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ABSTRACT 
Texture mapping is a technique for adding visual realism to the computer generated images. As the level of 
realism increases with the number and the resolution of textures, we are faced with the problem of limited 
texture memory space. Moreover, in order to alleviate the aliasing artefacts many graphics systems use the mip-
mapping technique which needs to store additionally the texture pyramid. We propose an algorithm for texture 
compression which is characterized by low computational complexity, random access to compressed data and 
the hierarchical texture representation. The proposed hierarchical texture compression algorithm (HiTC) is based 
on a block-wise approach, where each block is subject to the modified fractal compression method and is partly 
represented by Laplacian pyramid. This allows us to incorporate the mip-map structure into the compressed 
texture and perfectly suits for real-time computer graphics applications.     
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1. INTRODUCTION 

The computer generated scenery composed of 
wire-frame models was the first step into the virtual 
world. The models could only reflect the 3D structure 
of objects and were devoid of any other form of 
visual information. That was changed by the 
introduction of texture mapping techniques. Textures 
in their basic form are images which are applied upon 
3D wire-frame models. When mapped onto an object 
surface, the color of the object surface is modified by 
the corresponding color from the texture. In general, 
the process of texture mapping takes several steps. 
Since textures are represented by an array of discrete 
samples, a continuous image must first be 
reconstructed from these samples. In the next step, 
the image must be warped to match any distortion 
and filtered to remove high-frequency aliasing 
artefacts. In most cases, the filtering is done by mip-

mapping [Wil83], which introduces additional 
memory cost in the form of texture pyramid.  

Current applications of textures are much wider 
and textures are used to control most of the visual 
parameters of the object surfaces such as 
transparency, reflectivity, bumpiness, roughness. 
This greatly increases the realism of the virtual 
objects and pushes the hardware resources to the 
limits. To simulate the real world at the interactive 
frame rate, it is necessary to have fast and random 
access to a large number of high resolution detailed 
textures. Thus, the bandwidth and storage 
requirement for textures introduces the need to use 
more efficient texture compression methods. 

2. PROBLEM DEFINITION 
Although a texture can be regarded as a digital 

image, most of classical image compression methods 
cannot be applied to textures. There is a strong need 
for efficient, highly specialized texture compression 
algorithms. 

According to Beers [Bee96] and our findings 
when designing a texture compression algorithm the 
following aspects must be taken into consideration: 

Decoding speed. It is the essential feature which 
allows for rendering directly from the compressed 
textures. As texture compression is mostly used in 
real time computer graphics the decompression 
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algorithm must be designed to allow high frame 
rates. 

Random access. Since the mapping process 
introduces discontinuous texture access in the texture 
space, it is difficult to know in advance how the 
texture will be accessed. Thus, the methods which 
may be considered for fast random access are based 
on fixed length codes.  

Hierarchical representation. To deal efficiently 
with level of detail and mip-map texture 
representations this requirement must be fulfilled. 
Hierarchical structure allows for rendering directly 
from the compressed texture represented on number 
of different resolution levels. 

Compression rate and visual quality. The 
difference between textures and images is that the 
images are viewed on their own and they are 
presented in the static content, while the textures are 
the part of the scene which usually changes 
dynamically. Thus, the loss of information in texture 
compression is more acceptable and the compression 
ratio is more important issue. 

Encoding speed. Texture compression is an 
asymmetric process, in which the decompression 
speed is crucial and the encoding speed is useful but 
not essential.  

3. PREVIOUS WORK 
All existing texture compression algorithms can 

be divided into three major groups: block truncation 
coding and local palettes, vector quantization, 
transform coding. 

3.1 Block truncation coding and local 
palettes. 

The block truncation coding (BTC) was 
introduced for image compression by Delph and 
Mitchel [Del79]. The method represents image 

44× block by two 8-bit gray scale values and index 
map. Each pixel in the block references one of the 
gray scale values by 2 bit index from the index map. 
This corresponds to 2 bits per pixel (bpp) 
compression. Although, the primary application of 
BTC was not the texture compression, many other 
proposed texture compression methods are based on 
it.    

An extension of BTC to represent color images, 
called color cell compression (CCC) was proposed 
by Campbell [Cam86]. The two 8-bit values were 
used for storing the index into a color palette. That 
representation allowed compressing the color images 
to 2bpp. Even though, the additional cost of storing a 
color palette for every texture and indirect data 
access requiring two memory transactions were 

prohibitive for some real time application, it was 
suggested by the Knittel to implement it in the 
texturing hardware [Kni96]. In terms of image 
quality both BTC and CCC are characterized by the 
block effect. This effect is a result of two contrary 
factors, namely independent block compression and 
limited number of colors used for the block 
representation.  

The further extension of those two described 
methods was the S3TC texture compression method 
introduced by Iourcha [Iou99]. The S3TC represents 
a 44× block by four 16 bits (RGB565) color values 
and the index map with 2 bits per index. Two base 
colors are stored explicitly in the compressed block 
and the others are linearly interpolated from those 
two during the decompression process. Thus, the 
final size of the block is equal to 64 bits which gives 
4bpp. The FXT1 texture compression method 
developed by 3DFX added a few more modes to 
S3TC [3DF99]. The first mode is the same as S3TC 
and the other compress 84×  blocks with local 
palette with four and eight colors interpolated 
depending on the mode from two or three base 
colors. Another S3TC like method was a part of 
POOMA texturing system for low-cost devices 
[Ake03]. It represented a 23× block by two base 
colors and used block overlapping instead of a 
texture caching to reduce the memory access.   

The texture quality of S3TC based methods is 
significantly better than CCC and BTC, but it still 
suffers from the block effect partly introduced by 
linear interpolation of colors. A number of solutions 
were proposed to tackle that problem. The color 
distribution approach proposed by Ivanov and 
Kuzmin allowed to share colors between neighbour 
blocks [IVA00], thus representing a block by a larger 
number of unique colors. Levkovich-Maslyuk et al. 
allow colors to be chosen from an RGB tetrahedron, 
and partitioned the block into sub-pallets for better 
approximation of block original color distribution 
[Lev00].  

Completely different approach was taken by 
Fenney [Fen03]. On the basis of the fact that low-
pass filtered signals are often a good approximations 
of original signal, his method used two low 
resolution images and full-resolution low precision 
modulation signal to represent a texture.  Another 
approach was proposed by Ström and Akenine-
Möller in PACKMAN system and its extension 
iPACKMAN [Str04][Str05]. Proposed methods 
represent a block by a single base color and an index 
map with indices into a codebook which values 
modulate the pixel luminance.  

Although texture compression methods based 
on BTC are currently the mainstream in computer 
graphics hardware, they do not address the problem 



of hierarchical representation. Thus, the main 
features that characterize them, namely - decoding 
speed and fast random access, may come at great 
expense when applied to level of detail and mip-map 
texture representations.  

3.2 Vector quantization. 
 Beers et al. proposed a method for texture 

compression based on vector quantization (VQ) with 
mip-map texture representations [Bee96]. The first 
mip-map (original texture) was represented by 

44× blocks from the codebook. On the basis of the 
first mip-map codebook the second and the third 
were created by averaging each 44× codeword 
respectively to 22×  and 11×  codewords. The final 
extended codebook was created by concatenating the 

44× codeword with the corresponding sub-sampled 
22×  and 11×  codewords. This representation 

achieved significant compression of 1bpp at the cost 
of lower reconstruction quality due to codeword sub-
sampling.  

 Method proposed by Kwon and Chong used 
Interpolative Vector Quantization to represent a 
texture pyramid used for mip-mapping [Kwo00]. 
This allowed reducing correlation between mip-map 
levels. Additionally, the method needed to store two 
codebooks corresponding to low and high frequency 
texture terms and to interpolate the low frequency 
part of the block during the decompression. 

 Tang and Zhang in their texture compression 
method address the problem of texture regions visual 
importance [Tan05]. The codebook in this method is 
constructed taking into account such issues as visual 
importance and texture mapping distortion. 

Generally, the VQ based methods suffer from two 
major problems: indirect data access and codebook 
handling. To retrieve single texture element we need 
two memory accesses. The codebook size can be too 
expensive for implementation in hardware and 
impose additional cost on texture caching when used 
with mip-maping.   

3.3 Transform coding. 
 The most common transform method used in 
image compression which was applied to textures 
was Discrete Cosine Transformation (DCT). 
Talisman texturing systems (TREC) solved the 
problem of variable length coding of DCT by 
preserving the DC components without DPCM 
[Mic97]. Moreover, TREC used index table and link 
list to address each block, resulting in block random 
access. More elaborated texture compression scheme 
based on DCT was proposed by Chen and Lee 
[Che02]. They use adaptive quantization of 88×  
blocks, by assigning quantizer scale factor to each 
block. Thus, each block could be encoded to fixed-

length code. Although those methods resulted in 
compression ratio higher than BTC methods and 
comparable to VQ methods with better image 
quality, they were too expensive for hardware 
implementation due to large block size, high 
complexity of inverse transform and lack of random 
access on texture pixel level. 

 Following the DCT more attention in TC is 
gaining the discrete wavelet transform (DWT). This 
is the result of the multi-resolution representation. 
Pereberin introduced the compression method based 
on Haar wavelet to encode three adjacent levels of 
mip-map pyramid [Per99]. Mapping the texture to 
YUV color space and reducing the insignificant 
coefficients allowed him to achieve average 4bpp 
compression. Representing a texture as a Wavelet 
Coefficient Tree (WCT) in the form of coefficient 
texture and the index texture was proposed by 
Candusi and DiVerdi [Can05]. Though, the DWT 
poses multi-dimensional feature, which makes it 
superior for hierarchical texture representation, it is 
not obvious how to reduce the insignificant 
coefficients to obtain the random access without 
severely reducing the compression ratio.    

4. HIERARCHICAL TEXTURE 
COMPRESSION. 
As the level of detail representation and filtering 

based on mip-mapping technique is ubiquitous in 
real-time applications, it is needed for textures to 
have a form of hierarchical structure. 

It can be seen in image processing field that 
hierarchical approach gives an effective solution for 
compressing images. A good illustration being 
wavelet decomposition [Tau02] or Laplacian 
pyramid [Bur83]. These methods store the hierarchy 
explicitly compared to other class of methods based 
on fractal theory. Fractals are characterized by super-
resolution property and while they can be represented 
on different resolutions levels, the hierarchical 
structure is not explicitly stored.  

Even though, the hierarchical and multi-
resolution feature of wavelets and fractals seems 
promising for texture compression applications, they 
are generally unsuitable. On one hand, wavelets 
methods need tree-walk procedures which require 
multiple accesses to memory. On the other hand, 
fractals during decompression need information from 
different parts of the texture. Moreover, they both are 
characterized by variable length code which makes 
them inferior to widely used block truncation coding 
methods. 

Taking into consideration the requirements of 
texture compression we propose a method (HiTC) 
that combines the hierarchical representation with 



block-wise approach. This allows us to join the 
advantages of both approaches.  

5. THE ALGORITHM DESCRIPTION. 
 The proposed algorithm is based on fractal and 
wavelet theory. Since the final structure of algorithm 
was subject to number of simplifications, the next 
part of the paragraph will explain step by step the 
process that was carried to derive it. 

5.1 Introduction. 
 One of the most important factors in BTC 
texture compression methods is the size of the 
compressed texture block, which is in most cases 
equal to 44× . It is the result of a balance between 
the image quality and compression ratio. Moreover, 
in texture compression applications it is considered 
as optimal for hardware implementation. But if we 
take into account the Fractal compression methods, 
the block that is subject to compression constitutes 
the whole image. The fact that the base fractal 
scheme does not address the problem of local 
compression [Fis95] makes the process of 
decompression computationally expensive. The work 
on the local fractal transform was carried on by the 
author resulting in the local fractal compression 
algorithm [Sta05]. That algorithm  is based on 
quadtree structure. It allows for local decoding and 
random access on block level. The block size is 
restricted by the image quality and is not lower 
than 3232× . Although the local fractal compression 
algorithm achieves high compression ratios and close 
to real-time decompression, the quadtree structure 
makes it difficult for hardware implementation and it 
does not allow for random access on texture pixel 
level.  

 In our new method (HiTC) we take advantage of 
the local fractal compression algorithm for 

44× blocks compressed independently. To overcome 
the problem of quadtree structure we use regular 
partitioning of compressed block to 22×  range 
blocks R . The local domain pool for compressed 
block consists of only one domain block being the 
whole compressed block BD = . The resulting 
fractal code is a subject to further compression using 
Haar wavelet or Laplacian Pyramid. 

5.2 Compression. 
The process of texture compression in our 

algorithm (HiTC) consists of the following steps: 
 

1. The texture is partitioned into 44× blocks. 
2. Each block is subject to the modified local 

fractal compression. 
3. The fractal code of each block is further 

compressed by Haar wavelet decomposition 
or is represented by Laplacian pyramid. 

If we consider the texture block B , the modified 
local fractal compression is derived from fractal 
block-based method [Fis95] [Woh99] and is done by: 
 
1. The 44× block B  is divided into four non 

overlapping range blocks (4 squares of size 
22× ). 

{ } 4,3,2,1, =jR j  
 

2. Each range block R  is matched to the domain 
block D  (in this case BD = ) by computing the 
optimal coefficients of the transformation: 

( ) oDsR +⋅= ϕˆ  (1) 
 

 which minimize the error ( )RRd ,  in this 
case the root mean square error: 

( )( )∑
=

−+⋅=
4

1

2

i
ii rodsrms ϕ  ji Rr ∈ , Ddi ∈   (2) 

 
where, ( )⋅ϕ  is the spatial contraction function 

which averages four adjacent domain block elements 
and then maps the averaged values onto range block 
applying one of eight isometries ( sym ). Next, the 
resulting range block values are scaled by s  (scaling) 
and added to o  (offset) coefficient [Fis95] [Nin97].  

Thus, after compression each range block jR  is 
represented by a triple{ }jjj symos ,, . 

   Pi et al. in the context of image coding proposed 
to replace the offset coefficient o  (equation 1) by 
range block mean r  which led to transformation of 
the form [Pi03]: 

( ) rdDsR +−⋅= ϕˆ  (3) 
 
where d is the average domain value, r  represents 
range block DC component and s (scaling) in this 
context is related to range block AC component. 

They proved that the range block mean values 
are good approximation of image DC component. 
Consequently, starting from the initial image equal to 
the range-average image (DC image) could lead to 
faster convergence. Moreover, further iteration on 
DC image change only AC component, thus reducing 
the iterations on average to two. 

 Even though, the convergence of the algorithm 
proposed by Pi is faster we still need to compute the 
domain block average at each iteration. In our 
method, we solve this problem by making the domain 
block average as one of the compressed block 
coefficients. This is only cost-effective due to block 
size restriction to 44× .  

Finally, we obtain the following compressed 
block structure which is represented by four range 



blocks coefficients { }jjjj symrsR ,,= , 4,3,2,1=j  

and domain block average d . As can be seen from 
the figure 1 two levels of mip-map are the part of our 
fractal code. Thus, we can further apply Haar 
transform or Laplacian pyramid to increase the 
compression ratio.   

 

 
Texture block 

 

 
{ }ii syms ,4×+  

 
Texture 

 

 
 Compressed block 

 
Figure 1. Hierarchical texture compression 
(HiTC). 
 A simple example reveals the effectiveness of 
our method. For Lenna image if we store only the 
mip-map pyramid and set all the rest coefficients to 
default values ( 75.0=js , 0=jsym , one to one 
mapping) we achieve dBpsnr 65,30= , 47,7=rmse  
and 1:4.2=RC . In this case, we obtained 
compression ratio of BTC methods at the same time 
storing explicitly two levels of mip-map pyramid. 
Moreover, the same hierarchical structure represented 
by wavelets could not be compressed without 
wavelet coefficient quantization. Thus, each memory 
access for wavelets require a de-quantization step 
[Per99], while in our method it is done directly.     

5.3 Coefficients allocation. 
 The next problem that must be solved is the 
coefficients allocation. Namely, given the 
compressed texture block representation we search 
for optimal coefficient bit allocation with respect to 
compression ratio and image quality. Therefore, each 
of the coefficients was independently subject to 
uniform and non-uniform quantization with default 
coefficients values set to: scaling 7-bits, offset 5-bits 
and symmetry 3-bits [Fis95].  

5.3.1 Scaling. 
 The scaling coefficient was subject to uniform 
quantization in the range [ ]5.1,5.1− . The value 

5.1max =s  was chosen experimentally on the basis of 
the reconstruction error. The results of scaling 
quantization revealed that choosing the quantization 
levels with precision higher than 1/32 has little 
impact on image quality as it was indicated by Ning 
Lu [Nin97] (fig. 2). Moreover, restricting the scaling 
values to positive resulted in dB1  lower 
reconstruction error, which may be acceptable in 
texture compression. Applying the non-uniform 
quantization showed little improvement. The most 
noticeable difference was for one quantization level 
where the reconstruction error was reduced by 

dB5.0 . It corresponded to reconstruction 
values { }0.86 0.26,≈s , as opposed to { }0.75 0,≈s  for 
uniform quantization. The compression was also 
checked for constant scaling coefficient. The optimal 
value was equal to 5.0=s . But since the constant 
value introduce the artefacts to high frequency term 
of the image, it seems reasonable to use at least one 
level of quantization for scaling coefficient. 

 
Figure 2. Scaling coefficient quantization for 
Lenna, with error bars indicating the difference 
between uniform and non-uniform quantization.  

5.3.2 Symmetry. 
 The symmetry coefficient is responsible for 
mapping the domain block onto the range block 
[Fis95] (there are eight ways to map a square onto 
another). As it can be seen from the distribution of 
symmetry coefficient for positive scaling coefficient, 
the trivial mapping, which maps averaged domain 
values on the same positions in the range block is 
dominant. Additionally, which is not showed here for 
positive and negative scaling coefficient the second 
dominant mapping is the mapping which rotates the 
block by 1800. Thus, it can be suggested to restrict 
the compression process to use only this trivial 
mapping and positive scaling coefficient. Moreover, 
if we remove the trivial mapping from the 



distribution diagram, the rest is uniformly distributed 
and therefore choosing any particular mapping gives 
no improvement. The only visual difference can be 
observed for at least four symmetries (fig. 4, q2 and 
q3) 

 
Figure 3. Symmetry coefficient distribution  
                (0 – trivial mapping). 
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Figure 4. Symmetry coefficient quantization. 

5.3.3 Mip-map. 
 The result of the texture compression process is 
the set of parameters, where the values 
{ } 4,3,2,1, =jrj  and d  represent the second and the 
third (the lowest) level of the mip-map pyramid. 
Therefore, the next step is to apply compression to 
those parameters. We considered two approaches: the 
Haar decomposition [Per99] and Laplacian pyramid 
representation [Bur83]. We chose the Laplacian 
pyramid, since it fits more closely to decompression 
process and at the same time is less expensive 
computationally. It can be seen from equation 3, we 
can reduce the computation of domain difference 

dD −  since it is a part of Laplacian pyramid 
representation. We represent the mip-map pyramid 
by storing the lowest level explicitly and the second 
level as the difference terms drd jj −= , 4,3,2,1=i . 
Moreover, we take advantage of color space with 
separated luminance and chrominance to coarsely 
approximate the chrominance data.  

5.4 Block structure and decompression. 
Generally, the structure of compressed texture 

block is represented by the triples { }symrs ,,=θ , 
where each corresponds to one of four range blocks. 
Taking into account the previous paragraph we can 

reduce this representation. The proposed bit 
allocation scheme is presented below.   

 The scaling coefficient can be represented by 
one bit and in the case of the uniform quantization 
the reconstruction values are  { }0.75 0,≈s . Since 
when using only one quantization level the value of 
the coefficient is on one third equal to zero, thus the 
process of decompression is usually reduced to 
retrieving the block mean value (equation 3).  

 The symmetry coefficient is dominated by one 
to one mapping, thus it can be safely removed from 
the block structure. 

 The mip-map representation in our case is 
compressed by using the Laplacian pyramid 
representation. But before that we take advantage of 
color space conversion to reduce the data. We chose 
the YCbCr color space to compress the chrominance 
data. We allocate 7-bits for luminance difference 
terms and 3-bits for chrominance difference terms.  

 The final block bit allocation structure for the 
color components consists of: 

- block average value d  (8-bits), 
- difference terms jd , 4,3,2,1=j (7-bits – 

luminance and 3-bits chrominance), 
- scaling coefficient js , 4,3,2,1=j  (1-bit). 
 

This allocation scheme gives 88-bits (40-bits for 
luminance and 2x24-bits for chrominance 
components) and compression ratio 1:72.5=RC  (the 
compression of S3TC for the same set of mip-maps 
would be 1:4.57=RC  [Per99]). 

The decompression process for color component 
(Y, Cb or Cr) simulating three level mip-map pyramid 
can be described in the following steps: 

 
ColorComp getTexel(int x, int y, int mipLevel) { 
 CBlock_x = x/4; CBlock_y = y/4; 
 If (mipLevel >= 2) {  
  getCoeff(CBlock_x, CBlock_y, &d); 
  return d; 
 } 
 else if (mipLevel == 1) { 
  getCoeff(CBlock_x,CBlock_y,&d,&d1); 
  return d + d1;  
 }  

//mip level 0 
 getCoeff(CBlock_x,CBlock_y,&d,&s,&d1,&d2); 
 if (s == 0) 
  return  d + d1;  //r = d + d1 
 else 
  return s*(d2) + d + d1; //s*(di-d)+r; 
} 
//getCoeff() – unpacks the data from the block 

6. RESULTS. 
 The presented method (HiTC) was compared 
with S3TC algorithm on a sequence of test images 
(fig. 5) and the rendered OpenGL scene (fig. 6). The 
error was measured by computing the peak signal to 



noise ratio on luminance component. The luminance 
component was chosen for the reason of its visual 
importance. 

The HiTC shows better reconstruction in the 
regions of smooth color variance as opposed to the 
S3TC. The S3TC reconstruction error is uniformly 
distributed over whole image which can be easily 
seen in the form of the block effect. This effect is 
especially magnified on the block edges where the 
colors do not lie on a line in a RGB color space. The 
same effect in minor form can be observed for HiTC. 
It is reduced in our method by approximating the 
colors of the texture by the mip-map pyramid.   

The final reconstruction errors for the textures 
should be taken with caution. Since they are part of 
the visualized scene, they are subject to mapping and 
filtering process. Although, the compression of single 
texture gives some differences when comparing with 
uncompressed texture, the final rendered scene is 
visually indistinguishable. Both methods achieved 
the peak signal to noise ratio for rendered scene 
higher than dB40 . 
 The problem of decompression cannot be fully 
addressed without hardware implementation. 
However, since our method addresses the problem of 
storing three levels of mip-map in one block, we 
could expect the lowest complexity of accessing the 
texture pixel comparing to other methods. 
 
a) HiTC b) S3TC c) original images 

  

 

psnr = 31.81 [dB],  
rmse = 6.54 

psnr = 35.06[dB],  
rmse = 4.05 

 

 
 

 

psnr= 30.4 [dB],  
rmse = 7.70 

psnr = 33.86[dB],  
rmse=5.16 

 

Figure 5. Texture reconstruction error. 

7. CONCLUSION. 
 We have proposed a new approach for texture 
compression. The major advantage of our fractal 
block-based approach is a hierarchical representation, 
which allows for: 
 

- direct decompression, which does not need 
any iteration since all the coefficients are 
stored explicitly in the compressed block 
structure, 

- texture hierarchical representation, which is 
the result of our modified local fractal 
compression process, 

- low computational complexity - to compute 
first level we need to perform only one 
multiplication and one addition, the second 
level needs only one addition and the third 
level is stored explicitly.  

 
HiTC has the advantage on currently used BTC 

methods that the process of mip-mapping is 
addressed by the compressed texture block (table 1). 
This can be seen when used with trilinear filtering. 
Our method outperforms currently proposed 
solutions, since it can access three levels of mip-map 
directly. The hardware implementation is simple and 
does not require any external structures which for 
example needs vector quantization methods. There is 
no pre-processing step related to coefficient de-
quantization which is common for wavelet 
compression. The computational complexity was 
reduced to minimum with the aim of real-time 
application. Moreover, all the requirements on 
texture compression method are fulfilled (table 1), 
thus making it superior for high performance 
rendering architectures. 
 

8. REFERENCES 
[3df99] 3dfx. FXT1: White paper. 3dfx Interactive. 
http://wwwdev.3dfx.com/fxt1/fxt1whitepaper.pdf, 1999. 
[Ake03] Akenine-Möller T., Ström J. Graphics for the 
Masses: A Hardware Rasterization Architecture for 
Mobile Phones. ACM Transactions on Graphics, 22, 3 
(2003), 801–808. 
[Bee96] Beers A. C., Agrawala M., Chaddha N. 
Rendering from compressed textures. Siggraph 1996, 
pp. 373–378, July 1996. 
[Bur83] Burt P.J. and Adelson E.H. The Laplacian 
pyramid as a compact image code. IEEE Transactions 
on Communications, 31:532–540, 1983. 
[Cam86] Campbell G., Defanti T. A., Frederiksen J., 
Joyce S. A., Leske L. A., Lindberg J. A., Sandin D. J. 
Two Bit/Pixel Full Color Encoding. In Proceedings Of 
Siggraph (1986), Vol. 22, Pp. 215–223. 
[Can05] Candussi N., DiVerdi S., Hollerer T. Real-time 
Rendering with Wavelet-Compressed Multi-
Dimensional Textures on the GPU. Computer Science 
Technical Report 2005-05, University of California, 
Santa Barbara. 
[Che02] Chen C.-H., Lee C.-Y. A JPEG-like texture 
compression with adaptive quantization for 3D graphics 
application. The Visual Computer, vol. 18, 2002, pp. 
29-40. 



[Fen03] Fenney S. Texture Compression using Low-
Frequency Signal Modulation. In Graphics Hardware 
(2003), ACM Press, pp. 84–91. 
[Fis95] Fisher Y.  (Ed.). Fractal Image Compression: 
Theory and Application to Digital Images. Springer 
Verlag, New York, 1995. 
[Iou99] Iourcha K., Nayak K., Hong Z. System and 
Method for Fixed-Rate Block-based Image 
Compression with Inferred Pixels Values. In US Patent 
5,956,431 (1999). 
[IVA00] Ivanov D., Kuzmin Y. Color Distribution – A 
New Approach to Texture Compression. In Proceedings 
of Eurographics (2000), vol. 19, pp. C283–C289. 
[Kni96] Knittel G., Schilling A., Kugler A., Strasser W. 
Hardware for Superior Texture Performance. Computers 
& Graphics 20, 4 (July 1996), 475– 481. 
[Kwo00] Kwon Young-Su, Park In-Cheol, and Kyung 
Chong-Min. Pyramid Texture Compression and 
Decompression Using Interpolative Vector 
Quantization. Proceedings of 2000 International 
Conference on Image Processing, vol. 2, pp.191-194, 
Sep. 10-13, 2000. 
[Lev00] Levkovich-Maslyuk L., Kalyuzhny P. G., and 
Zhirkov A. Texture Compression with Adaptive Block 
Partitions. ACM Multimedia 2000, Nov.2000. 
[Mic97] Microsoft, “Escalante hardware overview. 
Talisman”. Graph Multimedia Syst, pp 89–106. 
[Nin97] Ning Lu, Fractal Imaging, Academic Press, 
1997.   

[Per99] Pereberin A.V. Hierarchical Approach for 
Texture Compression. Proceedings of GraphiCon ‘99, 
1999,195–199. 
[Pi03] Pi M., Basu A., and Mandal M. A new decoding 
algorithm based on range block mean and contrast 
scaling. IEEE International Conference on Image 
Processing (ICIP), vol. 2, pp. 241-274, Barcelona, 
Spain, September 14-17, 2003. 
[Sta05] Stachera J., Nikiel S. Large textures storage 
using fractal image compression. to be published in 
Computational Imaging And Vision book series, 
Kluwer 2005. 
[Str04] Ström J., Akenine-Möller T. PACKMAN: 
Texture Compression for Mobile Phones. In Sketches 
program at SIGGRAPH (2004). 
[Str05] Ström J. and Akenine-Möller T., iPACKMAN: 
High-Quality, Low-Complexity Texture Compression 
for Mobile Phones, Graphics Hardware 2005, pp. 63-70, 
2005. 
[Tan05] Tang Y., Zhang H., Wang Q., Bao H. 
Importance-Driven Texture Encoding Based on 
Samples. Computer Graphics International 2005. 
[Tau02] Taubman D., Marcellin M. W. JPEG2000: 
Image Compression Fundamentals, Standards and  
Practice. Kluwer, Boston, 2002. 
 [Wil83] Williams L. Pyramidal Parametrics. Computer 
Graphics (SIGGRAPH'83 Proceedings),  
Pages 1-11, July, 1983. 
[Woh99] Wohlberg B., Jager G.,“A Review of the 
Fractal Image Coding Literature“,IEEE Transactions On 
Image Processing,Vol. 8, No. 12, December 1999 

 
 
 
 
 
 
 
 
 
 
 

Table 1. Texture compression methods comparison  
 

a)  

b)  c)  
 
Figure 6. Scene rendered in OpenGL. a) normal view with uncompressed textures and with c) HiTC 
compressed textures. c) Scene error image for HiTC textures (psnr = 43dB, rmse = 1.82) . 

Method Random 
Access 

Simple 
decoding 

Simple 
hardware 

implementation

Hierarchical 
representation

Compression
Ratio 

Image 
quality 

BTC Yes Yes Yes No Average Average 
VQ Yes Yes No No High Average 
DCT No No No No High High 
DWT No No No Yes Highest Highest 
Fractal No Yes No Yes Highest High 
HiTC Yes Yes Yes Yes Average Average 


