
  

A simple construction method for sequentially 
tidying up 2D online freehand sketches 

 
Shengfeng Qin 

School of Engineering and Design 
Brunel University, Uxbridge 
 Middlesex, UB8 3PH, UK 

Sheng.feng.qin@brunel.ac.uk 

David K Wright 
School of Engineering and Design 

Brunel University, Uxbridge 
Middlesex, UB8 3PH, UK 

David.wright@brunel.ac.uk 

Ivan Jordanov 
School of Computing 

University of Portsmouth  
Portsmouth PO1 3HE, UK 

 Ivan.Jordanov@port.ac.uk 
 

ABSTRACT 
This paper presents a novel constructive approach to sequentially tidying up 2D online freehand sketches for 
further 3D interpretation in a conceptual design system. Upon receiving a sketch stroke, the system first identifies 
it as a 2D primitive and then automatically infers its 2D geometric constraints related to previous 2D geometry (if 
any). Based on recognized 2D constraints, the identified geometry will be modified accordingly to meet its 
constraints. The modification is realized in one or two sequent geometric constructions in consistence with its 
degrees of freedom. This method can produce 2D configurations without iterative procedures to solve constraint 
equations. It is simple and easy to use for a real-time application. Several examples are tested and discussed. 

Keywords 
Sketch-based design,  Geometric constraints solver, Computer-human interface. 

 

1. INTRODUCTION 
In a conceptual design stage, product design and 
development often takes the form of the artist’s 
sketches. In order to reduce product lead-time, 
transition directly from the stylist’s sketches to a 
computer model is desirable [Zel96]. To meet this 
need, research has been carried out to develop a 
sketch-based user interface, recognize 2D primitives 
through a 2D sketch segmentation, classification and 
identification process and infer 3D objects [Qin00, 
Qin01]. Recognized 2D primitives include straight 
lines, circles, circular arcs, ellipses and elliptical arcs, 
or B-spline curves. These 2D entities are fitted with 
least square algorithms, but in general, they are not 
connected properly to reflect the user’s intention.  
Modification in 2D is therefore required in order to 
give them proper position, direction and connections 
among them.  Identification of various 2D constraints 
such as connectivity, parallelism and 
perpendicularity, is prerequisite for the 2D 

modification and further 3D interpretation.  

This paper presents a novel and simple constructive 
approach to beautifying 2D geometry based on 
freehand sketches. It includes three parts: (1) 
inferring 2D geometric constraints from rough 
sketches; (2) finding a solution to satisfy the 
constraints wherever possible; and (3) finally 
modifying drawing to a desired 2D geometry. The 
approach is based on constructive principles and 
degrees of freedom analysis. 

This paper is organized as follows. Section 2 reviews 
related works and Section 3 shows constraints 
classification and capturing. Sections 3 and 4 
describe the analysis of degrees of freedom for 
objects and constraints.  Section 5 discusses the 
constructive rules.  Finally, examples and conclusion 
are given in Section 6 and 7. 

2. RELATED WORKS 
Shpitalni and Lipson [Shp97] presented an approach 
for classifying pen strokes in an on-line sketching 
system and an adaptive method for clustering 
disconnected end-points. The following steps are 
applied by the clustering algorithm: (1) creating raw 
vertices at all endpoints of entities in the drawings, 
(2) determining the radius of the tolerance circle 
around each raw vertex, (3) identifying and grouping 
pairs of raw vertices when each member of the pair 
falls within the other members tolerance circle, (4) 
iteratively grouping chains of pairs into clusters and 

Permission to make digital or hard copies of all or part of 
this work for personal or classroom use is granted without 
fee provided that copies are not made or distributed for 
profit or commercial advantage and that copies bear this 
notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute 
to lists, requires prior specific permission and/or a fee.  
 
Conference proceedings ISBN 80-86943-03-8 
WSCG’2006, January 30-February 3, 2006 
Plzen, Czech Republic. 
Copyright UNION Agency – Science Press 



  

finally (5) placing a vertex node at the centroid of 
each cluster and adjusting lines and arcs accordingly. 
This method is only concerned about coincidence 
constraint among endpoints. It needs to wait for a 
completion of sketch input and then starts to tidy up. 
The inaccuracy of interpretation may increase. 
Furthermore, taking the centroid of each cluster and 
adjusting geometry accordingly may change some 
relations such as parallelism. 

An automatic beautifier for drawings and illustrations 
was studied by Pavlidis and Van Wyk [Pav85].  A 
method was developed for inferring constraints that 
are desirable for a given (rough) drawing and then 
modifying the drawing to satisfy the constraints 
wherever possible. Drawings here were polygon-
oriented. The relations (constraints) examined are:  
approximate equality of slop or length of sides (line 
segments), collinearity of sides, and vertical and 
horizontal alignment of points. The system restricted 
the number of constraints to avoid an explosion in 
processing time. The solution of the constraints is not 
always guaranteed. 

A similar system Easel [Jen92] was developed by 
Jenkins and Martin. It behaves in as nearly an 
automatic manner to infer constraints and then tidy up 
the drawing. Geometric entities include straight lines, 
circular arcs and composite Bezier curves. Relations 
consist of unary relations such as close to a point and 
pairwise relations. The constraints are satisfied with 
multiple enforcements based on scenario analysis. 
Easel’s performance is simply not good enough for 
practical sketches consisting of perhaps hundred of 
elements because of a time delay. 

In general, geometric constraints can be topological 
(structural) ones, such as incidence, tangency, 
parallelism, perpendicularity, etc., or metric 
(dimensional) ones, such as distance or angle.  When 
solving geometric constraints, a solver must produce 
an instance of given topology (structure) that exactly 
satisfies given constraints. The main geometric 
constraint solvers can be divided into two categories: 
and constructive solvers. The equational solvers 
translate geometric constraints into a system of 
algebraic equations, which is then solved using 
different iterative techniques. These solvers are based 
on numerical methods [Jen92] and symbolic methods 
[Gao98].  The shortcomings of numerical methods 
include slow runtimes, numerical instabilities and 
difficulties in handling redundant constraints.  The 
disadvantage of symbolic solvers is that they are still 
too slow for real-time computation [Li02]. 

The constructive solvers [Bou95] make use of the 
fact that most configurations in an engineering 
drawing are solvable by ruler, compass or protractor. 
A planning phase is carried out to transform a 

constraint problem into a step-by-step constructive 
form that is easy to compute, and then the constraint 
system can be solved efficiently. Generally speaking, 
the above solvers rely heavily on the user interaction 
to produce constraints either by stating relations, or 
by adding dimensions. These systems also focus on 
rc-configuration (ruler and compass) problems in 
which primitives such as ellipses and elliptic arcs are 
excluded. 

Our system can automatically infer constraints during 
sketching with its inference engine, and then modify 
drawing in one pass to give one of the possible 
solutions to the constraints.  Therefore, it is simple 
and easy to use for on-line applications.  

3. CONSTRAINT INFERENCE 
ENGINE  
In our system, once a stroke has been sketched out, it 
will be segmented into a series of head-to-end 
connected sub-strokes if necessary. Each sub-stroke 
will then be classified and fitted with one of 2D 
primitives: straight lines, circles, ellipses, circular 
arcs, elliptic arcs and B-spline curves [Qin01]. After 
the closest fitting has been found, the system 
constraint inference engine will infer certain 
geometric constraints.  They can be classified into 
three categories: unary, pairwise, and connection 
constraints  [Gao98]. The engine will first search for 
unary constraints and then establish pairwise and 
connection constraints by checking its relations to 
previous strokes (or sub-strokes) backwards 
sequentially. Once the current stroke becomes over-
constrained, the inference process will be stopped 
and then the constraints solver will generate 
construction steps to solve the identified constraints. 
 

Unary Constraints 
The unary constraints are properties of a single 
primitive. They are directional constraints. The unary 
constraints apply to straight lines, ellipses, and 
elliptical arcs. For a straight line, the engine examines 
its directional angle to see whether it is roughly 
horizontal, or vertical, or parallel to isometric 
projection axes (Fig.1). If so, the straight line will be 
assigned corresponding unary constraint code: HOR, 
VER (or ISO-Y), ISO-X or ISO-Z. Similarly, for an 
ellipse, the system checks its major axis. For an 
elliptical arc, the system still checks its direction of 
the major axis, as for an ellipse. The rule for 
determining a unary constraint is that the directional 
angle (�) of a primitive is within a range of  (�-�) and 
(�+�), where � is a constraint angle in degree (0 for 
HOR, 90 for VER, 30 for ISO-X and –30 for ISO-Z) 
and � is an adaptive tolerance angle for the primitive. 
That is,  (�-�) < � < (�+�). The parameter � varies 



  

with drawing speed and sizes of primitives such as 
lengths of lines or major axis of an ellipse. The 
bigger the sizes are the bigger �. The higher the speed 
is the bigger �. 

 

 

 

 

 

 

 

 

 

Pairwise Constraints 
The pairwise constraints are geometric relations 
shared by two primitives [Gao98]. Currently, the 
system supports parallelism and perpendicularity 
between pairs of lines, ellipses, or elliptical arcs. 
Each line, or ellipse, can have one of the pairwise 
relations: either parallelism, or perpendicularity (it 
may have both, but the system only takes one of 
them). In essence, these two relations are directional 
constraints as well. The system searches these 
relations backwards for the current primitive (the 
latest input) by comparing directions of the current 
primitive and one previous primitive. If they are quite 
close, a parallelism relation will be found. If the 
difference between their directions is close to 90 
degree, a perpendicularity relation will be 
determined. Once a relation is found, the system will 
stop a further search, otherwise, the search will 
continue until the first primitive is reached. This will 
reduce the number of constraints and avoid over-
constrained cases. For example, a line A is parallel to 
lines B and C. If a parallelism relation between the 
lines A and B is found, then the relation between the 
lines A and C will not be further checked because the 
lines B and C should be parallel to each other. 
Similarly, if a line D is parallel to a line E and 
perpendicular to a line F, the system will only take 
the first found constraint because that the two 
constraints should be consistent, one is enough for 
constraining a direction. 

Connection Constraints 
The connection constraints are classified into three 
categories, namely type-1, 2, and 3 according to 
typical application scenarios. 

Type-1 constraints 
From the current primitive to a previous one, the 
inference engine searches for connectivity relations. 
For a type-1 constraint, two primitives intend to join 
together at their end points. An example is shown in 
Fig. 2.  The engine will first search for a pair of end 
points between two primitives and then check 
whether their end tolerance circles have intersections. 
If so, the two primitives will be connected at related 
end points. The radius of an end tolerance circle for a 
line is adaptive to its length and drawing speed.  The 
longer the length is the bigger the radius. The higher 
the speed is, the greater the radius. Similarly, for an 
arc, the tolerance varies with its arc length and 
drawing speed. If an end point is constrained with a 
type-1 relation, the relation code 1 is assigned to it 
(default is 0, meaning free end) and the 
corresponding constraint information will be 
recorded. Here, an adaptive tolerance is applied, 
since a simple fixed value may be too large or too 
small, resulting in either eliminating fine details in 
connections, or leaving adjacent ends unlinked. 
Indeed, different tolerances are needed for different 
parts of sketches, and certainly for different users. 
Using the adaptive tolerance can roughly satisfy this 
requirement. 
 

 

 

 

 

 

 

Type-2 Constraints 
A type-2 constraint is a touching relation, in which an 
end point of a primitive falls on the path of another 
(Fig. 3).  This constraint is only applied to lines and 
arcs. That is, a primitive joins another with its one 
end touching on another in the middle. The constraint 
code for this relation is 2. To detect a type-2 relation, 
the following procedure is conducted:  
 

Step 1: Compute an adaptive tolerance value for 
the current primitive;  
 
Step 2: Check if the corresponding tolerance 
circles at ends are intersected with a candidate 
primitive; if not, search for another primitives;  
 
Step 3: If so,  a type-2 constraint is found and a 
constraint code 2 will be assigned to the 
corresponding end and related constraint 
information will be stored.  

HOR 

ISO-Y 

ISO-X 

ISO-Z 

VER 

Figure 1. Directional Constraints 

 
Figure 2. Type-1 constraints 



  

 

 

Figure3.  Type-2 constraints 

 

Type-3 constraints 
The third type constraint (relation code 3) deals with 
a tangent connection, as shown in Fig.4, in which one 
end of a primitive is tangent to another primitive. 
Such a constraint is only concerned with lines and 
arcs as well. This connection can be regarded as a 
special case of a type-2 constraint.  The current 
primitive not only joins the other with one end but 
also is tangent to it. 

 

 

Figure 4 Type-3 constraints  

To determine a type-3 constraint, two steps are 
applied. First step is to check if the current primitive 
has a type-2 constraint. If so, the next is to further 
determine whether the connection meets a tangent 
condition. Taking a pair of a line and a circular arc as 
an example, we can recognize that the connection is 
tangent, if the distance between the line and the 
centre of the arc is close to the radius of the arc.  
Once a type-3 constraint is found, the former relation 
code 2 for a type-2 constraint will be updated to a 
relation code 3. The corresponding constraint 
information will be recorded. Fig.5 gives some 
examples of different connections. When sketching a 
slot feature from a box, users will meet first and 
second type constraints (Fig.5 (a)). When silhouette 
lines are drawn to express a cylindrical object (Fig.5 
(b)), the third type constraint will occur. 

Figure5.  Examples of different constraints 

   

4. DEGREES OF FREEDOM 
ANALYSIS  
Once a variety of constraints (relations) are obtained, 
the next is to modify individual primitives to satisfy 
all constraints, or to find a satisfactory solution. The 
system first analyses the degrees of freedom (DF) of 
a primitive and then determines construction rules for 
the primitive under certain constraints, using the 
degrees of freedom analysis. 

Definitions 
Informally, the number of degrees of freedom of a 
primitive object (object degrees of freedom, ODF) is 
the number of independent parameters required to 
allow the primitive to vary in location and shape. For 
example, in 2D space, a rigid body has two 
translational and one-rotational degrees of freedom to 
change its location. But, for ODF, extra degrees of 
freedom are allowed to vary its shape as well. For 
instance, a 2D arc may have extra 3 object degrees of 
freedom in terms of starting angle, subtended angle 
and radius to change its shape. Note that only the 
subtended angle and radius cannot define the starting 
point on the arc. 

The number of constrained degrees of freedom 
(CDF) from a constraint is the number of degrees of 
freedom eliminated by the constraint. For instance, in 
2D space, a position constraint limits two 
translational degrees of freedom of a primitive. Under 
given constraints, a geometric constraint solver may 
configure a primitive in limited ways. This is 
regarded as configuration degrees of freedom (CF), 
which is the difference between the number of ODF 
and the sum of its corresponding CDF. The 
relationship among ODF, CDF and CF can be 
addressed as 

 

�
=

−=
n

i
iCDFODFCF

1

,  



  

where n is the number of constraints. We consider a 
primitive as well defined (or well-constrained), if and 
only if CF is equal to zero. It is under-constrained, 
when CF> 0, and over-constrained while CF < 0. 
 

Object Degrees of Freedom 
In our system, there are no explicit dimensional 
constraints. Thus, each primitive may vary in location 
or shape. This means that primitive geometry in the 
system is not a rigid-object. Different primitives have 
different object degrees of freedom, in accordance 
with different construction limitations. The degrees of 
freedom (DF) for each primitive are shown in Table 
1. For example, a circle has no rotational DF because 
it is a perfect symmetry; it also has no dimensional 
DF, which means that its radius is fixed during 
construction processing. This assumption will make 
the construction task simple. Similarly, this 
dimensional restriction is applied on ellipses. 
However, for an ellipse, a rotational degree is given 
to allow a rotation of its major axis about its centre 
for meeting a directional constraint. Although an 
ellipse can be constructed by its four correspond 
circular arcs using rc-configurations, its rotational 
degree of freedom is unique comparing to a circle.  
For a circular or an elliptical arc, a dimensional DF is 
given to allow the system to change its extended 
angles, but not for changing its radius (or radii).  
Here the system simply treats a B-spline curve like a 
straight line. Note that lines, arcs and B-sline curves 
have the same structure of object degrees of freedom. 
If they are under the same constraints, their 
constructions rules will be similar. 

Table 1. Object degrees of freedom 
 

Constrained Degrees of Freedom 
Various constraints restrict different degrees of 
freedom. The constrained degree of freedom (CDF) 
for each type of constraints is given in Table 2.  A 
pairwise or unary constraint will restrict a rotational 
degree of freedom. For a type-1 relation, it is an 
incidence constraint, which restricts two translational 
degrees of freedom. For a type-2 relation, it requires 
that one end point of a primitive to be extended onto 
a constrained primitive. So, this type constraint 

eliminates a dimensional degree. A type-3 constraint 
will remove a dimensional degree of freedom as a 
type-2 one, and further restrict a rotational degree of 
freedom by requiring a tangency relation. 

 

 

 

 

 

        Table 2 Constrained degrees of freedom 

 
5. CONSTRUCTION RULES 
To configure sketched 2D primitives with identified 
constraints, the system calculates configuration 
degrees of freedom and then produces construction 
rules (or steps) according to several general 
construction strategies.   

General Construction Strategies 
When solving constraints, the following general 
construction strategies are applied to all types of 
primitives to generate construction steps: 

(1) If a primitive is free from any constraints, 
default constraints for fixing its position will be 
applied. In this case, its CF is zero. 

(2) If a primitive of lines, ellipses or elliptic arcs 
has a unary constraint and it is well-constrained 
or under-constrained, Minimal movement policy 
will be applied on it. That is, if the current 
element is required to change its direction, the 
system should try its best to keep movements 
minimal, since original position and size of the 
geometry represents users’ initial intent. This 
policy attempts to capture users’ intent more 
accurately. Fig.6 gives an example of this 
minimal movement strategy. In Fig.6 (a), a 
straight line (dashed line) needs to be modified 
to a vertical line. In accordance with the current 
policy, the solver rotates it about its mid-point, 
to a vertical line (solid line). The system does 
not take the second solution (Fig.6 (b)), which 
rotates the line about its one end to form a 
vertical line, because the resulting line will be 
far from the original one. 

 

 

 

 

 

 

Primitives Translationa
l  

DOF 

Rotational 
DOF 

Dimensiona
l 

DOF 

Total 
ODF 

Line 2 1 1 4 

Arc 2 1 1 4 
Elliptical 
arc 

2 1 1 4 

Circle 2 0 0 2 

Ellipse 2 1 0 3 
B-spline 2 1 1 4 

Constraints CDF 
Pairwise  1 
Unary  1 
Type 1  2 
Type 2  1 
Type 3  2 

Figure 6. Minimal movement 



  

(3) One-side policy: when dealing with the current 
primitive, the constraint solver ignores all 
constraints between the current primitive and 
those generated after it. This means that only 
constraints between the current primitive and 
previous ones (on one-side of it) will be 
solved. This strategy reduces the number of 
constraints to be treated, and focuses on a 
local configuration problem. This policy 
respects the fact that when sketching a current 
stroke, the user mainly takes previous drawing 
as references to form new constraints, 
although some intentions might be born at this 
moment. If the user stops drawing after the 
current stroke, the system should still give a 
possible solution. 

 
(4) Background propagation: if a current 

primitive has some constraints with previous 
ones, the solver first tries to modify it to 
satisfy the constraints, and to keep previous 
ones unchanged, although the constraints 
could be met by changing the previous, either. 
Otherwise, once a new stroke inputs, some 
new constraints may be added in a constraint 
chain from the current primitive to the first 
one and all previous geometry will be changed 
wavelike. This will not only lead to heavy 
computation and instability, but will also harm 
the minimal movement policy. Actually, the 
backward propagation strategy can be 
introduced from the minimal movement 
policy. 

(5) Clustering policy: if any two primitives meet 
at their end points by a type-1 constraint, the 
common position will be figured out and fixed 
for ever. If none of them has a directional 
constraint, the common position will be a mid-
point of related two ends. If any of them has a 
directional constraint, their geometric 
intersection point will be the common 
position. Once a common position is found, it 
will become fixed.  

Generation of Construction Steps 
Before considering how to configure a new primitive, 
analysis of its constraints and degrees of freedom is 
performed. Then the decision on how to construct the 
geometry in sequential steps is made accordingly. In 
general, if geometry is under-constrained, a set of 
default constraints will be applied to make it well-
constrained. Afterwards, any default constraints can 
be further modified such as free ends. The most 
common default constraint is a joint restricting two 
translational degrees of freedom. When the geometry 
becomes well-constrained, it can be constructed 
against typical application scenarios. If it is over-

constrained, typically, extra constraints such as 
directional ones will be removed to make it well 
connected. In our system, connection constraints have 
a higher priority than directional ones because they 
contain more important topological information for 
3D interpretation.  
 

Table 3. General construction analysis-under 
constrained cases 

Tables 3 and 4 illustrate a case study for a line 
configuration. In general, there are 13 combinations 
of different constraints. Most of them (nine cases) are 
under-constrained (see Table 3). Only three of them 
are well constrained in Table 4 (No. 9-11) and the 
last two cases are over-constrained. This means that 
for most of the cases, a possible solution can be 
found easily under the current solving strategies. The 
main concern is how to add default constraint(s) and 
solve constraint equations. After choosing the default 
constraints the construction steps will become well 
defined. If the constraints include a directional one 
(unary or parallelism or perpendicularity), in general, 
two construction steps are needed. They can be 
performed separately by firstly modifying the current 
primitive to meet the directional constraint and then 
simply focusing on the predefined a one-step 
construction. For example, in the case No.4 (Table 
3), a line is constrained with a unary relation (VER) 

Scenario N
o. 

Constraint
s 
U-unary,  
P-pairwise 

O
D
F 

C
D
F 

C
F 

Add 
Default 
constraints 
       J-
Joint 
 D-
Dimension 

 1 
 
 

0 4 0 4 2 J 

 2 
 
 

1 U or 1 P 4 1 3 1 J 
1 D 
(explicit) 

 
 
 

3 1 type-2  4 1 3 1 J 
1 D 
(implicit) 

 
 
 
 

4 
 
 

1 type-2 
and 
1 U or 1 P 

4 2 2 1 J 
1 D 
(implicit) 

 
 
 

5 
 

1 type-1 4 2 2 1 J 
 

 
 
 
 

6 1 type-3 4 2 2 1 J 

 
 
 

7 
 

1 type-1 
and 
1 U or 1 P 

4 3 1 1 D 
(explicit) 

 
 
 

8 
 

1 type-3 
and 
1 U o1 P 

4 3 1 1 D 
(explicit) 



  

and a type-2 relation. We can solve the problem in 
two steps. First rotating the line around its mid-point 
to meet the unary relation. This operation is the same 
as in the case No.2 with a default explicit 
dimensional constraint. After that, the problem will 
be similar to the case No.3. The second step is to 
extend the line by finding its intersection point to 
meet the type-2 constraint, which can be regarded as 
an implicit dimensional constraint. In these three 
cases, program routines for changing direction and 
obtaining intersections are separate. They are 
reusable and combinable. This can not only save 
developing time, but also reduce the number of 
constructive steps. Case No. 1 simply takes two 
default ends and Case No. 5 takes one default end 
and a constrained end with clustering.  Case No.6 can 
be solved by finding a tangent line from the default 
end. For cases No. 7 and 8, after a rotation, the next 
is to move the line to an incident point or tangent 
point. For three well-constrained cases (Table 4), 
they need only one step to solve their constraint 
equations, which depends on the types of involved 
primitives. The last two cases (Table 4) are over 
constrained, they can be first modified into well-
constrained cases and then solved in a similar way to 
Case No. 9. 

Table 4 General construction analysis -well and 
over constrained cases 

B-spline curves have been restricted to have only 
type-1 constraints. They can be just regarded as 
special cases of lines, as in cases No. 1, No. 5 and 
No. 9. The solver simply assigns incident points to 

their end points. A circle can only move in 2D with a 
constant radius. So, its construction is always to find 
a displacement of its centre point. An ellipse 
direction can be changed under a unary or a pairwise 
constraint, and also its centre points can be shifted in 
a similar way to a circle. 

Circular and elliptical arcs are open curve sections 
with two ends, and have 4 object degrees of freedom 
as lines. They also have the same types of constraints 
to be applied as lines. Topologically speaking, they 
are within the same class of line objects for tidying 
up. Therefore, construction rules for arcs are similar 
to those for lines. Each line case has a corresponding 
case for arcs. Taking the case No. 3 as an example, 
the construction method for a line is to find its 
intersection point between two lines. For an arc 
(circular or elliptical), the construction method is still 
to find intersection point, but between an arc and a 
line. The difference is the use of different equations 
to obtain an intersection point. But, the construction 
method is the same. 

 

5.  EXAMPLES AND DISCUSSION  

 

Figure 7.  Input of sketches 

 

Figure 8.  Tidying up 

With our system, 2D online sketches can be rapidly 
transferred into 2D primitives and further can be 
beautified with right connections. The tidying up 
processing is based on our construction rules and 
degrees of freedom analysis.  This method lets users 
to work on their design ideas with a real-time system 
in a more natural way. Fig. 7 illustrates original input 
of sketches, which consists of several lines, arcs and a 
B-spline curve. Constraints involved in this case 
include type-1 and type-2 connections, e.g., a line 
touching an arc, and unary relations, e.g. vertical 

Scenario N
o 

Constra
ints 
U-
unary,  
P-
pairwise 

O
D
F 

C
D
F 

C
F 

Remove 
Default 
constraints 
  

 
 
 

9 
 
 

2 type-1  4 4 0 0 

 
 
 
 

10 
 

1 type-1 
and 
1 type-3 
 
 

4 4 0 0 

 
 
 
 

11 
 
 
 
 

2 type-3 4 4 4 0 

 
 
 

12 
 
 
 

2 type-1 
and 
1 U or 1 
P 

4 5 -
1 

1 U or 1 P 

 
 
 

13 
 

2 type-1 
and 
1 U or 1 
P. 

4 5 -
1 

Modify free 
ends or 
remove 1U 
or 1P 



  

lines. These constraints are detected successfully by 
the inference engine, and then are solved properly by 
the constraint solver. Fig. 8 gives the result of this 2D 
configuration. It can be seen that the ellipse in the 
middle and the two vertical lines are changed under 
unary constraints. Three lines are modified to touch 
on other primitives under type-2 constraints. All type 
–1 constraints are solved correctly. 

 

Figure 9. Sketched input 

 

Figure 10. Result of beautification 

Figure 9 shows an example of sketches with type-3 
constraints. Two lines tangent to a circle are inputted. 
The result of the tidying up is given in Figure 10. The 
last stroke for the horizontal line is an over-
constrained case. Its unary constraint (HOR) is 
removed off because its two ends become fixed 
points already.  It can be seen that the system can 
capture type-3 constraints (tangency), and the solver 
works properly. 

 

7. CONCLUSION 
The constraint solver based on the construction rules 
and degrees of freedom analysis can quickly and 
properly give one of the possible solutions. It 
determines primitives one by one, and does not 
involve solving a system of simultaneous non-linear 
equations. The inference engine and the constraint 
solver can deal with elliptical primitives and free-
form curves. 

The System works directly on sketches. No 
dimensional schema is required and users are not 
asked to add dimensions to the sketches, as in most 
commercial parametric CAD systems. The constraint 
solver treats 2D primitives as semi-rigid-objects with 
a dimensional degree of freedom. For example, a line 
in 2D space has 4 object degrees of freedom instead 

of 3 for a rigid-body. In this way, the solver treats the 
dimension information either as default constraint 
(changeable constraint), depending on the object’s 
configuration degrees of freedom. In contrast, most 
geometric constraint solvers [Gao98,Bou95], 
regarded dimensional constraints as rigid constraints. 

The system is performed fast enough for a real-time 
sketch-based application. This is important for 
conceptual design, especially for distributed design 
systems [Qin03]. The solver will require more pre-
coded construction rules, if the number of constraint 
types is increased. This drawback will be balanced 
with its speedy performance.  

8. REFERENCES 
[Zel96] Zeleznik, RC, Herndon, KP, and Hugnes, JF, 

SKETCH: an interface for sketching 2D scenes, 
SIGGRAPH, pp.163-170, 1996.    

[Qin00] Qin, SF, Wright, DK and Jordanov, IN, 
From on-line sketching to 2D and 3D geometry: a 
system based on fuzzy knowledge, Computer-
Aided Design 32, pp.851-866, 2000.    

[Qin01] Qin, SF, Wright, DK and Jordanov, IN, On-
line segmentation of freehand sketches by 
knowledge-based nonlinear thresholding 
operations, Pattern Recognition 34, pp.1885-
1893, 2001. 

[Shp97] Shpitalni M and Lipson H, Classification of 
sketch strokes and corner detection using conic 
sections and adaptive clustering, Journal of 
Mechanical Design 119,  pp.131-135, 1997.  

[Pav85] Pavlidis T, and Van Wyk CJ, An automatic 
beautifier for drawings and illustration, ACM 
Computer Graphics 19 (3), pp. 225-234, 1985. 

[Jen92] Jenkins DL Martin RR, Applying Constraints 
to enforce users’ intentions in free-hand 2D 
sketches. Intelligent Systems Engineering, Vol. 1, 
31-49, 1992.  

[Gao98] Gao XS, Chou SC, Soving geometric 
constraint systems II. A symbolic approach and 
decision of rc-constructibility, Computer-Aided 
Design 30(2), pp.115-22, 1998. 

[Li02] Li YT, Hu SM, and Sun JG, A constructive 
approach to solving 3-D geometric constraint 
systems using dependence analysis, Computer-
Aided Design 34, pp. 97-108, 2002. 

[Bou95] Bouma W Fudos I, Hoffmann C, Cai J, 
Paige R, Geometric constraint solver. Computer –
Aided design 27(6), pp. 487-501,1995. 

 [Qin03] Qin SF, Harrison R, West AA , Jordanov 
and Wright DK, A framework of web-based 
conceptual design, Computers In Industry 50, 
pp.153-164, 2000.




