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ABSTRACT 

In this paper we propose a wavelet based model for large irregular volume data sets by exploiting a 
multiresolution model based on semi-regular tetrahedral meshes. In order to generate the multiresolution 
representation we use a wavelet based approach that allows compression and progressive transmission. 
Beginning with a semi-regular tetrahedral mesh Г∞(T) and applying the wavelet transform, we obtain a 
representation that consists of a coarse base mesh Г0(T) and a sequence of detail coefficients obtained from the 
sucessive decomposition of the mesh at different levels of resolution. The base mesh is the one at the lowest 
resolution and it does not have the connectivity subdivision property. The wavelet decomposition is obtained by 
defining a wavelet basis over tetrahedra generated by a regular subdivision method applied to an 
initial tetrahedron T. The obtained basis is a Haar-like one and forms an unconditional basis for Lp(T,∑,µ), 
1<p<∞, being µ the Lebesgue measure and ∑ the σ-algebra generated from the tetrahedron T  by the chosen 
subdivision method.  
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1. INTRODUCTION 
Three dimensional scenes contain highly detailed 
geometric models for many applications such as 
Internet 3D models for complex virtual 
environments, collaborative CAD, interactive 
visualization, etc. This situation motivates the 
development of 3D surface and volume models in 
order to meet requirements like effective use of disk 
space and network bandwidth, as well as substantial 
reduction of network transfer time. 

Multiresolution representations have become a key 
technology for achieving efficient storage together 

with progressive transmission and visualization 
performance. Besides that, wavelet-based methods 
have proven their efficiency for the visualization at 
diferent levels of detail, progressive transmission and 
compression of large data sets. 

A volume data set is often modeled by a mesh 
consisting of tetrahedral cells with scalar and/or 
vector data associated to them. In computer graphics, 
much research has been devoted to nested tetrahedral 
meshes generated by recursive decomposition, which 
are suitable to deal with regularly distributed data 
points. On the other hand, multiresolution models 
based on irregular tetrahedral meshes are desirable in 
order to deal with irregularly-distributed data, since 
they can accurately capture the shape of the field 
domain even at the lowest resolution. In this work, 
we propose an effective 3D model scheme for large 
volume data that exploits the power of wavelet 
theory. To achieve this, we present wavelets on 
tetrahedral domains and we use them as a 
multiresolution approach that can deal with irregular 
volume meshes that satisfies the subdivision-
connectivity property. That is, we assume that the 
mesh on which the data is defined can be reached by 
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recursive subdivision of a base mesh and the 
volumetric data set in encoded as a base mesh 
(coarse approximation) followed by a sequence of 
detail coefficients. 

The paper is organized as follows: in Section 2 we 
present an overview of related work on wavelets 
applied to object modeling. In Section 3 we define 
Haar-like wavelets over a tetrahedron, we give the 
filter coefficientes for analysis and synthesis, and we 
develop an example where a density function defined 
on a tetrahedron is represented using these waveletes. 
In Section 4 we present the detailed explanation of 
wavelet based modeling for irregular volumes, we 
provide the data structure and we justify why this 
model allows compression and progressive 
transmission. Finally, in Section 5 we draw some 
conclusions and we give an outlook over future 
work.  

2. RELATED WORK 
Different methods have been formulated for 
modeling volumes using tensor products ([Mur00], 
[Chu00]). The idea of using three dimensional 
wavelets to approximate three-dimensional volume 
data sets was introduced in [Mur00], where he 
constructs a 3D orthonormal wavelet basis using all 
possible tensor products of one-dimensional basis 
functions and presents the potential of the 3D 
wavelet transform (WT) for volume visualization. 
Although this methodology gives a simple way for 
constructing wavelets for surface or volume 
representation; it cannot be used without introducing 
degeneracies when representing surfaces or volumes 
defined on general domains of arbitrary topological 
type, like spherical domains. 

Lounsbery [Lou00] and Stollnitz et al. [Sto00] were 
the first who introduced wavelets from a different 
point of view, defining them on different bounded 
domains through scaling refinable functions. 
Refinability, a key property for multiresolution 
analysis (hereafter referred to as MRA), generalizes 
the notion of both translation and dilation. Within 
this context, wavelets defined on arbitrary 
topological domains on 2ℜ  are built up in [Lou00]. 
This approach was generalized a posteriori by 
Sweldens ([Swe00], [Swe01]) who recognized that 
the lifting scheme he proposed was a generalization 
of Lounsbery’s methodology. Other subdivision 
wavelet construction for functions defined on 
triangulated spherical domains were introduced by 
Schröder and Sweldens [Sch00], Nielson et al. 
[Nie00], Bertram et al. [Ber00], and Bonneau 
[Bon00].  

In [Lab00] and [Lin00], other techniques for 
representing volume data are given. However, a 

tetrahedral mesh can be used to model an object 
given by sparse data, and this mesh is a general 
topological domain for the intrinsic representation of 
the volume. In this case, it is necessary to have 
wavelets defined over tetrahedra and, based on 
sucessive refinements, extend the multiresolution 
analysis to functions defined on them. Hence, 
beginning with a tetrahedron and using the 
subdivision as a construction tool, it is possible to 
generate wavelets on arbitrary topological domains 
of dimension three or greater. In this paper we 
present a Haar-like wavelet basis defined over a 
tetrahedron as the first step for defining this kind of 
bases over an object represented by tetrahedra. 

3. WAVELET BASIS DEFINED OVER 
A TETRAHEDRON 
In order to define the wavelets, it is necessary to 
adopt a subdivision method. For 2D triangular 
meshes there are refinement methods satisfying 
nestedness, consistency and stability. Perhaps the 
most known one is the combination of red and green 
refinements proposed by Bank et al., [Ban00]. The 
stable refinement of tetrahedral meshes is more 
complex; there is no way a given tetrahedron can be 
divided into eight congruent ones. However, it is 
possible to extend the regular 2D refinement 
strategies mentioned above to 3D. For this purpose 
different algorithms have been developed during the 
last years (see, for example, [Bae00], [Mau00], 
[Bey00]).  

Bey [Bey00] introduced a refinement algorithm for 
unstructured tetrahedral grids, which generates stable 
and consistent triangulations. In order to do this, he 
defined some local regular and irregular refinement 
rules that are applied to single elements. Since our 
multiresolution model is a regular nested model 
[Mag00] based on the recursive subdivision of 
tetrahedra, we choose this method because it is 
highlighted by the fact that any given tetrahedron 
results in a group of elements of at most three 
congruence classes, no matter how many successive 
refinement steps are performed.  

Beginning with a tetrahedral net and using this 
subdivision method, it is possible to construct 
wavelets on arbitrary topological domains. To 
achieve this goal, it is first necessary to define them 
on a single tetrahedron. In this work we concentrate 
ourselves on this problem and we provide an 
example of a L2 functions representation on the 
defined bases, as well. 

3.1 Haar-like Wavelets 
In this section we build a wavelet basis on a 
tetrahedron following the process given by Girardi 
and Sweldens [Gir00]. Throughout this section, (T, 



Σ, µ) is the measure space where T is a tetrahedron 
with volume V , Σ is the σ−algebra of all tetrahedra 
generated by the Bey’s subdivision method and µ is 
the Lebesgue measure. With this procedure we shall 
obtain Haar-like wavelets on the measure space (T,Σ, 
µ) that form an unconditional basis for Lp(T, Σ, µ),   
1 < p < ∞. 

3.1.1 Wavelets Construction 
According to the chosen subdivision scheme, eight 
new tetrahedra Tβi, 1≤ i ≤8, obtained by subdivision 
of the father tetrahedron Tα, are introduced during 
synthesis. This means that these tetrahedra will be 
generated when going from a resolution level j to a 
finer resolution level j + 1 and will replace the 
coarser resolution tetrahedron Tα. [Cas00] 

Then the refinement equation can be written: 
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being B(α) the set of tetrahedra obtained after 
subdividing the tetrahedron Tα . 

The two scale equation for the wavelets is: 
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Then, a given function 1+∈ kVf  has two 
representations: 
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being Fj the set of tetrahedral at lower resolution 
levels and Gj the set of details obtained from the 
decomposition of the mesh until a given level j. As 
always, cα and dγ are found with the fast Haar WT 
applied to the original signal. (see Sections 3.1.1.1). 
Then, we must compute these coefficients during the 
process of analysis and synthesis. 

3.1.1.1 Fast Wavelet transform 
Analysis 
We obtain the low resolution coefficient cj,α from 
cj+1,β with  
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while the details coefficients are: 
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Synthesis 
To recover  cj+1,β from cj,α and dj,β , we use: 
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As the obtained wavelets are orthogonal, the 
coefficients βγ ,g  for the synthesis are equal to those 

ones used for the analysis.  

3.1.1.2 Funtions defined on volumes 
We can represent scalar or vector functions defined 
on volumes using the wavelets defined on a 
tetrahedron. A scalar function can represent, for 
example, a density, a temperature, etc. As usual, the 
fast wavelet transform can be directly applied to the 
set of coefficients that represents the scalar function. 
If this function has been mapped to color or texture, 
the wavelet transform is applied to the mapped 
function. In Figure 1, we show two steps in the 
analysis. In this case, the attribute has been mapped 
to color and the wavelet decomposition has been 
performed to it.  

 
Figure 1. Wavelet Decomposition of an Attribute 
defined on a Tetrahedron 

4. VOLUME MODELING USING 
WAVELTS 

The mesh representing the object must store the 
3D geometry, its topology and its attributes. One of 
the main advantages of tetrahedral meshes is that any 
other polyhedral mesh can be reduced to a tetrahedral 
mesh; hence a tetrahedral mesh can represent a 
volume with arbitrary topological type. Then, 
beginning with a tetrahedral mesh and using the 
subdivision and the defined wavelets, we will show 
how to generate a model of a volumetric object of 
arbitrary topological type that can be used for 
compression and progressive transmission. 

4.1 Volumetric Model 
The proposed model is based on a semi-regular 
mesh, which is regular except on the coarsest level 
tetraheda. This kind of mesh is especially well suited 
for different multiresolution algorithms. A semi-
regular tetrahedral representation is a sequence of 
approximations at different resolution levels. The 
corresponding sequence of nested refinements is 
transformed using the wavelet transform to a 
representation that consists of a coarse resolution or 
base mesh and a set of detail coefficients that 
represents the differences between succesive 
resolution levels. The base mesh Γ0 is the mesh at the 
coarsest resolution and does not have the 
subdivision-connectivity property. Then, the model 
consists of a base mesh and a sequence of 

modifications. These modifications correspond to 
terms that locally capture the details of the object at 
different resolutions.  

The construction of the multiresolution model starts 
with a fine tetrahedral mesh Γ∞ (Figure 2) with the 
subdivision connectivity property. 

 
Figure 2. Tetrahedral Mesh 

After performing the wavelet transform as many 
times as possible, we obtain the coarsest resolution 
mesh Γ0 plus a set of detail coefficients (Figure 3).  

 
Figure 3. Multiresolution Representation of the 
Volume 
Hence, the developed model begins with the finest 
resolution mesh Γ∞ and decomposes it on the coarsest 
mesh Γ0, with a set of detail tetrahedra generated 
during the analysis. This base mesh, together with all 
the details, are the multiresolution representation of 
the volume (Figure 3).  

Taking into account that the wavelet transform 
concentrates the energy on the coarsest resolution 
mesh and that the mesh has space localization, this 
model is suited for compression. However, the 
compression will depend not only on the chosen 
wavelts but also on the following issues: 



 The number of coefficients needed to achieve a 
good approximation of the volume. 

 The mesh encoding and storage with the minimun 
number of bits. 

If we transmit the base mesh and all the details, the 
compression method can be comonsidered as a 
losless compression encoding. If not all the 
coefficients are stored, it can be considered a lossy 
compression encoding. As the highest energy 
concentration is achieved in the low resolution mesh, 
only between the 10% and 15% of the detail 
coefficients are required in order to have a good 
approximation of the volume 

To transmit the underlying mesh of this model via 
Internet, we must consider the transmission of: 

 The base mesh. A robust transmission has to 
guarantee that the base mesh is completely 
transmitted before the details are transmitted and 
added. 

 The detail coefficients. After transmitting the 
base mesh, the details must be sent and added to 
it. 

The transmitted details can be added to the base 
mesh all at once after they have been received or one 
by one as long as they are received, until certain 
requirements are fullfilled. This last option allows 
the progressive transmission of the model. 

4.2 Data Structure 
We describe now the data structure proposed for 

representing the multiresolution volume model. In 
general, multiresolution meshes admite very compact 
data structures [Mag00] because the modifications, 
the involved cells, and the partial order are implicitly 
defined on the basis of fixed patterns. Then, the data 
structure for our model must encode the base mesh 
and the set of details. 

The data structure proposed for our model consists 
on  the  data   structure   for   the   base   mesh 
Γ0=<σ0 , σ1 ,…, σn> and on a forest of octrees to store 
the details corresponding to each one of its cells. 
Figure 4 shows a tetrahedron of the base mesh and its 
associated details represented by a forest such its 
trees have the d0,j as roots. Each tree in the forest is a 
hierarchy of regular tetrahedra and the relation of 
dependency is structured as an octree of tetrahedra. 
As every cell vertex define a regular grid, the 
coordinates of each vertex can be retrieved from its 
position in the grid.  

 
Figure 4. Wavelet Decomposition of a 
Tetrahedron and graphic Representation of that 
Decomposition (base mesh+forest) 
This multiresolution data structure is generated from 
a given volume with the conectivity-subdivision 
property ΓJ, being J the maximum resolution level. 
The wavelet transform is performed on each set of 
tetrahedra that replaces the tetrahderon Γ0 until the 
lowest resolution tetrahedra Γ0 is obtained. The set σ0 
coincide with a cell of Γ0 and its forest of details 
(Figure 5). 

 
Figure 5. Base Mesh Tetrahedron and the Forest 
of Details 
A forest, the decomposition level and a key to a 
reference coordinate corresponding to the lowest 
resolution tetrahedron are stored in a heap for each 
cell of the base mesh. The reference coordinate will 
be used to retrieve the geometry of the tetrahedra 
corresponding to those ones obtained from it at a 
finer resolution. 



4.1.1 Space Complexity of the Data Structure 
It is supposed that the mesh is stored using an 

indexed structure like winged edge, that encodes, for 
each tetrahedron, the indices of its vertices and the 
adjacent tetrahedra, along the four faces. The total 
storage cost corresponding to the data structure of the 
reference mesh can be calculated in the follong way: 

TotalCost = ConnectivityCost + GeometryCost + 
AttributesCost. 

If n is the number of vertices of the reference mesh 
and t is the number of tetrahedra, the amount of t 
tetrahedra is about 6;, the connectivity cost requires 
to store 4t indices (one for each vertex), 4t indices 
corresponding to the adjacent tetrahedra and 3n 
vertex coordinates. Since the cost of an scalar 
attribute is t, if we consider that we have only one 
scalar attribute, the storage cost is: 

TotalCost = 8t + 3n + t = 48n + 3n + 6n. 

Asuming 4 bytes for the indices, 2 bytes for each 
coordinate and 2 bytes for a scalar attribute, the 
storage cost in bytes is 210n bytes. From this, it is 
clear that the connectivity information dominates the 
storage cost and it must be compressed.  

The storage cost of our model is:  

TotalCost = BaseMesh Cost + F orestCost. 

The storage cost of the base mesh is the storage cost 
of a winged edge data structure. So,  

BaseMesh Cost = 210nbm bytes, 

being nbm  (nbm << n) the amount of vertices of the 
base mesh. Then: 

TotalCost= 210nbm bytes + F orestCost. 

Each tetrahedron of the base mesh has a forest 
associated to it and any other node describes a detail 
tetraedron; the eight sons corresponds to the 
tetrahedra obtained from Bey’s subdivision method. 

Each one of the seven trees of the forest is a 
complete octree that we can implicitly codify; i.e. we 
do not need to store the conectivity and the structural 
information; since we have regular tetrahedra, the 
vertex coordinates are implicit. As a consequence, 
we only need to encode the field or the attribute 
values in order to encode the details.  

We have supposed that each attribute is stored in 2 
bytes. These attributes are stored for each tetrahedron 
of the base mesh and these values have been taken 
into account in the storage space required for the 
base mesh. The number of detail tetrahedra plus the 
tetrahedra of the base mesh is the number of 
tetrahedra of the reference mesh; however, for each 
of them we only store the detail that corresponds to 

the attribute. Then we have t − tbm detail tetrahedra 
and the storage cost becomes:  

TotalCost =  204nbm bytes + t − tbm 

= 210nbm bytes + (6n − 6nbm)byte. 

The storage cost is significantly reduced compared to 
the total cost of the reference mesh (nbm << n).  

4.3 Example 
It is worth to notice that when the size of the base 
mesh compared to the size of the highest resolution 
one gets smaller, the storage cost diminishes. Table 1 
shows a comparison of the storage cost between the 
reference mesh and our approach at n different 
resolutions. 

 Cost (in bytes) 

n Reference 
Mesh 

Base 
Mesh Forest Our 

approach 

8 603979776 75497472 14680064 90177536 
7 75497472 9437184 1835008 11272192 
6 9437184 1179648 229376 1409024 
5 1179648 147456 28672 176128 
4 147456 18432 3584 22016 
3 18432 2304 448 2752 
2 2304 288 56 344 
1 288 36 7 43 

Table 1 

5. MESH COMPRESSION AND 
PROGRESSIVE TRANSMISSION 
We give now the structure to represent the complete 
multiresolution mesh. However, this wavelet based 
representation can be compressed even more in orden 
to reduce storage space and transmision time. We 
will see what elements must be introduced in the 
structure to achieve higher levels of compresion. 
Besides, as we want embedded encoding for 
progressive transmission, we will see how to include 
it in the structure.  

5.1 How the Model allows Compression 
We will apply the compression technique to a scalar 
function defined on the tetrahedra and we will show 
how the cell based scheme allows to achieve a high 
compression level. We can have two different 
alternatives to compress the volume: one is to reduce 
the number of coefficients to approximate the 
volumetric data and the other is to encode and to 
store the necessary information using a small number 
of bits. 

5.1.1 Two models for Compression 
We  suppose  to  have  the  multiresolution  model  as  



described in the above sections and that the WT was 
performed to the given data. Afterwards, the attribute 
values associated to the tetrahedra are decorrelated 
and the energy of the original data is concentrated in 
a relative small number of coefficients.  
The key behind wavelet compression is to select the 
coefficients with smallest norm and replace them by 
zero. This criterion minimizes the L2 norm of the 
resulting approximation error. Whatever is the 
selected criteria to set the detail coefficients to zero, 
the original signal will be approximated with a very 
small number of nonzero coefficients. Then, we can 
obtain compression in two different ways: 
 All coefficients that remain in the representation 

are encoded with a lower amount of bits per 
coefficient using run-length encoding, vectorial 
quantization or differential encoding.  

 A very small portion of coefficients (between 
10% and 15%, for example) are kept and the rest 
of them are set to zero. Hence, it would be 
reasonable to keep only the non zero coefficients. 
In order to do this, we can take advantage of the 
spatial localization property of the wavelets: the 
behaviour of the detail coefficients of a father in a 
given forest tree allows to predict the behaviour 
of its descendents.  

5.1.2 Error Control 
In the models previously described we have 
supposed that we could control the level of 
compression by specifying a given percentage of 
coefficents that are not set to zero (surviving 
coefficients). In both cases, we can control the 
number of surviving coeffients by specifying an 
adequate treshold and set to zero all coefficients 
whose magnitudes are smaller than it. This threshold 
can be automatically determined taking into account 
the maximum allowed approximation error. The ideal 
way to compute the threshold is by sorting all the 
coefficients in decresing order of significance. 
However, when the amount of data is huge, this is 
impractical (O(n log n)). Then, if we want to control 
the error, we should find the threshold without 
sorting the data. 

One can also specify a threshold and encode all the 
coefficients of magnitude greater than it and 
eliminate all the other ones (O(n)). In this case, even 
if the approximation error can be computed, it can 
not be controled since a fixed number of coefficients 
are eliminated, depending on their value respect to 
the threshold.  

Finally, the compression scheme developed so far 
allows compression of non structured volumes 
decomposed in atomic tetrahedral elements and that 
have scalar or vectorial values defined on them. It is 

then necessary to consider the appropiate metric 
depending on the nature of data, e.g. geometric, 
color, texture data, etc. in general the L2-norm is 
considered. 

5.1.3 Decompression 
The decompression allows to reconstruct the 
received information of the progressive transmission. 
The base mesh will be received first and will be 
decoded according to the encoding method. Once the 
reconstruction of the base mesh is completed, the 
inverse WT will be applied to the detail coefficients 
received afterwards. 

5.2 How the Model allows Progressive 
Transmission 
For the mesh transmision we use a modification of 
the protocol for the transmission of semi-regular 
meshes, the so-called mesh transfer protocol (MTP) 
defined by Staadt [Sta00]. In order to guarantee a 
reliable and ordered delivery of the base mesh to 
destination, we use TCP for the transmission. To do 
this, the protocol must use a lot of overhead 
communication; fortunately the base mesh is small 
compared to the finest resolution level of the mesh.  

After the transmission of the base mesh has been 
completed, the details must be sent. In this case, the 
protocol used to send them will depend on the 
implemented model: 

 If the details are sent without position 
information it means that it is implicitely given 
by the order the chain is transmitted and TCP 
must be used for detail transmission. 

 If each detail record contains the complete 
topological information that specifies the 
tetrahedron to which the detail has to be added, 
the ordering of the detail records is not 
important. For the reconstruction of the original 
mesh it is even not necessary that every detail 
record is received: the loss of records may result 
only in small local errors. Therefore, it is 
possible to use the UDP protocol for their 
transmission. 

6. CONCLUSIONS AND FUTURE 
WORK 
In this paper we have extended the definition of the 
wavelets defined on a single tetrahedron to 
tetrahedral preserving the MRA. Based on them it 
was shown that it is possible to represent irregular 
tetrahedral meshes using a multiresolution approach. 
We have also considered only scalar functions 
defined on tetrahedra since they represent the volume 
attributes. The proposed model allows compression 



and progressive transmission. In compression, we 
showed how to reduce the number of coeffients 
needed for approximating the volumetric data and 
how to encode the information according to the 
proposed models. In the case of transmission, we 
analyzed a protocol that allows the progressive 
transmission of the mesh. 

We consider that the described framework is an 
important initial work to construct multiresolution 
representations of irregular meshes. Future work 
includes the extension of our results to functions 
defined on unstructured tetrahedral domains and also 
the representation of the underlying domain 
geometries. These extensions would allow to obtain a 
wavelet-based method to model irregular tetrahedral 
meshes without the subdivision connectivity 
property. The used oracles and reconstruction 
schemes are based on the L2 norm. Furthermore, we 
are studying the possibility of taking into account 
other error criteria based on human perception in 
order to optimize the approximation quality. 
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