
Hierarchical texture compression

Jerzy Stachera
Institute of Computer Science

Warsaw University of Technology
 Ul. Nowowiejska 15/19

00-665 Warszawa, POLAND

J.Stachera@ii.pw.edu.pl

Przemyslaw Rokita
Institute of Computer Science

Warsaw University of Technology
 Ul. Nowowiejska 15/19

00-665 Warszawa, POLAND

P.Rokita@ii.pw.edu.pl

ABSTRACT
Texture mapping is a technique for adding visual realism to the computer generated images. As the level of
realism increases with the number and the resolution of textures, we are faced with the problem of limited
texture memory space. Moreover, in order to alleviate the aliasing artefacts many graphics systems use the mip-
mapping technique which needs to store additionally the texture pyramid. We propose an algorithm for texture
compression which is characterized by low computational complexity, random access to compressed data and
the hierarchical texture representation. The proposed hierarchical texture compression algorithm (HiTC) is based
on a block-wise approach, where each block is subject to the modified fractal compression method and is partly
represented by Laplacian pyramid. This allows us to incorporate the mip-map structure into the compressed
texture and perfectly suits for real-time computer graphics applications.

Keywords
Texture compression, fractal compression, Laplacian pyramid, mip-mapping.

1. INTRODUCTION

The computer generated scenery composed of
wire-frame models was the first step into the virtual
world. The models could only reflect the 3D structure
of objects and were devoid of any other form of
visual information. That was changed by the
introduction of texture mapping techniques. Textures
in their basic form are images which are applied upon
3D wire-frame models. When mapped onto an object
surface, the color of the object surface is modified by
the corresponding color from the texture. In general,
the process of texture mapping takes several steps.
Since textures are represented by an array of discrete
samples, a continuous image must first be
reconstructed from these samples. In the next step,
the image must be warped to match any distortion
and filtered to remove high-frequency aliasing
artefacts. In most cases, the filtering is done by mip-

mapping [Wil83], which introduces additional
memory cost in the form of texture pyramid.

Current applications of textures are much wider
and textures are used to control most of the visual
parameters of the object surfaces such as
transparency, reflectivity, bumpiness, roughness.
This greatly increases the realism of the virtual
objects and pushes the hardware resources to the
limits. To simulate the real world at the interactive
frame rate, it is necessary to have fast and random
access to a large number of high resolution detailed
textures. Thus, the bandwidth and storage
requirement for textures introduces the need to use
more efficient texture compression methods.

2. PROBLEM DEFINITION
Although a texture can be regarded as a digital

image, most of classical image compression methods
cannot be applied to textures. There is a strong need
for efficient, highly specialized texture compression
algorithms.

According to Beers [Bee96] and our findings
when designing a texture compression algorithm the
following aspects must be taken into consideration:

Decoding speed. It is the essential feature which
allows for rendering directly from the compressed
textures. As texture compression is mostly used in
real time computer graphics the decompression

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Conference proceedings ISBN 80-86943-03-8
WSCG’2006, January 30-February 3, 2006
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

algorithm must be designed to allow high frame
rates.

Random access. Since the mapping process
introduces discontinuous texture access in the texture
space, it is difficult to know in advance how the
texture will be accessed. Thus, the methods which
may be considered for fast random access are based
on fixed length codes.

Hierarchical representation. To deal efficiently
with level of detail and mip-map texture
representations this requirement must be fulfilled.
Hierarchical structure allows for rendering directly
from the compressed texture represented on number
of different resolution levels.

Compression rate and visual quality. The
difference between textures and images is that the
images are viewed on their own and they are
presented in the static content, while the textures are
the part of the scene which usually changes
dynamically. Thus, the loss of information in texture
compression is more acceptable and the compression
ratio is more important issue.

Encoding speed. Texture compression is an
asymmetric process, in which the decompression
speed is crucial and the encoding speed is useful but
not essential.

3. PREVIOUS WORK
All existing texture compression algorithms can

be divided into three major groups: block truncation
coding and local palettes, vector quantization,
transform coding.

3.1 Block truncation coding and local
palettes.

The block truncation coding (BTC) was
introduced for image compression by Delph and
Mitchel [Del79]. The method represents image

44× block by two 8-bit gray scale values and index
map. Each pixel in the block references one of the
gray scale values by 2 bit index from the index map.
This corresponds to 2 bits per pixel (bpp)
compression. Although, the primary application of
BTC was not the texture compression, many other
proposed texture compression methods are based on
it.

An extension of BTC to represent color images,
called color cell compression (CCC) was proposed
by Campbell [Cam86]. The two 8-bit values were
used for storing the index into a color palette. That
representation allowed compressing the color images
to 2bpp. Even though, the additional cost of storing a
color palette for every texture and indirect data
access requiring two memory transactions were

prohibitive for some real time application, it was
suggested by the Knittel to implement it in the
texturing hardware [Kni96]. In terms of image
quality both BTC and CCC are characterized by the
block effect. This effect is a result of two contrary
factors, namely independent block compression and
limited number of colors used for the block
representation.

The further extension of those two described
methods was the S3TC texture compression method
introduced by Iourcha [Iou99]. The S3TC represents
a 44× block by four 16 bits (RGB565) color values
and the index map with 2 bits per index. Two base
colors are stored explicitly in the compressed block
and the others are linearly interpolated from those
two during the decompression process. Thus, the
final size of the block is equal to 64 bits which gives
4bpp. The FXT1 texture compression method
developed by 3DFX added a few more modes to
S3TC [3DF99]. The first mode is the same as S3TC
and the other compress 84× blocks with local
palette with four and eight colors interpolated
depending on the mode from two or three base
colors. Another S3TC like method was a part of
POOMA texturing system for low-cost devices
[Ake03]. It represented a 23× block by two base
colors and used block overlapping instead of a
texture caching to reduce the memory access.

The texture quality of S3TC based methods is
significantly better than CCC and BTC, but it still
suffers from the block effect partly introduced by
linear interpolation of colors. A number of solutions
were proposed to tackle that problem. The color
distribution approach proposed by Ivanov and
Kuzmin allowed to share colors between neighbour
blocks [IVA00], thus representing a block by a larger
number of unique colors. Levkovich-Maslyuk et al.
allow colors to be chosen from an RGB tetrahedron,
and partitioned the block into sub-pallets for better
approximation of block original color distribution
[Lev00].

Completely different approach was taken by
Fenney [Fen03]. On the basis of the fact that low-
pass filtered signals are often a good approximations
of original signal, his method used two low
resolution images and full-resolution low precision
modulation signal to represent a texture. Another
approach was proposed by Ström and Akenine-
Möller in PACKMAN system and its extension
iPACKMAN [Str04][Str05]. Proposed methods
represent a block by a single base color and an index
map with indices into a codebook which values
modulate the pixel luminance.

Although texture compression methods based
on BTC are currently the mainstream in computer
graphics hardware, they do not address the problem

of hierarchical representation. Thus, the main
features that characterize them, namely - decoding
speed and fast random access, may come at great
expense when applied to level of detail and mip-map
texture representations.

3.2 Vector quantization.
 Beers et al. proposed a method for texture

compression based on vector quantization (VQ) with
mip-map texture representations [Bee96]. The first
mip-map (original texture) was represented by

44× blocks from the codebook. On the basis of the
first mip-map codebook the second and the third
were created by averaging each 44× codeword
respectively to 22× and 11× codewords. The final
extended codebook was created by concatenating the

44× codeword with the corresponding sub-sampled
22× and 11× codewords. This representation

achieved significant compression of 1bpp at the cost
of lower reconstruction quality due to codeword sub-
sampling.

 Method proposed by Kwon and Chong used
Interpolative Vector Quantization to represent a
texture pyramid used for mip-mapping [Kwo00].
This allowed reducing correlation between mip-map
levels. Additionally, the method needed to store two
codebooks corresponding to low and high frequency
texture terms and to interpolate the low frequency
part of the block during the decompression.

 Tang and Zhang in their texture compression
method address the problem of texture regions visual
importance [Tan05]. The codebook in this method is
constructed taking into account such issues as visual
importance and texture mapping distortion.

Generally, the VQ based methods suffer from two
major problems: indirect data access and codebook
handling. To retrieve single texture element we need
two memory accesses. The codebook size can be too
expensive for implementation in hardware and
impose additional cost on texture caching when used
with mip-maping.

3.3 Transform coding.
 The most common transform method used in
image compression which was applied to textures
was Discrete Cosine Transformation (DCT).
Talisman texturing systems (TREC) solved the
problem of variable length coding of DCT by
preserving the DC components without DPCM
[Mic97]. Moreover, TREC used index table and link
list to address each block, resulting in block random
access. More elaborated texture compression scheme
based on DCT was proposed by Chen and Lee
[Che02]. They use adaptive quantization of 88×
blocks, by assigning quantizer scale factor to each
block. Thus, each block could be encoded to fixed-

length code. Although those methods resulted in
compression ratio higher than BTC methods and
comparable to VQ methods with better image
quality, they were too expensive for hardware
implementation due to large block size, high
complexity of inverse transform and lack of random
access on texture pixel level.

 Following the DCT more attention in TC is
gaining the discrete wavelet transform (DWT). This
is the result of the multi-resolution representation.
Pereberin introduced the compression method based
on Haar wavelet to encode three adjacent levels of
mip-map pyramid [Per99]. Mapping the texture to
YUV color space and reducing the insignificant
coefficients allowed him to achieve average 4bpp
compression. Representing a texture as a Wavelet
Coefficient Tree (WCT) in the form of coefficient
texture and the index texture was proposed by
Candusi and DiVerdi [Can05]. Though, the DWT
poses multi-dimensional feature, which makes it
superior for hierarchical texture representation, it is
not obvious how to reduce the insignificant
coefficients to obtain the random access without
severely reducing the compression ratio.

4. HIERARCHICAL TEXTURE
COMPRESSION.
As the level of detail representation and filtering

based on mip-mapping technique is ubiquitous in
real-time applications, it is needed for textures to
have a form of hierarchical structure.

It can be seen in image processing field that
hierarchical approach gives an effective solution for
compressing images. A good illustration being
wavelet decomposition [Tau02] or Laplacian
pyramid [Bur83]. These methods store the hierarchy
explicitly compared to other class of methods based
on fractal theory. Fractals are characterized by super-
resolution property and while they can be represented
on different resolutions levels, the hierarchical
structure is not explicitly stored.

Even though, the hierarchical and multi-
resolution feature of wavelets and fractals seems
promising for texture compression applications, they
are generally unsuitable. On one hand, wavelets
methods need tree-walk procedures which require
multiple accesses to memory. On the other hand,
fractals during decompression need information from
different parts of the texture. Moreover, they both are
characterized by variable length code which makes
them inferior to widely used block truncation coding
methods.

Taking into consideration the requirements of
texture compression we propose a method (HiTC)
that combines the hierarchical representation with

block-wise approach. This allows us to join the
advantages of both approaches.

5. THE ALGORITHM DESCRIPTION.
 The proposed algorithm is based on fractal and
wavelet theory. Since the final structure of algorithm
was subject to number of simplifications, the next
part of the paragraph will explain step by step the
process that was carried to derive it.

5.1 Introduction.
 One of the most important factors in BTC
texture compression methods is the size of the
compressed texture block, which is in most cases
equal to 44× . It is the result of a balance between
the image quality and compression ratio. Moreover,
in texture compression applications it is considered
as optimal for hardware implementation. But if we
take into account the Fractal compression methods,
the block that is subject to compression constitutes
the whole image. The fact that the base fractal
scheme does not address the problem of local
compression [Fis95] makes the process of
decompression computationally expensive. The work
on the local fractal transform was carried on by the
author resulting in the local fractal compression
algorithm [Sta05]. That algorithm is based on
quadtree structure. It allows for local decoding and
random access on block level. The block size is
restricted by the image quality and is not lower
than 3232× . Although the local fractal compression
algorithm achieves high compression ratios and close
to real-time decompression, the quadtree structure
makes it difficult for hardware implementation and it
does not allow for random access on texture pixel
level.

 In our new method (HiTC) we take advantage of
the local fractal compression algorithm for

44× blocks compressed independently. To overcome
the problem of quadtree structure we use regular
partitioning of compressed block to 22× range
blocks R . The local domain pool for compressed
block consists of only one domain block being the
whole compressed block BD = . The resulting
fractal code is a subject to further compression using
Haar wavelet or Laplacian Pyramid.

5.2 Compression.
The process of texture compression in our

algorithm (HiTC) consists of the following steps:

1. The texture is partitioned into 44× blocks.
2. Each block is subject to the modified local

fractal compression.
3. The fractal code of each block is further

compressed by Haar wavelet decomposition
or is represented by Laplacian pyramid.

If we consider the texture block B , the modified
local fractal compression is derived from fractal
block-based method [Fis95] [Woh99] and is done by:

1. The 44× block B is divided into four non

overlapping range blocks (4 squares of size
22×).

{ } 4,3,2,1, =jR j

2. Each range block R is matched to the domain
block D (in this case BD =) by computing the
optimal coefficients of the transformation:

() oDsR +⋅= ϕˆ (1)

 which minimize the error ()RRd , in this
case the root mean square error:

()()∑
=

−+⋅=
4

1

2

i
ii rodsrms ϕ ji Rr ∈ , Ddi ∈ (2)

where, ()⋅ϕ is the spatial contraction function

which averages four adjacent domain block elements
and then maps the averaged values onto range block
applying one of eight isometries (sym). Next, the
resulting range block values are scaled by s (scaling)
and added to o (offset) coefficient [Fis95] [Nin97].

Thus, after compression each range block jR is
represented by a triple{ }jjj symos ,, .

 Pi et al. in the context of image coding proposed
to replace the offset coefficient o (equation 1) by
range block mean r which led to transformation of
the form [Pi03]:

() rdDsR +−⋅= ϕˆ (3)

where d is the average domain value, r represents
range block DC component and s (scaling) in this
context is related to range block AC component.

They proved that the range block mean values
are good approximation of image DC component.
Consequently, starting from the initial image equal to
the range-average image (DC image) could lead to
faster convergence. Moreover, further iteration on
DC image change only AC component, thus reducing
the iterations on average to two.

 Even though, the convergence of the algorithm
proposed by Pi is faster we still need to compute the
domain block average at each iteration. In our
method, we solve this problem by making the domain
block average as one of the compressed block
coefficients. This is only cost-effective due to block
size restriction to 44× .

Finally, we obtain the following compressed
block structure which is represented by four range

blocks coefficients { }jjjj symrsR ,,= , 4,3,2,1=j

and domain block average d . As can be seen from
the figure 1 two levels of mip-map are the part of our
fractal code. Thus, we can further apply Haar
transform or Laplacian pyramid to increase the
compression ratio.

Texture block

{ }ii syms ,4×+

Texture

 Compressed block

Figure 1. Hierarchical texture compression
(HiTC).
 A simple example reveals the effectiveness of
our method. For Lenna image if we store only the
mip-map pyramid and set all the rest coefficients to
default values (75.0=js , 0=jsym , one to one
mapping) we achieve dBpsnr 65,30= , 47,7=rmse
and 1:4.2=RC . In this case, we obtained
compression ratio of BTC methods at the same time
storing explicitly two levels of mip-map pyramid.
Moreover, the same hierarchical structure represented
by wavelets could not be compressed without
wavelet coefficient quantization. Thus, each memory
access for wavelets require a de-quantization step
[Per99], while in our method it is done directly.

5.3 Coefficients allocation.
 The next problem that must be solved is the
coefficients allocation. Namely, given the
compressed texture block representation we search
for optimal coefficient bit allocation with respect to
compression ratio and image quality. Therefore, each
of the coefficients was independently subject to
uniform and non-uniform quantization with default
coefficients values set to: scaling 7-bits, offset 5-bits
and symmetry 3-bits [Fis95].

5.3.1 Scaling.
 The scaling coefficient was subject to uniform
quantization in the range []5.1,5.1− . The value

5.1max =s was chosen experimentally on the basis of
the reconstruction error. The results of scaling
quantization revealed that choosing the quantization
levels with precision higher than 1/32 has little
impact on image quality as it was indicated by Ning
Lu [Nin97] (fig. 2). Moreover, restricting the scaling
values to positive resulted in dB1 lower
reconstruction error, which may be acceptable in
texture compression. Applying the non-uniform
quantization showed little improvement. The most
noticeable difference was for one quantization level
where the reconstruction error was reduced by

dB5.0 . It corresponded to reconstruction
values { }0.86 0.26,≈s , as opposed to { }0.75 0,≈s for
uniform quantization. The compression was also
checked for constant scaling coefficient. The optimal
value was equal to 5.0=s . But since the constant
value introduce the artefacts to high frequency term
of the image, it seems reasonable to use at least one
level of quantization for scaling coefficient.

Figure 2. Scaling coefficient quantization for
Lenna, with error bars indicating the difference
between uniform and non-uniform quantization.

5.3.2 Symmetry.
 The symmetry coefficient is responsible for
mapping the domain block onto the range block
[Fis95] (there are eight ways to map a square onto
another). As it can be seen from the distribution of
symmetry coefficient for positive scaling coefficient,
the trivial mapping, which maps averaged domain
values on the same positions in the range block is
dominant. Additionally, which is not showed here for
positive and negative scaling coefficient the second
dominant mapping is the mapping which rotates the
block by 1800. Thus, it can be suggested to restrict
the compression process to use only this trivial
mapping and positive scaling coefficient. Moreover,
if we remove the trivial mapping from the

distribution diagram, the rest is uniformly distributed
and therefore choosing any particular mapping gives
no improvement. The only visual difference can be
observed for at least four symmetries (fig. 4, q2 and
q3)

Figure 3. Symmetry coefficient distribution
 (0 – trivial mapping).

PSNR for symmetry factor qunatization (positive scaling factor)

31

32

33

34

35

36

Lenna Lilia

Images

PS
N

R
 [d

B
]

const
q1
q2
q3

Figure 4. Symmetry coefficient quantization.

5.3.3 Mip-map.
 The result of the texture compression process is
the set of parameters, where the values
{ } 4,3,2,1, =jrj and d represent the second and the
third (the lowest) level of the mip-map pyramid.
Therefore, the next step is to apply compression to
those parameters. We considered two approaches: the
Haar decomposition [Per99] and Laplacian pyramid
representation [Bur83]. We chose the Laplacian
pyramid, since it fits more closely to decompression
process and at the same time is less expensive
computationally. It can be seen from equation 3, we
can reduce the computation of domain difference

dD − since it is a part of Laplacian pyramid
representation. We represent the mip-map pyramid
by storing the lowest level explicitly and the second
level as the difference terms drd jj −= , 4,3,2,1=i .
Moreover, we take advantage of color space with
separated luminance and chrominance to coarsely
approximate the chrominance data.

5.4 Block structure and decompression.
Generally, the structure of compressed texture

block is represented by the triples { }symrs ,,=θ ,
where each corresponds to one of four range blocks.
Taking into account the previous paragraph we can

reduce this representation. The proposed bit
allocation scheme is presented below.

 The scaling coefficient can be represented by
one bit and in the case of the uniform quantization
the reconstruction values are { }0.75 0,≈s . Since
when using only one quantization level the value of
the coefficient is on one third equal to zero, thus the
process of decompression is usually reduced to
retrieving the block mean value (equation 3).

 The symmetry coefficient is dominated by one
to one mapping, thus it can be safely removed from
the block structure.

 The mip-map representation in our case is
compressed by using the Laplacian pyramid
representation. But before that we take advantage of
color space conversion to reduce the data. We chose
the YCbCr color space to compress the chrominance
data. We allocate 7-bits for luminance difference
terms and 3-bits for chrominance difference terms.

 The final block bit allocation structure for the
color components consists of:

- block average value d (8-bits),
- difference terms jd , 4,3,2,1=j (7-bits –

luminance and 3-bits chrominance),
- scaling coefficient js , 4,3,2,1=j (1-bit).

This allocation scheme gives 88-bits (40-bits for
luminance and 2x24-bits for chrominance
components) and compression ratio 1:72.5=RC (the
compression of S3TC for the same set of mip-maps
would be 1:4.57=RC [Per99]).

The decompression process for color component
(Y, Cb or Cr) simulating three level mip-map pyramid
can be described in the following steps:

ColorComp getTexel(int x, int y, int mipLevel) {
 CBlock_x = x/4; CBlock_y = y/4;
 If (mipLevel >= 2) {
 getCoeff(CBlock_x, CBlock_y, &d);
 return d;
 }
 else if (mipLevel == 1) {
 getCoeff(CBlock_x,CBlock_y,&d,&d1);
 return d + d1;
 }

//mip level 0
 getCoeff(CBlock_x,CBlock_y,&d,&s,&d1,&d2);
 if (s == 0)
 return d + d1; //r = d + d1
 else
 return s*(d2) + d + d1; //s*(di-d)+r;
}
//getCoeff() – unpacks the data from the block

6. RESULTS.
 The presented method (HiTC) was compared
with S3TC algorithm on a sequence of test images
(fig. 5) and the rendered OpenGL scene (fig. 6). The
error was measured by computing the peak signal to

noise ratio on luminance component. The luminance
component was chosen for the reason of its visual
importance.

The HiTC shows better reconstruction in the
regions of smooth color variance as opposed to the
S3TC. The S3TC reconstruction error is uniformly
distributed over whole image which can be easily
seen in the form of the block effect. This effect is
especially magnified on the block edges where the
colors do not lie on a line in a RGB color space. The
same effect in minor form can be observed for HiTC.
It is reduced in our method by approximating the
colors of the texture by the mip-map pyramid.

The final reconstruction errors for the textures
should be taken with caution. Since they are part of
the visualized scene, they are subject to mapping and
filtering process. Although, the compression of single
texture gives some differences when comparing with
uncompressed texture, the final rendered scene is
visually indistinguishable. Both methods achieved
the peak signal to noise ratio for rendered scene
higher than dB40 .
 The problem of decompression cannot be fully
addressed without hardware implementation.
However, since our method addresses the problem of
storing three levels of mip-map in one block, we
could expect the lowest complexity of accessing the
texture pixel comparing to other methods.

a) HiTC b) S3TC c) original images

psnr = 31.81 [dB],
rmse = 6.54

psnr = 35.06[dB],
rmse = 4.05

psnr= 30.4 [dB],
rmse = 7.70

psnr = 33.86[dB],
rmse=5.16

Figure 5. Texture reconstruction error.

7. CONCLUSION.
 We have proposed a new approach for texture
compression. The major advantage of our fractal
block-based approach is a hierarchical representation,
which allows for:

- direct decompression, which does not need
any iteration since all the coefficients are
stored explicitly in the compressed block
structure,

- texture hierarchical representation, which is
the result of our modified local fractal
compression process,

- low computational complexity - to compute
first level we need to perform only one
multiplication and one addition, the second
level needs only one addition and the third
level is stored explicitly.

HiTC has the advantage on currently used BTC

methods that the process of mip-mapping is
addressed by the compressed texture block (table 1).
This can be seen when used with trilinear filtering.
Our method outperforms currently proposed
solutions, since it can access three levels of mip-map
directly. The hardware implementation is simple and
does not require any external structures which for
example needs vector quantization methods. There is
no pre-processing step related to coefficient de-
quantization which is common for wavelet
compression. The computational complexity was
reduced to minimum with the aim of real-time
application. Moreover, all the requirements on
texture compression method are fulfilled (table 1),
thus making it superior for high performance
rendering architectures.

8. REFERENCES
[3df99] 3dfx. FXT1: White paper. 3dfx Interactive.
http://wwwdev.3dfx.com/fxt1/fxt1whitepaper.pdf, 1999.
[Ake03] Akenine-Möller T., Ström J. Graphics for the
Masses: A Hardware Rasterization Architecture for
Mobile Phones. ACM Transactions on Graphics, 22, 3
(2003), 801–808.
[Bee96] Beers A. C., Agrawala M., Chaddha N.
Rendering from compressed textures. Siggraph 1996,
pp. 373–378, July 1996.
[Bur83] Burt P.J. and Adelson E.H. The Laplacian
pyramid as a compact image code. IEEE Transactions
on Communications, 31:532–540, 1983.
[Cam86] Campbell G., Defanti T. A., Frederiksen J.,
Joyce S. A., Leske L. A., Lindberg J. A., Sandin D. J.
Two Bit/Pixel Full Color Encoding. In Proceedings Of
Siggraph (1986), Vol. 22, Pp. 215–223.
[Can05] Candussi N., DiVerdi S., Hollerer T. Real-time
Rendering with Wavelet-Compressed Multi-
Dimensional Textures on the GPU. Computer Science
Technical Report 2005-05, University of California,
Santa Barbara.
[Che02] Chen C.-H., Lee C.-Y. A JPEG-like texture
compression with adaptive quantization for 3D graphics
application. The Visual Computer, vol. 18, 2002, pp.
29-40.

[Fen03] Fenney S. Texture Compression using Low-
Frequency Signal Modulation. In Graphics Hardware
(2003), ACM Press, pp. 84–91.
[Fis95] Fisher Y. (Ed.). Fractal Image Compression:
Theory and Application to Digital Images. Springer
Verlag, New York, 1995.
[Iou99] Iourcha K., Nayak K., Hong Z. System and
Method for Fixed-Rate Block-based Image
Compression with Inferred Pixels Values. In US Patent
5,956,431 (1999).
[IVA00] Ivanov D., Kuzmin Y. Color Distribution – A
New Approach to Texture Compression. In Proceedings
of Eurographics (2000), vol. 19, pp. C283–C289.
[Kni96] Knittel G., Schilling A., Kugler A., Strasser W.
Hardware for Superior Texture Performance. Computers
& Graphics 20, 4 (July 1996), 475– 481.
[Kwo00] Kwon Young-Su, Park In-Cheol, and Kyung
Chong-Min. Pyramid Texture Compression and
Decompression Using Interpolative Vector
Quantization. Proceedings of 2000 International
Conference on Image Processing, vol. 2, pp.191-194,
Sep. 10-13, 2000.
[Lev00] Levkovich-Maslyuk L., Kalyuzhny P. G., and
Zhirkov A. Texture Compression with Adaptive Block
Partitions. ACM Multimedia 2000, Nov.2000.
[Mic97] Microsoft, “Escalante hardware overview.
Talisman”. Graph Multimedia Syst, pp 89–106.
[Nin97] Ning Lu, Fractal Imaging, Academic Press,
1997.

[Per99] Pereberin A.V. Hierarchical Approach for
Texture Compression. Proceedings of GraphiCon ‘99,
1999,195–199.
[Pi03] Pi M., Basu A., and Mandal M. A new decoding
algorithm based on range block mean and contrast
scaling. IEEE International Conference on Image
Processing (ICIP), vol. 2, pp. 241-274, Barcelona,
Spain, September 14-17, 2003.
[Sta05] Stachera J., Nikiel S. Large textures storage
using fractal image compression. to be published in
Computational Imaging And Vision book series,
Kluwer 2005.
[Str04] Ström J., Akenine-Möller T. PACKMAN:
Texture Compression for Mobile Phones. In Sketches
program at SIGGRAPH (2004).
[Str05] Ström J. and Akenine-Möller T., iPACKMAN:
High-Quality, Low-Complexity Texture Compression
for Mobile Phones, Graphics Hardware 2005, pp. 63-70,
2005.
[Tan05] Tang Y., Zhang H., Wang Q., Bao H.
Importance-Driven Texture Encoding Based on
Samples. Computer Graphics International 2005.
[Tau02] Taubman D., Marcellin M. W. JPEG2000:
Image Compression Fundamentals, Standards and
Practice. Kluwer, Boston, 2002.
 [Wil83] Williams L. Pyramidal Parametrics. Computer
Graphics (SIGGRAPH'83 Proceedings),
Pages 1-11, July, 1983.
[Woh99] Wohlberg B., Jager G.,“A Review of the
Fractal Image Coding Literature“,IEEE Transactions On
Image Processing,Vol. 8, No. 12, December 1999

Table 1. Texture compression methods comparison

a)

b) c)

Figure 6. Scene rendered in OpenGL. a) normal view with uncompressed textures and with c) HiTC
compressed textures. c) Scene error image for HiTC textures (psnr = 43dB, rmse = 1.82) .

Method Random
Access

Simple
decoding

Simple
hardware

implementation

Hierarchical
representation

Compression
Ratio

Image
quality

BTC Yes Yes Yes No Average Average
VQ Yes Yes No No High Average
DCT No No No No High High
DWT No No No Yes Highest Highest
Fractal No Yes No Yes Highest High
HiTC Yes Yes Yes Yes Average Average

