The Hierarchical Ray Engine !

Laszlé Szécsi

Dept. of Control Engineering and Information Technology
Budapest University of Technology and Economics
Magyar Tuddsok krt. 2., H-1117, Hungary
szecsi@iit.bme.hu

ABSTRACT

Due to the success of texture based approaches, ray casting has lately been confined to performing
preprocessing in realtime applications. Though GPU based ray casting implementations outper-
form the CPU now, they either do not scale well for higher primitive counts, or require the costly
construction of spatial hierarchies. We present an improved algorithm based on the Ray Engine
approach, which builds a hierarchy of rays instead of objects, completely on the graphics card.
Exploiting the coherence between rays when displaying refractive objects or computing caustics,
realtime frame rates are achieved without preprocessing. Thus, the method fills a gap in the

realtime rendering repertoire.

Keywords: Ray tracing, GPU programming.

1 INTRODUCTION

With high performance hardware designed to
support scan conversion image synthesis, most re-
search aims to eliminate time consuming ray cast-
ing from illumination algorithms, or to move it
to a preprocessing step computing texture maps.
However, there are some light transport effects
that exhibit inherently recursive behavior, most
prominently visible refractive objects, or caustics
via multiple reflections or refractions. Accurate
maps or transport factor matrices cannot be con-
structed with a feasible storage requirement. On
the other hand, these problems are effectively
handled by recursive raytracing or photon trac-
ing, both based on ray casting. Moreover, if we
consider eye rays or light rays from small light
sources, hitting reasonably smooth objects, the
rays to be traced will be coherent, even after mul-
tiple reflections of refractions.

In order to make ray casting feasible in realtime
applications, it is imperative to make use of the

I Permission to make digital or hard copies of all or part
of this work for personal or classroom use is granted with-
out fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redis-
tribute to lists, requires prior specific permission and/or

a fee. FULL Papers conference proceedings ISBN 80-86943-03-8.

WSCG’2006, January 31-February 4, 2006 Plzen, Czech
Republic. Copyright UNION Agency - Science Press

immense computing power of the GPU. One de-
livering research direction has spawned from the
approach of Purcell et al.[6], the impact of which
we will briefly evaluate in Section 6. If we are
looking for a solution which does not rely on
a pre-built acceleration structure, the most im-
portant milestone we find is the Ray Engine[2].
Based on the recognition that ray casting is a
crossbar on rays and primitives, while scan con-
version is a crossbar on pixels and primitives, they
have devised a method for computing all possible
ray-primitive intersections on the GPU. On con-
temporary hardware they could achieve process-
ing power similar to the CPU’s.

2 PREVIOUS WORK
2.1 The ray engine

As the ray engine serves as the basis of our
improved approach, let us reiterate its working
mechanism in current GPU terminology. Every
pixel of the render target is associated with a ray.
The origin and direction of rays to be traced are
stored in textures that have the same dimensions
as the render target. In every pass, a single ray
casting primitive is taken, and it is rendered as a
full-screen quad, with the primitive data attached
to the quad vertices. Thus, pixel shaders for ev-
ery pixel will receive the primitive data, and can

also access the ray data via texture reads. The
ray-primitive intersection calculation can be per-
formed in the shader. Then, using the distance of
the intersection as a depth value, a depth test is
performed to verify that no closer intersection has
been found yet. If the result passes the test, it is
written to the render target and the depth buffer
is updated. This way every pixel will hold the in-
formation about the nearest intersection between
the scene primitives and the ray associated with
the pixel. The pitfall of the ray engine is that
it implements the naive ray casting algorithm of
testing every ray against every primitive. On the
other hand, ray casting research has been directed
on building effective acceleration hierarchies to
minimize the number of actual intersection tests
performed [1]. Unfortunately, these results can-
not be easily ported to the graphics hardware.

2.2 Exploiting coherence on the CPU

It is relevant to mention that besides hierarchies,
methods making use of image-space coherence
were also exhaustively researched[8]. Most im-
portantly, we will make use of the motif of de-
composing the image space into tiles containing
assumedly coherent rays in our algorithm.

2.3 Acceleration hierarchies for the GPU

Foley and Sugerman[3] implemented the architec-
ture foreseen by Purcell et al.[6]. The kd-tree
acceleration hierarchy, formerly confined to the
CPU, is traversed on the GPU using algorithms
not optimal in the worst-case algorithmic sense,
but eliminating the need of a stack. This offers a
competitive alternative to CPU ray tracing, but it
is not directly targeted on real-time applications,
and it is ill-suited for highly dynamic scenes be-
cause of the construction cost of the kd-tree.

2.4 Approximate ray tracing

Szirmay-Kalos et al. [7] use an improved version
of environment mapping to take the origin of re-
flected or refracted rays into account when read-
ing a cube map of the environment. They have
also extended the method to handle the rear re-
fraction on transparent objects. To be accurate,
they require the environment and refractive ob-
ject geometry to be star-shaped, so that all the
geometry can be represented in a single cube map.
As rendering these cube maps is costly, it has to
be amortized to be real-time, so the method is

applicable for scenes with low dynamism, or with
a single moving object in a static environment.

2.5 Memory-Coherent Ray Tracing

Pharr et al.[5] have developed algorithms that
use caching and lazy creation of texture and ge-
ometry to manage scene complexity and assure
coherent access. The approach is also very ef-
fective at improving the performance of the ray
engine[2]. However, the focus and possible ar-
eas of application are very different from our ap-
proach. They discuss how complex scenes can
be effectively managed over various levels of con-
ventional storage architectures, where rendering
times are in the magnitude of several hours. On
the other hand, our method is tailored for current
graphics hardware, scenes not more complex than
in typical interactive environments like computer
games, but achieving real-time rendering frame
rates.

3 ACCELERATION HIERARCHY FOR
THE RAY ENGINE

CPU-based acceleration schemes are spatial ob-
ject hierarchies. Although considerable research
has dealt with exploiting the coherence be-
tween neighboring rays, including longest com-
mon traversal sequences [4] and image space in-
terpolation [9], these have not altered the basic
approach. That is, for a ray, we try to exclude as
many objects as possible from intersection test-
ing. This cannot be done in the ray engine archi-
tecture, as it follows a per primitive processing
scheme instead of the per ray philosophy. There-
fore, we also have to apply an acceleration hierar-
chy the other way round, not on the objects, but
on the rays.

In typical applications, realtime ray casting aug-
ments scan conversion image synthesis where re-
cursive ray tracing from the eye point or from a
light sample point is necessary. In both scenar-
ios, the primary ray impact points are determined
by rendering the scene from either the eye or the
light. As nearby rays hit similar surfaces, it can
be assumed that reflected or refracted rays may
also travel in similar directions, albeit with more
and more deviation on multiple iterations. If we
are able to compute enclosing objects for groups
of nearby rays, it may be possible to exclude all
rays within a group based on a single test against
the primitive being processed. This approach fits
well with the ray engine. Whenever the data of a

primitive is processed, we should find a way not
to render it on the entire screen as a quad, but
invoke the pixel shaders only where an intersec-
tion is possible. An obvious solution is to split
the render target into tiles, render a set of tile
quads instead of a full screen one, but make a de-
cision for every tile beforehand whether it should
be rendered at all. At a first glimpse, this may ap-
pear counterproductive, as, apparently, far more
quads will be rendered. However, there is a set of
issues that disprove concerns.

e The ray engine is pixel shader intensive, and
makes practically no use of the vertex pro-
cessing unit. The number of pixel shader
runs, which remains crucial, is by no means
increased.

e The high level test of whether a tile may in-
clude valid intersections can be performed
in the vertex shader. If the intersection
test fails, the vertices of the quad are trans-
formed out of view, and discarded by clip-
ping. Moving the vertices out of view does
not require any computation, they are sim-
ply assigned an outlying extreme position.

e Instead of small quads, one can use point
primitives, described by a single vertex.
This eliminates the fourfold overhead of
processing the same vertex data for all quad
vertices, and needlessly interpolating val-
ues.

In order to implement this idea, we have to solve
two problems. First, for rays grouped in the same
tile, an enclosing object should be computed, for
which an intersection test is fast. This compu-
tation should be performed on the GPU. Second,
the data describing these enclosing objects should
be accessible to the vertex shader.

The latter problem can be resolved by texture
reads in the vertex shader. If data is rendered to
a texture, where every texel corresponds to an en-
closing object, it can be accessed when processing
the appropriate tile. If we reorganize the render-
ing process, even this vertex texture fetch can be
eliminated. Remember that we are rendering a
tile for every ray casting primitive, for every pos-
sible tile position. Now if we take a tile position,
and render all the primitives there at once, the
enclosing object information is static. It can be
passed to the vertex shader in uniform param-
eters. In order to do this, we have to read back
the texture holding the enclosing object data from
the graphics card. However, as it contains only

as many texels as many tiles are used (16 x 16 is
typical), this is not an expensive operation.

for every frame
. refracted
refracted rays [forhext iteration | texture
r = = afld = =@ o & a2 & & & - - : - - -
, for '
, every for every tile ,
 iteration !
compuite ' ray-primitivé\ '
ray 065“(;19 . I > intersection, .
rimitive dat i
dosinghere] | [CoTPAE o) | 1
9P ' enclosing cones \ (pixel shader) J i
: (test primitive | i
vertex buffer . cone against cone .
ith ray castin texture
with ray casting . (vertex shader) | |
primitives data , AN |

Figure 1: Block diagram of the hierarchical
ray engine. Only the initial construction of
the vertex buffer is performed on the CPU.

Figure 1 depicts the data flow in an applica-
tion for tracing refracted rays, using the pro-
posed method. Ray casting primitives are en-
coded as single vertices, and can be channeled
to the shaders as a vertex buffer of point primi-
tives. As a result of the intersection tests, the ray
defining the next segment of the refraction path
is written to the render target. The process is
repeated for pixels, in which the path has not yet
terminated. In the beginning of every iteration,
an enclosing cone for rays is built for every tile,
and stored in a texture. This texture is used in
consequent vertex shader runs to carry out pre-
liminary intersection tests.

Note that the cones have to be reconstructed for
every new generation of rays, before the pass com-
puting the nearest intersections. They cannot be
precomputed on the CPU, and their construction
must also be fast and possible to implement on
the GPU.

4 CONSTRUCTION OF AN ENCLOS-
ING CONE

We need to be able to perform the intersection
test between the enclosing object and the ray
casting primitive as fast as possible. At the same
time, representation of both the primitives and
the ray-enclosing objects must be compact, be-
cause primitive data has to be passed in a very
limited number of vertex registers, and enclosing

objects must be described by a few texels. One
rapid test is the intersection test between an in-
finite cone and a sphere. Enclosing spheres for
all ray casting primitives can easily be computed,
and described by a 3D position and a radius. En-
closing infinite cones of rays are described by an
origin, a direction and an opening angle.

The infinite enclosing cones must be constructed
in a pixel shader, in a pass before rendering the
intersection records themselves. Note that in a
practical application, the rays to be traced will
be different for every frame, and for every level
of refraction, so the reconstruction of the cones is
also time critical. Therefore, a fast incremental
approach is preferred over a tedious one, which
could possibly produce more compact results, via,
for instance, linear programming. The algorithm
goes as follows:

1. Start with the zero angle enclosing cone of
the first ray.

2. For each ray

(a) Check if the direction of the ray lies
within the solid angle covered by the
cone, as seen from its apex. If it does
not, extend the cone to include both the
original solid angle and the new direc-
tion.

(b) Check if the origin of the ray is within
the volume enclosed by the cone. If it
is not, translate the cone so that it in-
cludes both the original cone and the
origin of the ray. The new cone should
touch both the origin of the ray and the
original cone, along one of its generator
lines.

Both steps of modifying the cone require some
mathematics. Let & be the axis direction of the
cone, @ its apex, ¢ the half of the opening angle,
7" the direction of the ray, and pits origin.

First, if the solid angle defined by the cone does
not include the direction of the ray, the cone has
to be extended (See Figure 2). This is the case
if -7 < cosp. Then, the generator direction €,
opposite to the ray direction, has to be found. If
7" is projected onto &, the direction from 7 to the
projected point defines ¢

@ RE-T
GRS REET
Then € is found as a combination of Z and ¢:

€=2-cosp+q-sinp.

Figure 2: Extending the cone.

The new axis direction should be the average of
€ and 7, and the opening angle should also be
adjusted:

. e+

Tnew = 75 COS Pnew = Tnew * T
e+’

Given the information we had, which does not
include any knowledge of rays already within the
cone, we can state that this method computes the
cone of minimum opening angle necessary to hold
the given infinite semi-line and the cone.

QO

Figure 3: Finding the near and far genera-
tors, and translating a cone.

Translating the possibly extended cone to include
the origin is somewhat more complicated, but fol-
lows the same trail (See Figure 3). First the near-

est generator direction 77 and the farthest gener-
ator direction € are found just like before. The
vector ¢ = p — @ plays the role what 7 had in the
previous computation;

(

=7

SRS

S
|

QL

SRS

I
e}

Like before,

€= T-cosp+{q-sinp, =2 cosp—q-siny.
We want to translate the cone along generator €
so that the generator 7 moves to cover the ray
origin p (Figure 3, on the right). The distance
vector g between the origin and the nearest gen-
erator is found as:

G=c— (i) .

The translation distance ¢t and the new apex po-
sition are:

7

t= =
"9

- o o
, Gnew = G — € - t.

®y

Using the two steps in succession, we find a new
cone that includes both the previous cone and
the new ray, has a minimum opening as a prior-
ity, and was translated by a minimum amount as
a secondary objective. Of course, knowing noth-
ing about the rays already included in the cone,
we cannot state that the computation achieves an
optimal result in any way. However, it is conser-
vative and mostly needs vector operations, fitting
well in a pixel shader. Furthermore, cone con-
struction is only performed once for every itera-
tion of ray casting.

The computation of enclosing spheres of ray cast-
ing primitives is done on the CPU, at the same
time when all the scene data is processed. The
result is a vertex buffer, in which all ray casting
primitives are encoded as vertices. Note that the
position value slot can be used for passing the en-
closing sphere data, as it will simply be exchanged
with the tile position in the vertex shader. The
cone intersects the sphere if

¢ > arccos|(U — @) - &| — arcsin[r/|0 — d|],

where @, ¥ and ¢ describe the cone as before, ¢
is the center of the sphere and r is its radius.

The vertex data describing a triangle primitive
may be composed as:

position enclosing sphere center and radius

normal the normal and offset of the triangles
plane

texture 0-2 pre-processed triangle vertex posi-
tion data for fast intersection computation

further texture registers normals at the tri-
angles vertices

further texture registers texture coordinates
at the triangles vertices

5 Excluding terminated ray paths

In a typical recursive raytracing problem, we may
divide the geometry into ideally refractive or re-
flective surfaces, and locally shaded ones. We
will refer to these groups as ideal and non-ideal
surfaces. We start off with a texture of eye and
light rays. Our method should follow these rays
through multiple ideal reflections and refractions,
until the exiting rays do not hit an ideal surface
any more. These final rays we get as a result can
either be traced against the non-ideal geometry
of the scene, or used in any other method like
environment mapping or caustics generation.

Firstly, there may be pixels in which no refractive
or reflective surface is visible. Furthermore, in ev-
ery iteration replacing rays with their reflected or
refracted successors, there will be rays not arriv-
ing on any reflective of refractive surface, produc-
ing no output. It is desirable that for those pixels
where there is no ray to trace, the pixel shader
is not invoked at all. This is achieved using the
stencil buffer and early stencil testing. When ren-
dering intersections, every bit of the stencil serves
as a flag for a specific iteration. The stencil read
and write masks select the flag bit of the previ-
ous and current iterations, respectively. Should
ray casting fail to hit any object, the stencil bit
will not be set, and in the next iteration the pixel
will be skipped. With an eight bits deep stencil
buffer, this allows for eightfold reflection or refrac-
tion to be traced. Further iterations are possible
without excluding further terminated paths.

6 RELATION TO
APPROACHES

OTHER

The ray engine was designed to be a general pur-
pose raytracer, with no preconceptions on what
rays there are to be traced. While this generality
could be considered a great advantage, current
advancements in technology and research make

the ray engine approach obsolete in all but few ar-
eas of application. Firstly, real time global illumi-
nation is better supported by texture-based meth-
ods making use of precomputed maps or rendered
environments. Secondly, in offline computations,
where ray casting is still essential, ray casting ac-
celeration schemes well known on the CPU will
very soon be adopted for the graphics hardware
[6]. The acceleration structure must still be built
on the CPU, rendering the approach incapable of
realtime rendering of dynamic scenes. That prac-
tically leaves those two areas for realtime ray cast-
ing which our hierarchical ray engine specializes
in: visible refractive objects and caustics. Our
algorithm can outperform the ray engine by mak-
ing use of the coherence of rays in these particular
problems.

7 RESULTS

We have implemented the ray engine for tracing
refracted eye rays, without the CPU-GPU load
sharing scheme, and our algorithm (Figure 5), to
compare their performance. Both algorithms also
performed a refracted direction calculation for ev-
ery intersection test.

7.1 Ray coherence

A basic assumption of our approach is that rays
within a tile will remain more or less coherent
after multiple refractions, and in most cases they
still can be enclosed by tight cones. Images in Fig-
ure 4 shows how the opening angle of the cones
increases with consequent refractions. Obviously,
the cones are extremely accurate in the first few
steps, and larger openings only appear near con-
tours. Later on some cones expand as new refrac-
tion contours appear, but the main yield in this
phase is that homogenous or already terminated
areas have already been identified, and they are
discarded without the CPU rearranging the re-
maining rays into a new array, as in the Ray En-
gine approach.

For the hierarchical ray engine implementation,
we divided the 256 x 256 ray array into 16 x 16
tiles. The size of the tiles is somewhat arbitrary,
but limited by the maximum size of point primi-
tives the hardware can render. The optimum may
be dependent on the complexity of the scene. For
our test scenes, we found that further decreasing
the tile size resulted in performance loss, meaning
that the overhead of more processed vertices and

Figure 4: Cone angles for 1, 2, 4 and 8 itera-
tions, respectively. Brighter texels indicate
a lower angle.

larger textures became more significant than the
gain from better coherence.

As depicted in Figure 1, the enclosing cones for
the tiles were computed in a shader. The results
shown in Figure 7 were obtained for different ge-
ometries, with the maximum path length set to
5, on an NV6800GT. A refractive surface was vis-
ible in every pixel. Considering that it takes at
least two iterations to discard a path that has
entered an object, a minimum estimate for the
throughput can be given. With 256 x 256 pixels,
5000 triangles, 2 iterations, and an FPS of 0.23
our ray engine implementation computed 150M
intersections per second. With the hierarchical
approach achieving 3 FPS, this figure reaches 2G.
The improvement over the naive approach is very
much dependent on the complexity of the geom-
etry. If there are few primitives, the ray casting
does not take much time, and the constant over-
head of constructing the enclosing cones does not
pay off. However, as the number of primitives
increases, the situation is reversed. Already at
a triangle count of 100, the new algorithm runs
twice as fast. Furthermore, for 256 x 256 eye rays,
all hitting a refractive surface, frame rates enough
for real time rendering have been achieved. This
makes it possible to interactively and accurately
render visible refractive objects, or, when using
the technique to trace photon paths, correct caus-
tic patterns.

-
Press 'F2'to conﬁ
€ arrow keys !

Figure 5: Images rendered using the hier-
archical algorithm at 256 x 256 resolution.

8 COMPARISON WITH OTHER AL-
GORITHMS

Compared to the brute force algorithm, Foley and
Sugerman|[3] reported relative speedups for their
grid and kd-tree GPU acceleration structures be-
tween a factor of 5 and 9. Their test scenes con-
tained up to 100000 triangles. As complex accel-
eration structures have to be built using the CPU,
the algorithms are very well suited for high trian-
gle count static scenes, and impose no constraints
on the coherence of the rays whatsoever.

With a quite different set of preferences, the
hierarchical ray engine can achieve a relative
speedup of 15, outperforming the spatial hierar-
chies. However, the algorithm is linear in the
number of triangles, making it less suitable for

Figure 6: Images rendered using the hier-
archical algorithm at 512 x 512 resolution.

scenes with more than several thousand triangles,
and it also assumes strongly coherent rays. How-
ever, as stated in the introduction, the problem
of caustics and visible multiple refractions, the
only applications of ray tracing where there is no
reasonable incremental alternative, require these
features exactly.

The approximate ray tracing approach[7] has a
very similar area of applications compared to our
algorithm. Its main limitations are that it uses
pre-computed distance impostor textures, and
only two refractions can be handled. It is impossi-
ble to render a refractive object seen through a re-
fractive object. Furthermore, the refraction com-
putation is only accurate for a single star-shaped
object, the geometry of which can be captured in
a single cube map. Therefore, while the approxi-

100 . |
10 b
44 b
o
L
1r
Ray Engine
I Hierarchical -------
0.1 Hierarchical ~————
10 100 1000 10000

Number of triangles

Figure 7: Frames per second rates achieved
for rendering refractive objects.

mate ray tracing is extremely fast and convincing
for some spacial cases, our algorithm offers accu-
rate multiple refractions and a potential to handle
dynamic objects or even liquids.

9 FUTURE WORK

The current implementation is only using the al-
gorithm to query an environment map for rays
that do not hit any refractive surface. Although
it is theoretically straightforward, we still need
to work on an implementation that demonstrates
the method’s applicability for tracing scenes with
non-ideal objects, and, more importantly, for gen-
erating caustics.

REFERENCES

[1] J. Arvo and D. Kirk. A survey of ray tracing
acceleration techniques. In An Introduction to
Ray Tracing, pages 201-262. 1989.

[2] Nathan A. Carr, Jesse D. Hall, and John C.
Hart. The ray engine. In Proc. Graph. Huw.
2002, pages 1-10, 2002.

[3] Tim Foley and Jeremy Sugerman. Kd-
tree acceleration structures for a gpu ray-
tracer. In HWWS ’05: Proceedings of the
ACM SIGGRAPH/EUROGRAPHICS con-
ference on Graphics hardware, pages 15-22,
New York, NY, USA, 2005. ACM Press.

[4] V. Havran. Heuristic Ray Shooting Algo-
rithms. Czech Tech. Univ., Ph.D. dissertation,
2001.

[5] Matt Pharr, Craig Kolb, Reid Gershbein, and
Pat Hanrahan. Rendering complex scenes
with memory-coherent ray tracing. In SIG-
GRAPH ’97: Proceedings of the 24th annual
conference on Computer graphics and inter-
active techniques, pages 101-108, New York,

NY, USA, 1997. ACM Press/Addison-Wesley
Publishing Co.

Timothy J. Purcell, Ian Buck, William R.
Mark, and Pat Hanrahan. Ray tracing on pro-
grammable graphics hardware. ACM Trans.
on Graph., 21(3):703-712, 2002.

Laszlé Szirmay-Kalos, Barnabds Aszodi,
Istvan Lazényi, and Métyas Premecz. Ap-
proximate ray-tracing on the gpu with dis-
tance impostors. In Computer Graphics Fo-
rum, Proceedings of Eurographics 2005, vol-
ume 24, Dublin, Ireland, 2005. Eurographics,
Blackwell.

I. Wald, C. Benthin, P. Slussalek, and
M. Wagner. Interactive rendering with coher-
ent ray tracing. In Furographics 01, 2001.

Bruce Walter, George Drettakis, and Steven
Parker. Interactive rendering using the ren-
der cache. In Rendering techniques ’99, vol-
ume 10, pages 235246, Jun 1999.

