
stochastic collision detection. A comprehensive 
review of CD methods can be found in the tutorial 
[Tes05]. 

3. SELF-ORGANIZING 
PEDESTRIANS 
General Concept 

Pedestrians follow other people when they travel 
in the same direction and need effort to overtake 
them. It is much easier to slow down and follow 
rather than walk into the opposing pedestrian stream 
when densely populated. Pedestrians need to be 
aware of any lane formation phenomena around them 
if they are to use the lanes to their benefit. Large 
coherent groups of people are very rare. Pedestrians 
form informal groups dynamically as they walk. 
They follow a bunch of people going in the same 
direction as them to avoid opposing streams 
[Mus04], [Daa03]. 

Overall Description of methodology 
Initially a flow grid is constructed over the walk 

area. The flow grid measures the densities of 
pedestrians and their velocities at various directions. 
Thus the flow grid enables us to detect pedestrian 
density concentration and dominating direction of 
flow at any point in the walk area. The avatars use 
the flow grid information during navigation to select 
nearby areas that lie towards their final destination 
and have smaller opposing flow. In essence they 
avoid areas of high density or high opposing flow, 
thus lane formation takes place. The avatars continue 
to select nearby areas until they reach their final 
destination.  

A high level path planning and areas/portals 
system is assumed on top of our system for 
navigating through a city. It is also assume that the 
avatars move on the XZ plane. 



Measuring the Flows 
Each avatar registers his position and velocity on 

the flow grid as soon as he moves to a new position. 
The velocities are separated into X and Z axis 
components. Positive and negative axis velocities are 
stored separately, Thus four velocity values are 
stored at each point, (+vx, -vx, +vz, -vz). Velocities 
are stored this way so that opposing velocities will 
not be canceled out. 

The avatar’s velocity and presence are 
distributed to the four neighboring grid points as 
shown in figure 1. The amount distributed to each 
corner depends on the avatars distance from that 
corner. The entire avatar density (1.0) is allocated to 
a corner when the avatar is exactly at that corner and 
is smoothly interpolated to zero as he moves away to 
the next corner. 

 

 

 

 

 

 

 

 

Figure 1. Each avatar is registered on the grid by 
distributing his density and velocity to the 4 

neighboring points  

 
Figure 2. Light intensity shows the density 

distribution. White lines show the dominating 
direction of flow at each point. Dark grey avatars 

heading for the right border and light grey 
avatars for the left border. 

Once all the avatars have registered on the grid, 
a complete picture of the densities and flows over the 
entire area is obtained, as shown in Figure 2. Higher 
intensity grey areas indicate more people near that 
grid location. 

Later on, the flow grid is used to extract 
information for navigation purposes. Densities and 
velocities are interpolated between grid positions 
when information is needed at any in-between point. 

Using the Flow Grid to Navigate 
A higher layer that assigns long distance 

destinations to each avatar has been assumed, e.g. 
[Sty04]. Then the steering towards that destination 
must be performed. For example an avatar is told to 
steer from one end of a road or square to another end 
by the higher layer. The avatar has to navigate to that 
destination. He does so by selecting intermediate 
local targets just a few meters ahead of him. By 
consulting the flow grid at regular intervals the 
avatar chooses to head for the area with smaller 
density and smaller opposing flow. To help the 
avatar decide which area is best, a special weight 
formula has been constructed. This formula is 
explained in the box below: 

The weight is a product of the density at that 
spot and the angle difference between the direction 
towards the avatar’s target and the dominating 
direction of flow on the flow grid. 

 
Figure 3. The arrows in circle demonstrate the 

dominating flow on the flow grid at that position. 
Two weights are calculated each time the avatar 

needs to find a new intermediate destination. Each 
weight lies approximately 2 meters ahead of each 
pedestrian and to his left and right. The spot with the 

Weight = ( 1 + D ) * ( 1 + AngleDiff ( T, F) ) 

D = density at spot 

T = vector showing direction towards target pos 

F = vector showing direction of flow at spot 

AngleDiff  = Angle difference between 2 vectors 
in radians 



lowest weight is chosen as a temporary local target as 
shown in Figure 3. 

 The weight has been formulated empirically and 
it gives a nice measurement of the density and 
opposing flow at any spot. 

The avatar continues to steer to the temporary 
target until a new temporary target is calculated in a 
short time interval. The grid takes care of the lane 
formation behavior of the avatars. The steering and 
collision avoidance method is presented next. 

4. LOCAL STEERING AND 
SMOOTHING 

About steering in densely populated areas 
Pedestrians walking in densely populated areas 

change direction to avoid others all the time. 
Checking for long free paths is not very useful. Even 
if there is a free path along a direction, it can very 
easily be claimed by other pedestrians and soon 
become unavailable. A simple, but slightly deferent 
than usual, approach has been used by our system.  

Description of steering algorithm 
A discrete occupancy map is used for collision 

avoidance. The avatar maintains a list of six positions 
at any time. Each position is no more than one 
occupancy cell away from the previous position. At 
all times the actual avatar position is interpolated 
between  positions 2 and 3. When the avatar reaches 
position 3, the first position in the list is discarded 
and a new position is added to the end of the list. The 
avatar is looking only one occupancy cell around him 
for a new position. For this reason, a very sharp turn 
may be needed. Smoothing is used to minimize sharp 
turns, as a post processing step. Essentially, the first 
4 positions are used for curve interpolation and the 
last 2 are used for path smoothing 

Position interpolation 
Interpolation allows us to perform path planning 

only when needed. Practically path planning occurs 
approximately 3 times per second. The occupancy 
map cell size is 33cm and the average avatar speed is 
100cm per second, so if avatar positions in the list 
are to be adjacent, position searching will occur 3 
times per second. All intermediate positions are 
interpolated using a Catmul-Rom curve. This is an 
excellent optimization since simple interpolation is 
the only operation performed for most frames and 
path planning is postponed until it needs to be 
performed. 

Next position search 
Only the cells around the avatar are checked. 

Long free paths are not checked, instead, free cells in 
front of the avatar are checked. Figure 4 shows the 
search area when looking for a new position. When 
the avatar runs into dense crowd, he shouldn’t turn 
back where he came from, as it would look 
unnatural. For this reason the search distance is being 
reduced when the rear of the avatar is being 
searched. 

 

 

 

 

 

 

Figure 4. The search area for possible positions is 
shown here. The search starts from the top and 

checks left and right at an increasing angle and a 
reducing distance until an empty cell is found. 

Path post-smoothing 
Due to the limited search space ahead of the 

avatar and the densely populated environment, sharp 
turns can occur quite frequently. For this reason a 
path smoothing step is performed as post-processing. 
The curve is smoothed out by moving the in-between 
position (5th step) to a better location if that is still 
empty in the occupancy map. Figure 5 demonstrates 
a smoothing step. Position 5 is moved towards the 
line formed by positions 4 and 6 in order to minimize 
the turn angle. 

 

 

 

 

 

 

Figure 5. The 6 positions maintained by the 
avatar. The first 4 are used for curve 

interpolation. Position 5 is canceled and moved to 
a better position (black spot) during smoothing. 

Each position relates to the occupancy map at 
the time the position was taken. Because of 
smoothing, positions taken at past time need to be 
changed. Occupancy maps for the previous time-
steps need to be maintained as well to validate 
whether such a change is possible. Therefore 2 
occupancy maps are maintained, one for the step at 
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position 5 and one for the new position 6. If the new 
desired position at step 5 is not available on the 
occupancy map then smoothing does not occur. It 
would be possible to keep more positions for 
smoothing, which in turn would require more 
occupancy maps. 

5. RESULTS 
Various configurations of crossing and parallel 

crowd streams have been tested. The results of those 
tests as well as the local steering results are presented 
in this section. 

Two Parallel But Opposing Streams 
The first test was composed of two opposing 

crowd streams. The avatars are released from random 
points on one end of the walk area and navigate to 
another random point on the opposing side of the 
area. As the two opposing streams meet they start to 
formulate streams and lane formation becomes more 
stable after a while (Figure 6). Avatars may need to 
cross opposing streams if they need to head for a 
different destination point. 

 

 
Figure 6. Lane formation between two opposing 
crowd streams. The dominating direction at each 

point on the grid superimposed on top. 

 
Figure 7. Lane formation between two opposing 

crowd streams. The flow direction graph is under-
imposed. 

 
To better visualize the lanes formulated, a flow 

direction graph is rendered (Figure 7). The direction 
of flow at each point on the grid is mapped to a color 
using a grey color scheme.  

Two Crossing Crowd Streams 
The results are different for crossing streams. 
Constant lane formation is not possible, as the two 
streams need to cross each other. What happens is 
vertical/horizontal alternation of streams at an area. 
The momentary lane formation for one direction is 
followed by alternation once the avatars from the 
opposing direction start to gather up. The dominating 
stream blocks the avatars traveling in a vertical 
direction to the stream, forcing them to slow down. 
Once the waiting avatars start to gather up, the 
stream changes direction. Figure 8 shows two 
crossing streams of avatars. 
 

 
Figure 8. Two crossing crowd streams. Lanes are 
formed only momentarily, temporarily slowing 

down avatars that try to cross it. 



 
Figure 9. Two crossing pedestrian streams. The 

avatars are rendered as impostors. Different 
colors are used to distinguish avatars belonging to 

different streams. 
It can be seen in Figure 9 that the two crossing 
streams of avatars mix much more than the previous 
test case. The avatars in white color need to travel in 
a perpendicular direction to avatars in grey color. 
Crossing streams are much harder to distinguish. 

Four Crossing Crowd Streams 
As Daamen and Hoogendoorn [Daa03] state the 

resulting self-organization at crossings is just chaos. 
It has been observed that here too, lane formation is 
only momentary. It only happens for very short 
moments, as there are four crowd streams now 
competing for the same area. The flow measurements 
on the grid do favor only one direction, the 
dominating direction at each area. Thus some avatars 
choose and some avoid an area, which causes the 
momentary lane formation. Figure 10 demonstrates 
the resulting flows at a crossing. 

 

 
Figure 10. Four crossing crowd streams 

competing for the same areas. Lanes are formed 
only momentarily, mostly its only chaos. 

Resulting Paths 
Some resulting paths are shown in Figures 11 and 12. 
Figure 11 shows examples of horizontal paths inside 

two horizontally opposing streams. Figure 12 shows 
example paths of perpendicularly crossing streams.  

 

 
Figure 11. Resulting paths of parallel but 

opposing streams 

 

 
Figure 12. Resulting paths of perpendicularly 

crossing streams 



The granularity of the flow grid affects the lane 
formation. The lanes become thicker when the grid is 
coarse, and thinner when the grid is finer. A 
granularity of 5m to 10m between flow grid points 
has been found to produce pleasing results. 

Performance 
The tests have been performed on a Pentium 4, 

3Ghz machine with 512Mb RAM  and Geforce 5600 
with un-optimized code and are running at interactive 
frame rates for up to 2000 avatars. The simulation 
area is an open space of approximately 3000 square 
meters. 

The performance cost for the flow grid is 
minimal. It lies between 1-2% of the navigation 
performance cost. The relationship of the number of 
avatars and the flow grid cost is linear. The size of 
the area and the density of the grid do not affect the 
performance cost of the flow grid. It is important 
though to point out that the resulting crowd streams 
allow for higher densities of avatars to flow through 
an area, whereas without the flow grid they would 
jam. Table 1 shows that approximately 20% to 25%  
more avatars can flow through an area before the 
crowd jam density limit is reached. 
 

Area in 
sq.meter

s 

Max. Number of 
avatars without 

streaming 
(approx.) 

Max. Number 
of avatars with 

streaming 
(approx.) 

3000 ~600 ~800 
5200 ~850 ~1200 

20800 ~2500 ~3800 
Table 1. Improved Density of avatars. 

Approximate crowd jam limits for different area 
sizes. 

Number 
of 

avatars 

Average 
Algorithm 

Frame 
Time 

(msec) 

Number 
of 

avatars 

Average 
Algorithm 

Frame 
Time 

(msec) 
185 11.3 760 48.4 
275 16.5 830 55.1 
340 21.1 900 59.9 
430 26.9 1020 65.4 
570 35.2 1230 78.4 
670 42.03 1320 86.5 

Table 2. Local Navigation performance cost.  
The local steering is the most costly part of the 

algorithm since it includes local collision avoidance. 
It has been observed that the critical factor in the 
performance of local steering is the density of the 

avatars. Table 2 shows the local collision avoidance 
cost. The performance of navigation is fairly linear 
(Figure 13) until near maximum capacity is reached. 
Once the density of avatars becomes too high the 
cost of collision avoidance rises exponentially due to 
the high density and continues collisions between 
avatars. The performance cost for collision avoidance 
is significantly lower than other methods because 
each avatar only searches for a step every few frames 
and only looks at the neighboring cells on the 
occupancy map around him. 
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Figure 13. The graph for Table 2. Performance of 
local steering algorithm. 

6. DISCUSION 
This paper presented a method for lane 

formation behavior in crowds and a method for quick 
steering inside dense crowd. The method has been 
visually evaluated and it gives pleasing walking 
crowd results.  

The flow grid gives an overall impression of 
what kind of pedestrian traffic exists in that area. It 
can easily be used with more complex path planning 
algorithms for a more detailed path planning 
approach. The simple path selection algorithm 
presented here only examines two areas ahead of the 
avatar, but it has been found to be adequate for dense 
crowd navigation. Congested areas can also be 
detected from the grid since they will have high 
density and low flow. 

One important benefit of the steering algorithm 
is that there is no collision avoidance cost while the 
avatar positions are being interpolated from one pre-
planned step to the next. The collision avoidance 
costs are thus significantly reduced. Collision 
avoidance is only performed each time a new step 
needs to be planned. 



The steering method is suitable for a dense 
pedestrian environment. It cannot operate alone. It 
needs to be directed towards short distance 
intermediate waypoints. The intermediate waypoints 
can be extracted from the flow grid or a similar 
method. The avatar path list can be extended to 
include more points and smoothing can be applied to 
more points in the path list to produce smoother 
paths. 
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