
GPU-based Appearance Preserving Trimmed NURBS
Rendering

Michael Guthe

guthe@cs.uni-bonn.de

Ákos Balázs
Universität Bonn

Institute of Computer Science II
Computer Graphics
Römerstraße 164

53117 Bonn, Germany

edhellon@cs.uni-bonn.de

Reinhard Klein

rk@cs.uni-bonn.de

ABSTRACT

Trimmed NURBS are the standard surface representation used in CAD/CAM systems and accurate visualization
of trimmed NURBS models at interactive frame rates is of great interest for industry. To support modification
and/or animation of such surfaces, a GPU-based trimming and tessellation algorithm has been developed recently.
First, the NURBS is approximated with a bi-cubic hierarchy of Bézier patches on the CPU and then these are
tessellated on the GPU. Since this approach only took the geometric error of an approximation into account, the
various illumination artifacts introduced by the chosen bi-cubic approximation and the subsequent tessellation were
neglected. Although this problem could be solved partially by calculating exact per-pixel normals on the GPU, the
shading error introduced due to the bi-cubic approximation would remain. Furthermore, the long fragment shader
required for per-pixel normals would lead to unacceptably low performance.
In this paper we present a novel bi-cubic approximation algorithm that takes the normal approximation error into
account. In addition, we also define a new error measure to calculate the required grid resolution for the bi-linear
approximation. In combination, this allows GPU-based NURBS tessellation with guaranteed visual fidelity. Our
new method is also capable of high quality visualization of further attributes like curvature, temperature, etc. on
surfaces with little or no modification.

Keywords GPU-based algorithms, NURBS tessellation, appearance preservation

1 INTRODUCTION
CAD/CAM systems used in industry for the design
of models for prototyping and production are usu-
ally based on trimmed NURBS surfaces, since they
have the ability to describe almost every shape con-
veniently. Additionally, the NURBS representation is
also used more and more frequently to generate ani-
mations in movies or even for computer games.
Especially in CAD, but also in the growing field of vir-
tual prototyping the accurate, real-time visualization

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Journal of WSCG, Vol.14, ISSN 1213-6972
WSCG’2006, January 30-February 3, 2006
Plzen, Czech Republic.
Copyright UNION Agency–Science Press

Figure 1: Difference between geometric (left) and
appearance preserving (right) GPU-based tessella-
tion.

of these NURBS models together with additional in-
formation – like reflection lines visualizing the qual-
ity of the model – becomes more and more important.
However, recently developed techniques for real-time
trimming and tessellation on commodity GPUs like
[GBK05] do not take the appearance of the surface
into account and only control the geometric error (see
Figure 1). Such negligence of the normals required for
correct shading can lead to severe visual artifacts.

In this paper we present a novel GPU-based rendering
algorithm that also takes shading artifacts into account,
but requires only a slight overhead compared to the
original GPU-based tessellation algorithm [GBK05].
Even though the introduced error measures were orig-
inally developed for the approximation of surface nor-
mals, they are also well suited for high quality visual-
ization of various other surface properties or attributes,
such as curvature, temperature distribution, or basi-
cally any surface information that can be represented
using scalar values or vectors.

2 PREVIOUS WORK
As our new method exploits ideas of appearance pre-
serving tessellation and GPU-based tessellation, we
give a short overview of both fields. Since higher or-
der surfaces cannot be evaluated on GPUs efficiently,
GPU-based methods are restricted to bicubic surfaces
and, as a result, have to use degree reduction methods.
Therefore, we also review prior work in this field. Fi-
nally, we give a brief survey of the state of the art in
the field of surface property visualization.

2.1 Appearance Preserving Tessellation

An approach for view-dependent refinement of mul-
tiresolution meshes was developed by Klein et al.
[KSS98] which could theoretically also be used for
the tessellation of trimmed NURBS models. However,
since their error measure is highly dependent on the
position of the highlight and derivatives are calculated
in screen space, the exact position and orientation of
the surface on the screen to be known. This makes a
complete retessellation of the model necessary in each
frame. Since only a small portion of the surfaces can
be retessellated on the CPU per frame, this approach
was modified by Guthe et al. [GBK04] to become
view-independent. However, this method still suffers
from the high latency and inflexibility of CPU-based
tessellation.

2.2 GPU-based Tessellation

Abi-Ezzi et al. [AES94] and B́oo et al. [BAD+01]
proposed an additional adaptive tessellation unit at
the front of the rendering pipeline for NURBS and
subdivision surfaces respectively. However, neither of
these were built into commodity graphics hardware.
Bolz and Schr̈oder [BS03] developed an algorithm to
evaluate Catmull-Clark subdivision surfaces on pro-
grammable graphics hardware. After the transmission
of the tessellation textures to the GPU, only control
points instead of triangles need to be send and thus
the fragment shader can be saturated with marginal

bus bandwidth consumption. With different tessella-
tion textures this approach can also be used for bi-
cubic B-Spline surfaces since they are equivalent to
this subdivision scheme on a regular quad mesh. The
algorithm generates an adaptive tessellation on a per-
patch basis, which is rendered into an offscreen buffer
– a so called pixel buffer or p-buffer – and then used
as input for a second rendering pass. This method can
achieve up to 30 million vertices per second on recent
GPUs, but trimming of the surfaces is not possible.
Based on this work, Kanai and Yasui [KY04] devel-
oped an algorithm to calculate accurate per-pixel nor-
mals on a tessellated subdivision surface. Although the
produced images are very convincing, it is too slow for
real time rendering at reasonable resolutions.
Recently a GPU-based trimming and tessellation al-
gorithm for NURBS [GBK05] was developed. This
method however, only takes the geometric error and
not the shading error introduced due to incorrectly in-
terpolated normals into account, which can lead to vi-
sual artifacts.

2.3 Degree Reduction

The idea of approximating high degree Bézier curves
using degree reduction already came up more than 30
years ago [For72]. As shown by Park and Choi [PC95],
the error can be reduced drastically by subdividing the
curve before degree reduction. With a standard degree
reduction algorithms, the degree of continuity between
the composite curves cannot be controlled directly. Ei-
ther, the continuity is preserved up to the maximum
possible for the current curve degree (e.g. [For72]),
or completely lost (e.g. [Eck93]). Therefore, Zheng
and Wang [ZW03] developed a method to explicitly
control the continuity classes of the curve at its end-
points. In [GBK05] a degree reduction method to pre-
serve geometric continuity only has been presented.
In contrast to all existing algorithms, which only con-
sider the geometric error introduced by the degree re-
duction, the error measure proposed in this paper also
takes the introduced shading error into account.

2.4 Surface Property Visualization

The rendering of surface properties is an important
topic for surface interrogation and scientific visual-
ization. Hagen et al. [HHS+92] give an overview of
different surface interrogation methods, like ortho-
nomics, reflection lines and focal surfaces. In the con-
text of our work we only concentrate on reflection
lines, since they can be visualized on the surface. In
addition to these properties, the visualization of the
curvature and curvature regions [EC93a, EC93b] also
delivers valuable information for surface design. For
visualization so called property surfaces are generated

in this approach. Since the calculation of these prop-
erty surfaces is often computationally expensive, this
method is not suited for complex or dynamic models.

3 GPU-BASED TESSELLATION
The overall workflow of the GPU-based trimming and
tessellation algorithm [GBK05] is shown in Figure 2.
First, the trimming curves are sampled with sufficient
accuracy and evaluated on the GPU (2). Then the re-
sulting polygons are rendered into a texture of appro-
priate size using a p-buffer (3). In the second render-
ing pass, the patch is sampled using a regular grid
of sufficient resolution, such that a given geometric
screen space error is guaranteed. For this purpose, pre-
defined grids of different resolutions are stored on the
graphics card in advance. At runtime, the grid index
is calculated on the CPU and then sent to the GPU.
Then the patch is evaluated at all grid vertices on the
GPU (6). For the trimming, the trim-texture is simply
bound and all pixels outside the trimming region are
removed in the fragment stage by a lookup into this
trim-texture (7).

→

1cubic
approximation

trim-texture
generation

bi-cubic
approximation

culling &
LOD selection evaluation trimming

sampling
grid

CPU GPUgraphics bus 1st pass

2nd pass

evaluation

vertex shader fragment shader

4

2 3

5 6 7

bi-cubic
hierarchy

NURBS,
T-Spline

trimming
curves

1

2
3

1 2

3

0t =

1t =

3t =

4t =

1t∆ = 2t∆ =

1t∆ =

1
3

s =

3
4

s =

Figure 2: Main workflow of the GPU-based trim-
ming and tessellation algorithm [GBK05].

As data dependent loops are only supported by very re-
cent GPUs, a conversion from NURBS or T-Spline to
piecewise rational B́ezier representation is necessary,
since the current knot spans, needed to calculate the
sample points, differ. For cards not having texture ac-
cess in the vertex shader, the amount of input data for
a vertex program is limited to 16 vertex attributes and
8 program matrices and thus only low degree Bézier
patches can be evaluated. To work with any graphics
card supporting at least vertex shader1.0, only 12 tem-
porary registers can be used, which limits the maxi-
mum degree to bi-cubic. Therefore, the overall algo-
rithm first approximates each NURBS or T-Spline sur-
face and its trimming curves with a coarse hierarchy
of rational bi-cubic B́ezier patches, or cubic rational
Bézier curves respectively, on the CPU (1+4). Dur-
ing rendering this hierarchy is traversed and patches
with sufficient accuracy are selected to guarantee a
given geometric screen space error (5). If the traver-

sal reaches a leaf node, additional bi-cubic patches are
generated. Then the control points of each patch are
sent to the GPU before selecting a grid of appropriate
resolution for evaluation.
An appearance – i.e. normal – preserving tessellation,
based on this method, needs to preserve the normal in
both approximation steps of the surface, namely the bi-
cubic approximation on the CPU and the tessellation
of the bi-cubic patch on the GPU. The remaining part
of the algorithm however does not need to be changed.
Therefore, the following two Sections describe only
the modifications of the GPU-based NURBS render-
ing method necessary to preserve the appearance of
the surfaces.

4 NORMAL PRESERVATION
When a B́ezier surfaceS is approximated with a sur-
face S̃, the visual approximation error on each point
of the approximating surfacẽS(p), with the parame-
ter valuep = (u, v), is the distance to the closest
point on the original surface with the same color after
shading, i.e. with the same normaln = (nx ny nz)T

when fragment based shading (e.g. Blinn-Phong or en-
vironment mapping) is used. This leads to the problem
of finding a pointS(q) in the vicinity of S̃(p), with
n(q) = ñ(p). Since we assume thatS is smooth we
can use a Taylor expansion ofn around the parameter
valuep:

n(p+∆p) = n(p)+


∂nx(p)

∂u
∂nx(p)

∂v
∂ny(p)

∂u
∂ny(p)

∂v
∂nz(p)

∂u
∂nz(p)

∂v

 ∆p+O(‖∆p‖2)

Assuming‖∆p‖ to be small, a singular value decom-
position could be used to find the smallest∆p and
then‖S(p + ∆p) − S̃(p)‖ is an upper bound for the
visual error in object space. However, as shown in
[GBK04], it is much more efficient to interpret the
visual approximation errorε as the orthogonal com-
bination of the geometric distanceεgeom of the point
S̃(p) on the approximating surface to the pointS(p)
on the original surface and the distanceεnorm of S(p)
to the closest pointS(p + ∆p) with the same normal
n(p + ∆p) = ñ(p). As shown in Figure 3, these two
distances can be combined by:

ε(p)2 = εgeom(p)2 + εnorm(p)2.

In this case we are able to exploit the fact that the esti-
mation of the geometric approximation error remains
the same as for the non-appearance preserving tessel-
lation. Thus the shading error can be estimated with-
out actually calculating the position of the closest cor-
rectly shaded point in Euclidean space, using the ap-
proximate error measures deduced in the following.

approximated point

geometric error

 normal error combined error

Figure 3: Combination of error measures.

4.1 Bi-cubic Approximation

When evaluating a B́ezier surface, the normal is cal-
culated as the cross-product of the first derivatives in
u- andv-direction. This implies, that the normal on an
approximating surfacẽS at parameterp equals that of
the original surfaceS at parameterq, if

∂S̃(p)
∂u

=
∂S(q)

∂u
and

∂S̃(p)
∂v

=
∂S(q)

∂v
.

Since the bi-cubic approximation of the arbitrary de-
gree B́ezier surfaceS with a bi-cubic B́ezier surfacẽS
is performed first in theu- and then in thev-direction,
preserving the normal can be achieved by preserving
the first derivative of each iso-parametric curve. The
derivative approximation errorεd when approximating
a curveC with C̃ is then

εd(t) = ‖C ′(t)− C̃ ′(t)‖.

Since this error is defined in the space of the first deriv-
ative, it needs to be projected into object-space. This
projection needs to map a distanceδd in derivative
space to a distanceδo in object-space. Again we ap-
proximate the distances on the curves using a Taylor
expansion aroundt:

δo(t + ∆t) = ∆tC ′(t) + O(‖∆t‖2)
δd(t + ∆t) = ∆tC ′′(t) + O(‖∆t‖2)

For a small ∆t, we can approximate the
projection with δo(t + ∆t) ≈ ∆tC ′(t) and
δd(t + ∆t) ≈ ∆tC ′′(t) such that the object-space
derivative errorεder(t) between the two curves at
parametert is then

εder(t) ≈
(
‖C ′(t)− C̃ ′(t)‖ ‖C

′(t)‖
‖C ′′(t)‖

)
.

The object-space derivative deviation errorεder be-
tween the original and approximating curve is now de-
fined as the maximum ofεder(t) along the curve:

εder ≈ sup
0≤t≤1

(
‖C ′(t)− C̃ ′(t)‖ ‖C

′(t)‖
‖C ′′(t)‖

)
.

Arguing similarly to [GBK04], we can assume that the
maximum derivative deviation error on a curve will

probably occur at the point, where‖C ′′(t)‖ has its
maximum and therefore the following approximation
can be used without loss of visual fidelity:

εder ≈ sup
0≤t≤1

‖C ′(t)− C̃ ′(t)‖
sup0≤t≤1 ‖C ′(t)‖
sup0≤t≤1 ‖C ′′(t)‖

.

4.2 Sampling

To generate less rendering primitives (e.g. for sur-
faces of revolution), the sampling resolution in
u- and v-direction is separated as in [GBK05].
According to Filip et al. [FMM86], the errorε
when approximating aC2-continuous surface with
a regular triangle mesh, where each pair of trian-
gles spans the bilinear parameter space rectangle
D = [(ui, vj), (ui+1, vj+1)] with the constant sizes
∆u = ui+1 − ui and∆v = vj+1 − vj is bounded by

ε ≤ 1
8
(∆u2Mu + 2∆u∆vMuv + ∆v2Mv),

with

Mu = supp∈D

∥∥∥∂2S
∂u2

∥∥∥ , Muv = supp∈D

∥∥∥ ∂2S
∂u∂v

∥∥∥ ,

andMv = supp∈D

∥∥∥∂2S
∂v2

∥∥∥ .

The sampling densities are then separated by exploit-
ing the fact thatab ≤ 1

2 (a2 + b2) and thus the approx-
imation error is bound by

ε ≤ 1
8

(
∆u2(Mu + Muv) + ∆v2(Mv + Muv)

)
,

which is a simple addition of the two approximation
errors inu- andv-directions. This means, thatε is an
upper bound for the approximation error, if the error
in both directions is not greater thanε2 . This can fur-
ther be simplified to calculating the piecewise linear
approximation error ofn + m curves.
Following the estimations proposed in Section 4.1, we
again assume that the maximum derivative error oc-
curs at the point where‖C ′′(t)‖ has its maximum,
which leads to the following approximate derivative
deviation error:

εder(t) ≈ ‖C ′(t)− C̃ ′(t)‖
sup0≤t≤1 ‖C ′(t)‖
sup0≤t≤1 ‖C ′′(t)‖

.

Sinceεder(t) is C2 continuous, ifC is C3 continuous,
which is the case for cubic B́ezier curves, the theorem
of Filip et al. [FMM86] gives an approximate upper
boundεder of a piecewise linear approximation with a
constant step sized of

εder ≈
1
8
d2 sup

0≤t≤1
‖C ′′′(t)‖

sup0≤t≤1 ‖C ′(t)‖
sup0≤t≤1 ‖C ′′(t)‖

.

The number of required samplesn to achieve a maxi-
mum given deviation ofε is then:

n =


√√√√√

E2
geom + E2

der

8ε

 ,

with

Egeom = sup
0≤t≤1

‖C ′′(t)‖

Eder = sup
0≤t≤1

‖C ′′′(t)‖
sup0≤t≤1 ‖C ′(t)‖
sup0≤t≤1 ‖C ′′(t)‖

.

C ′′′(t) can be written as a rational Bézier curve with
a degree nine nominatořP (t) =

∑9
i=0 P̌iB

9
i (t) and

a degree twelve denominatorw̌(t) =
∑12

i=0 w̌iB
12
i (t).

Since allwi are positive by construction, alľwi are also
positive. Therefore, an upper bound of the norm of the
third derivative is given by:

sup
0≤t≤1

‖C ′′′(t)‖ ≤ max(‖P̌0‖, . . . , ‖P̌9‖)
min(w̌0, . . . , w̌12)

.

The upper bounds for‖C ′′(t)‖ and‖C ′(t)‖ are cal-
culated as in [GBK05], i.e.‖C ′′(t)‖ from a degree
seven/nine and‖C ′(t)‖ from a degree five/six ratio-
nal polynomial curve. Since the calculation of these
upper bounds is only required when extending the bi-
cubic hierarchy, the additional computation time can
be expected to be marginal for static models.

5 OTHER ATTRIBUTES
The appearance preserving error measure derived in
Section 4 is not limited to normals – which are pre-
served when preserving the first derivatives – but can
easily be extended to higher derivatives or arbitrary at-
tributes. IfA(u, v) is a general attribute defined as a
tensor product, we can again reduce the problem into
a piecewise curve representation and project the ap-
proximation error from attribute- to object-space with

εA(t) = ‖CA(t)− C̃A(t)‖ ‖C
′(t)‖

‖C ′
A(t)‖

.

Starting from this definition, the approximation error
required for the bi-cubic approximation and the regu-
lar tessellation can be derived using the same assump-
tions and estimations as in Section 4. For the bi-cubic
approximation, we then have

εA ≈ sup
0≤t≤1

‖CA(t)− C̃A(t)‖
sup0≤t≤1 ‖C ′(t)‖
sup0≤t≤1 ‖C ′

A(t)‖
,

and for the sampling resolution

εA ≈
1

8d2
sup

0≤t≤1
‖C ′′

A(t)‖
sup0≤t≤1 ‖C ′(t)‖
sup0≤t≤1 ‖C ′

A(t)‖
.

Finally, the approximation errors of all attributes are
combined with the geometric approximation error as
an orthogonal combination of partial errors.

6 RESULTS
To evaluate the efficiency of our method, we first com-
pare its performance with the previous GPU-based tes-
sellation method, that only guarantees a geometric er-
ror. Then we examine the image quality improvements
provided by our new method and finally we test its ap-
plicability in the field of surface property visualization,
especially in comparison with the previous method.

6.1 Performance

All benchmarks were performed on an
Athlon 64 3200+ with1.5 GByte memory and a
GeForce 7800 GTX at a resolution of1280 × 1024
(unless noted otherwise) with0.5 pixel screen space
error.
First, we compare the tessellation performance of our
method with the performance of the previous GPU-
based algorithm using a single bi-cubic trimmed and
untrimmed patch (see Figure 4). To analyze the tes-
sellation performance we render this patches at differ-
ent screen-sizes, where a larger screen-size implies a
lower object-space error and a higher sampling rate.

0
0,2
0,4
0,6
0,8

1
1,2
1,4
1,6
1,8

0 1 M 2 M 3 M
pixel

ms

trimmed
untrimmed
trimmed
untrimmed

Figure 4: Tessellation performance in dependance
of screen size for geometric (dashed) and appear-
ance preserving GPU-based tessellation.

As shown by these graphs, the number of additional
vertices and thus the additional rendering time for
the untrimmed surface is approximately 50%. How-
ever, when the surface is very small on screen (a few
pixel), the additional number of vertices and the per-
formance loss is approaching zero. It can also be ob-
served, that the trimming overhead remains constant,
since the trimming itself does not alter the appearance
of the surface and remained unchanged.
As second example, we compare the performance of
the bi-cubic approximation for surfaces of different de-
grees with that of the original GPU-based tessellation.

In Figure 5 the performance of both methods is shown
for a single animated trimmed NURBS surface with
100 control points and degrees of 3×3, 5×5, and 7×7
respectively.

0
1
2
3
4
5
6
7
8

0 1 M 2 M 3 M
pixel

ms

 3 x 3
 5 x 5
 7 x 7
 3 x 3
 5 x 5
 7 x 7

Figure 5: Total rendering performance of a sin-
gle animated trimmed NURBS surface with 100
control points and of different degrees using geo-
metric (dashed) and appearance preserving GPU-
based tessellation.

For large surfaces of higher degree, where a bi-cubic
approximation is required, the total rendering time in-
creases by up to 93%. This performance drop is mainly
due to the computationally more expensive error mea-
sure for the bi-cubic approximation, as the percentage
of additional bi-cubic patches and rendered vertices
is significantly lower than this. Since the bi-cubic ap-
proximation error measure needs to be calculated only
when a surface is modified, the impact on static mod-
els will be significantly lower.
To evaluate the performance on more complex static
models, resembling a real application setting, we
render the industrial CAD models shown in the
Figures 6-8.

Figure 6: Mini model: 629 trimmed surfaces.

Detailed statistics on the number of NURBS and un-
derlying B́ezier surfaces, as well as the number of non-
trivially trimmed NURBS surfaces, of these models
are given in Table 1.
Table 2 compares the average number of rendered bi-
cubic B́ezier patches, the average number of generated

Figure 7: Golf model: 8,138 trimmed surfaces.

Figure 8: C-Class model: 67,571 trimmed surfaces.

Mini Golf C-Class
NURBS surfaces 629 8,138 67,571

non-trivially trimmed 203 1,486 35,230
Bézier patches 25,648 17,936 396,535

Table 1: Details of the models used for evaluation.

vertices and the frame-rate of the unmodified GPU-
based trimming and tessellation algorithm [GBK05]
with the appearance preserving method presented in
this paper.

Mini Golf C-Class
geometric only approximation

bi-cubic patches 11,683 8,008 105,442
vertices 210,529 239,221 2,216,352
frame-rate 12.8 fps 9.1 fps 1.3 fps

appearance preserving approximation
bi-cubic patches 11,685 8,017 159,176
vertices 283,333 280,400 2,538,128
frame-rate 11.0 fps 7.9 fps 1.2 fps

Table 2: Performance comparison between geomet-
ric and appearance preserving approximation.

Even though the number of bi-cubic patches has in-
creased by 21% to 51% and the number of vertices
increased by 14% to 39%, the frame-rate difference is
only between 8% and 14%. The very loose coupling
between the number of vertices and the rendering per-
formance is mainly due to the massively parallel archi-
tecture of modern GPUs. Withn parallel vertex units,

the evaluation and transformation timet of each bi-
cubic B́ezier patch withv vertices is

t = c
⌈ v

n

⌉
,

wherec depends on the GPU performance. Note, that
for these models, the average number of vertices per
Bézier patch (16 to 30) is in the same order of mag-
nitude as the number of parallel vertex units in current
GPUs, even for the appearance preserving tessellation.
In addition to this, each B́ezier patch requires a con-
stant time for initialization of the vertex array, upload-
ing of the control points for evaluation, and setting the
domain interval for trimming, regardless of the size of
the regular grid used for evaluation. Furthermore, the
time required for trimming remains constant as well.

6.2 Image Quality

In order to compare with the previous, purely geomet-
ric approach, we perform a pixel by pixel comparison
of the interpolated normals with the real normals from
the NURBS model obtained via sub-pixel subdivision.
The visual difference between the real and interpolated
normals (shown in Figure 9) can be extracted using
simple image processing. To estimate the normal devi-
ation in screen space, the surrounding pixels are used
to calculate the normal derivatives. Note, that this is
only correct on a closed surface but not along contours.

≥ 1.0

≤ 0.5
≥ 1.0

≤ 0.5

Figure 9: Normal deviation error in pixels for a
closeup of the Golf model using GPU-based tessel-
lation without (top) and with normal preserving er-
ror measure (bottom).

It is clearly visible that the normal approximation is
much better when using the appearance preserving tes-
sellation. Note, that the remaining pixels along con-
tours, where the normal error exceeds the0.5 pixel
threshold are – as already mentioned – due to the nor-
mal undersampling in the image processing step and
not a shortcoming of the appearance preserving tessel-
lation algorithm.

In addition to the visual comparison, Table 3 compares
the average normal deviation of our approach with the
previous GPU-based tessellation algorithm that con-
trols the geometric error only.

angle pixel exceeded
geometric only 0.930◦ 0.117 2.409%
normal preserving 0.752◦ 0.074 1.238%

Table 3: Average normal approximation error per
foreground pixel and percentage of foreground pix-
els where desired error is exceeded.

Here again, the remaining pixels where the screen
space error threshold is exceeded are located along
contours and are therefore the results of aliasing ar-
tifacts and not due to incorrect normals.

6.3 Surface Properties

The main goal of surface property visualization in in-
dustry, especially in design, is to ensure the continu-
ity of reflections on the surface. For this purpose, so-
called reflection lines are mainly used. Figure 10 com-
pares the reflections lines rendered with a grid environ-
ment on a closeup of the Golf fender using geometric
and appearance preserving tessellation.

Figure 10: Reflection lines using geometric (top)
and appearance preserving (bottom) tessellation.
In the top image, the real discontinuity (green) is
indistinguishable from tessellation related (blue).

To identify discontinuities in the shading, which occur
at ridges or ravines of the model, the tessellation needs
to produce meshes with correct normal interpolation.
Even a slight normal deviation of a few degree can
lead to visual artifacts that are indistinguishable from
real surface discontinuities. Using the appearance pre-
serving bi-cubic approximation and tessellation pre-
sented in this paper, the normals are correct within a
given screen space error and thus shading discontinu-
ities only occur when they are present in the model.

7 CONCLUSION
In this work, we presented a novel method for
GPU-based appearance preserving tessellation of
NURBS surfaces. We demonstrated the problems of
the previous algorithm in dealing with various illu-
mination/shading artifacts introduced by the bi-cubic
approximation and the following tessellation. We
also demonstrated that our algorithm only requires a
relatively low number of additional bi-cubic patches
and vertices to produce accurate interpolated normals.
It achieves almost the same performance as the
original method, but nevertheless provides a much
higher visual fidelity. Our new method also has the
capability to visualize surface properties such as
degree of continuity or discontinuities using reflection
lines. Due to the real-time trimming and tessellation
on the GPU, it is also suitable for the visualization of
deformable models and to have immediate feedback
during the design and virtual prototyping process.

8 ACKNOWLEDGEMENTS
We would like to thank SGI, DaimlerChrysler AG,
and Volkswagen AG for providing for the trimmed
NURBS models used in this paper. This work was par-
tially funded by the European Union under the project
of “Real Reflect” (IST-2001-34744).

References
[AES94] S. S. Abi-Ezzi and S. Subramanian. Fast

dynamic tessellation of trimmed NURBS
surfaces.Computer Graphics Forum, No.13(3),
pp.107–126, 1994.

[BAD+01] M. Bóo, M. Amor, M. Doggett, J. Hirche, and
W. Straßer. Hardware support for adaptive
subdivision surface rendering. InProceedings
of the ACM SIGGRAPH/EUROGRAPHICS
workshop on Graphics hardware, pp.33–40,
2001.

[BS03] J. Bolz and P. Schröder. Evaluation of
subdivision surfaces on programmable graphics
hardware, 2003.

[EC93a] G. Elber and E. Cohen. Hybrid symbolic and
numeric operators as tools for analysis of
freeform surfaces. InWorking Conference on
Geometric Modeling in Computer Graphics,
pp.275–286, 1993.

[EC93b] G. Elber and E. Cohen. Second-order surface
analysis using hybrid symbolic and numeric
operators.ACM Transactions on Graphics,
No.12(2), pp.160–178, 1993.

[Eck93] M. Eck. Degree reduction of B́ezier curves.
Computer Aided Geometric Design,
No.10(3-4), pp.237–252, 1993.

[FMM86] D. Filip, R. Magedson, and R. Markot. Surface
algorithms using bounds on derivatives.
Computer Aided Geometric Design, No.3(4),
pp.295–311, 1986.

[For72] A. Forrest. Interactive interpolation and
approximation by B́ezier polynomials.The
Computer Journal, No.15(1), pp.71–79, 1972.

[GBK04] M. Guthe,Á. Balázs, and R. Klein. Interactive
High Quality Trimmed NURBS Visualization
Using Appearance Preserving Tessellation. In
Data Visualization 2004 (Proceedings of TCVG
Symposium on Visualization), pp.211–220 +
348. EUROGRAPHICS - IEEE, May 2004.

[GBK05] M. Guthe,Á. Balázs, and R. Klein. GPU-based
trimming and tessellation of NURBS and
T-Spline surfaces.ACM Transactions on
Graphics, No.24(3), pp.1016–1023, 2005.

[HHS+92] H. Hagen, S. Hahmann, T. Schreiber,
Y. Nakajima, B. Ẅordenweber, and
P. Hollemann-Grundstedt. Surface
interrogation algorithms. InIEEE Visualization
and Computer Graphics, pp.53–60, 1992.

[KSS98] R. Klein, A. Schilling, and W. Straßer.
Illumination dependent refinement of
multiresolution meshes. InProceedings of
Computer Graphics International (CGI ’98),
pp.680–687, Los Alamitos, CA, 1998. IEEE
Computer Society Press.

[KY04] T. Kanai and Y. Yasui. Per-pixel evaluation of
parametric surfaces on GPU. InACM
Workshop on General Purpose Computing
Using Graphics Processors (also at
SIGGRAPH 2004 poster session), August
2004.

[PC95] Y. Park and U J. Choi. Degree reduction of
Bézier curves and its error analysis.J. Austral.
Math. Soc. Ser. B, No.36, pp.399–413, 1995.

[ZW03] J. Zheng and G. Wang. Perturbing Bézier
coefficients for best constrained degree
reduction in theL2-norm. Graphical Models,
No.65, pp.351–368, 2003.

