
Real Time Simulation of Elastic Latex Hand Puppets

Charles A. Wüthrich†, Jing Augusto‡†, Sven Banisch†, Gordon Wetzstein†,
Przemyslaw Musialski†, Chrystoph Toll†, Tobias Hofmann†

(†) CoGVis/MMC, Faculty of Media

Bauhaus-University Weimar, D-99421 Weimar, Germany

(‡) ABS-CBN Foundation, Mo. Ignacia St.,

Diliman, Quezon City 1100, Philippines

E-Mail: caw@medien.uni-weimar.de

ABSTRACT

Children television productions have been using puppets for a long time. Since the early days of computer ani-
mation, computer puppet simulation has been researched intensively. Complex motion capture equipment allows
nowadays the real time mapping of movement for virtual puppets (performance animation). However, the costs of
capturing equipment are too high and the difference in the workflow make it difficult for small production teams
to access and use such technology. This paper presents a system for the real time simulation of elastic latex hand
puppets which are used in television productions. After an analysis of the production processes of real puppets and
of the materials used for their production, the paper describes the components of the system simulating them. The
system connects a high resolution visual mesh to a three-layered 3D mass spring mesh, which is used for the elastic
simulation. Polygonal mesh decimation of the puppet surface model is used as a basis for generating the elastic
mesh. From the decimated mesh a new metod is proposed for generating the internal layers of the mass-spring
mesh. A data handglove is used for transmitting forces to the elastic mesh, indirectly moving the surface of the
virtual puppet in real time. Dataglove interaction maps in a natural way the hand movements of a puppeteer to the
computer model. The tradeoffs of the implementation on low cost hardware and its efficiency are also discussed.

Keywords
Real Time Animation, Physical Simulation, Interactive Puppet Simulation

1 Introduction
Children television production has been using puppets
for a long time. Shows like the ”Muppet Show” are
pleasant remembrances of many people’s youth, and
puppet characters are particularly well accepted by the
young audience because of their natural sympathy and
their flair. Children’s attention is more drawn visu-
ally to colourful puppet characters on television than
to regular adult actors. When watching a puppet, chil-
dren consider it one of their own, and relate to the
character played by the puppeteer in an easy and sym-
pathetic way. Plenty of puppet characters in television

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

WSCG 2006 proceedings, ISBN 80-86943-03-8
WSCG’2006, January 30 - February 3, 2006, Plzen, Czech
Republic.Copyright UNION Agency–Science Press

became famous, and were a long term companion of
many children’s daily life.

With the introduction of powerful and affordable
PC graphics cards with TV output, and the develop-
ment of more and more algorithms for the photoreal-
istic rendering of different materials, at least theoreti-
cally it is possible nowadays to simulate such puppets
in real time and feed the resulting TV output through
a normal TV mixer, mixing it into a normal TV pro-
duction. Modern PCs with high performance graph-
ics hardware have become affordable even for insti-
tutions with a relatively low budget, and this makes
the exploration of the possibility of using PCs for pup-
peteering attractive, even for institutions not tradition-
ally computer oriented, such as TV production compa-
nies. Since the production of real puppets is extremely
time and cost intensive, computer modeling and com-
puter simulation are a feasible alternative to handcraft-
ing. All it takes to control the character is a PC, a good
graphics card, and an input device. In theory.

The idea of mapping input devices onto a virtual
character is not new: starting from the seminal work of
Parke on the acquisition and mapping of faces and ex-

pression onto a computer-animated face [31], already
in the late eighties and in the beginning of the nineties,
tracked data or data stemming from image acquisi-
tion systems was mapped onto movement of animated
characters [39, 37, 12], often focussing on facial an-
imation, albeit not in real time. The development of
real time motion capture devices allowed sensor driven
real time motion mapping onto characters: new de-
vices were developed [15]. Parallel to this, researchers
explored how to build appropriate interfaces for inter-
active physically–based animated characters [23]. One
of the major problems tackled was how to map cap-
tured movement onto different models in real time, a
process which is known as retargeting [7, 19, 38]. Of-
ten, the underlying models are skeleton based [30]. A
relatively recent good overview of the current state of
the art in motion capture mapping is done in [33].

Parallel to this, real time elastic simulation methods
were being developed in two dimensions for cloth [26]
and in three dimensions for virtual surgery [40, 6, 16].
Such models are based on mass-spring systems, or
variations thereof, and are capable of solving ordi-
nary differential equations at interactive frame rates.
Surgery systems often require expensive parallel hard-
ware, such as linux clusters, to achieve real time frame
rates. Cloth simulation is usually done in two dimen-
sions, since fabric cloth can be adequately approxi-
mated by a surface. It models interaction with the body
of the character wearing the cloth through external col-
lision forces with the cloth itself.

To the authors’ knowledge, an attempt to simulate
an interactive, user driven three-dimensional elastic
mesh for interactive puppets has not yet been done.
The problems arising from such a simulation are mul-
tiple: such a simulation is not possible in real time
if the size of the underlying elastic simulation mesh
is too big. For puppet rendering, instead, a high res-
olution surface simulation is necessary to render the
surface detail. The structure of the surface mesh (nec-
essary for the visualization) has therefore to be de-
tached from the structure of the physical simulation, so
that elastic computations can be done in real time, and
mechanisms have to be found for ”attaching” the phys-
ical mesh to the high resolution mesh of the puppet
surface modeled. Starting from the modeled surface,
mesh reduction algorithms have to be applied to the
visualization mesh to generate the underlying physical
low resolution mesh. The physical mesh has to be at
a sufficient low resolution to allow real time simula-
tion, and has to have multiple layers, at least three, to
simulate the physics of the puppet materials.

This paper will present the problems and imple-
mentation issues of an affordable puppeteering system
which is being developed in an international coopera-
tion between the Bauhaus-University Weimar and the
ABS-CBN Foundation, an educational television pro-

duction institution based in Quezon City, Philippines.
The requirements on the system are that it should be
low cost1, that it simulates latex (i.e. elastic) puppets
in real time, and that it is coupled through a data hand-
glove to a puppeteer. Latex puppets have been used
in the puppetry field for quite some time. Their main
advantage lies in their elastic properties: through the
combination of a harder latex layer on the exterior and
of elastic foam in their interior, they map well the ex-
pressive characteristics of a real live being.

Section 2 will give a brief description of real latex
puppets. In Section 3 we will provide an overview of
the system. Section 4 will propose one method for
reducing the complexity of the model and generating
a three–dimensional elastic mass–spring mesh so that
the physical simulation can be run at a low resolu-
tion. Section 5 will explain the detail of the simulation
of elastic material, while Section 6 will present how
forces are applied to the puppet. Finally, we will draw
some conclusions and will outline future work issues.

2 Making a real latex puppet
The production of latex puppets has been discovered
a long time ago [4, 9]. However, they have been used
mostly for step by step animation purposes [10]. Pup-
pet stepwise movement is achieved through the inser-
tion of stiff but bendable materials such as thick iron
wire. The animation is then produced by moving the
puppet slightly frame by frame. Step by step anima-
tion gives the animator excellent control on the results,
but requires long production times.

Recently, television stations used latex puppets in-
teractively for real time television production. The op-
eration of the puppets is quite simple. In puppets hav-
ing a complete body, ”loose” parts, such as arms, legs
and ears, are manipulated interactively through rods
and ropes attached to the puppet. Main body parts in-
stead are moved through a hand inserted in the foam
filling the body of the puppet. The hand inserted in
the puppet manipulates the head, the mouth, and, more
rarely, its ears. Figure 1 shows how the puppeteers ma-
nipulate such a puppet. In this paper, we will concen-
trate on puppets having a hand inserted into them.

The process of production of a puppet is long and
tedious. It involves several drying phases, which are
very sensitive to the atmospheric conditions of the en-
vironment. Due to the fact that such puppets can vary
a lot in size, it is not always possible to put the pup-
pets for drying in a controlled environment. Mistakes
in the creation process or temperature changes result
often into unusable or malformed puppets. As a con-
sequence, very often two or more identical puppets are
produced at the same time.

1Children television productions have generally a much lower
budget than adult television ones.

Figure 1: Puppets are manipulated by inserting the
hand in the head. Loose parts are manipulated by a
second puppeteer, eventually with rods.

The structure of such elastic puppets is composed
of three layers. Externally, a latex rubber layer con-
stitutes the skin of the puppet. This layer can have
different consistencies, depending on the number of
layers of latex being applied to the surface. Internally,
a mattress similar foam is injected in the puppet. The
purpose of the foam is to fill in the puppet so as to
transmit the movement of the hand of the puppeteer to
the surface of the puppet. Finally, a hole is dug in the
foam to allow the puppeteer to insert his hand. Mouth
movement can be improved by glueing a bent rubber
mat into the mouth cavity, so that when the puppeteer
moves the hand, the two lips are moved symmetrically.
Puppets are painted and hair and cloth accessories are
applied to them to enrich visual detail. Figure 2 shows
such a puppet.

Figure 2: Froggy, a latex puppet.

The materials used for the puppet give it a quite stiff
consistency. The latex surface gets stiffer the more lay-
ers are applied, while the foam provides for an even
distribution of the forces generated by the hand of the
puppeteer onto a large part of the puppet. The puppet
is flexible and stiff at the same time, and elastically
returns naturally to its resting position when moved.

3 Overview of the system
For puppet simulation in real time, the system should
be able to feed the output directly into the TV mixer

through the graphics card. For the input, a low cost
dataglove in the 100$ price range (Powerglove P5™by
Essential Reality) is used. All simulations were done
on a low cost 1.7 GHz P4 PC, with an NVidia FX 5700
graphics card with TV output2.

The virtual simulation of a puppet can be basically
subdivided into three parts: input capture, physical
simulation of the elastic materials, and mapping of the
results of the physical simulation onto the puppet sur-
face. Once the deformed puppet surface is generated,
the new positions of the polygon mesh are passed to
the graphic card and visualized by it.

Input capture is done through a device independent
abstract layer. Data is read through the dataglove li-
braries, and prepared for the physical simulation.

The physics simulator implements a three-
dimensional mass-spring system. On one side, some
nodes of the mass-spring system are attached directly
and controlled by the finger positions of the dataglove.
On the other side, the external nodes of the mesh are
attached to the surface of the virtual puppet. The
three-dimensional mass-spring mesh is composed of
three different layers. Layers generation from the
original model is presented in section 4, and the mass
spring system real time simulation in section 5.

When the fingertips move, the corresponding nodes
to the mass spring mesh apply forces to their neigh-
bours, and movement is transmitted to the surface of
the puppet. The mass–spring simulation computes
in real time the resulting new positions of the mesh
nodes, and deforms the puppet surface display mesh
accordingly. Finally, the newly positioned surface ge-
ometry is rendered and displayed.

4 Discrete 3D mesh generation
Our puppet models are created using standard digital
content creation tools. To preserve the visual qual-
ity along with a robust simulation that works at inter-
active frame rates, we separate the polygonal surface
from the simulation mesh. Custom decimation meth-
ods are applied to the puppet model generating a three-
dimensional tetrahedral mesh from the decimated sur-
face. This mesh is attached to the original surface and
updates its shape after each simulation step.

4.1 Decimating the original model
Mesh simplification and multiresolution data struc-
tures have many applications in Computer Graphics.
They can be used for collision detection, ”level of de-
tail” (LOD) rendering or physical computations. An
extensive comparison of different algorithms can be
found in [13]. A ’good’ physical mesh should pre-
serve the shape of the original model as well as possi-

2This due to budget restrictions of the commissioning institution.

ble, it should have edges with almost equal length and
no side flipped faces.

We use a custom combination of three different
mesh decimation algorithms. In all cases, a scalar is
assigned to each vertexv indicating the decimated sur-
face error∆v. Such error equals the priority of the ver-
tex of being removed after the current iteration. The
vertex with the highest error is deleted and the proce-
dure is repeated until a predefined number of vertices
remain or the error of removing more vertices becomes
too high.

The first decimation method used is the normal flip-
ping mode, which computes the maximum angle of
each vertex normalni to its neighboring face normals
nij . The error is equal to the angle and can be deter-
mined by the scalar product

∆n
i = max

{
cos−1

(
ni · nij

|ni| |nij |

)}
(1)

In case of unit length normals the denominator is 1
and can be discarded. Normal flipping is used to pre-
vent highly curved regions from being decimated and
assure side flipping.

The second method preserves equidistant triangles
within the decimated mesh. We define the normal-
ized roundnessR∗ of a triangle as a metric for its
equidistance. The roundnessR is the ratio between the
circumference’s radius and the shortest edge’s length.
The circumference’s radiusr can be computed asr =

a
2sin(α) . The length of the edges of an equidistant tri-

angle with unit radius is
√

1/3, thusR∗ =
√

1/3

R .
The actual roundness is computed for each face that

would be created if the vertex was removed. The prior-
ity of vertex i is the minimum of 1-(roundness of each
neighboring face j)∆r

i = min
{
1−R∗

j

}
.

Surface simplification using quadric error metrics
was introduced by [17] and later extended [18] to cor-
rectly decimate colored and textured meshes. It is cur-
rently one of the most common mesh decimation tech-
niques used in many 3D–modelers.

Arbitrary vertex pairs are iteratively contracted
(v1, v2) → v, incident edges are connected to
v, v2 as well as all edges and faces which have
become degenerated are removed. The surface
error at vertexv = [vxvyvz1]T is expressed by a
symmetric 4x4 quadric matrixQ of the quadratic
form ∆q {v} = vT Qv. For a given contraction
(v1, v2) → v a new matrixQ is derived using the
additive ruleQ = Q1 + Q2. The position ofv is
determined by minimizing∆ {v}, which can be done
by computing the partial derivatives of

vT Qv = q11x
2 + 2q12xy + 2q13xz + 2q14x+

q22y
2 + 2q23yz + 2q24y + q33y

2+
2q34z + q44,

thus

v =

q11 q12 q13 q14

q21 q22 q23 q24

q31 q32 q33 q34

1 1 1 0

−1

0
0
0
1

 (2)

Garlands simplification produces the best visual re-
sults of these algorithms, while equidistance of deci-
mated triangles is preserved by taking the roundness
into account. Normal flipping prevents faces from
flipping direction. We compute the error for each
vertex as a combination of these three error metrics.
Usually normal flipping only indicates an invalid re-
moval if the maximum angle is higher than a certain
threshold∆n {v} ≥ τ we have an invalid removal.
Roundness and quadric error are combined according
to weights which are dependent on the puppet model
∆ {v} = λ∆r + (1− λ) ∆q.

The high resolution visual polygon mesh is de-
formed after each simulation step according to a con-
nection to the simulation mesh. We use the correspon-
dence between the decimated and the original surface
to create a connection map that stores weights and con-
nections from the surface of our tetrahedral layered
mesh to the visual structure. Each surface vertex is
connected to the decimated vertex with the minimum
edge distance. If more that one decimated point is pos-
sible all the vertices are connected. Each connection to
vertexvi from the direct connectors{vj} gets a weight
ωi that is relative to the fraction of the distance to the
connected vertex and the sum of all distances to ver-
tices that are connected tovi:

ω (vi, vj) =
δ (vi, vj)∑

j δ (vi, {vj})
(3)

Updatingvi according to the simulation is done by
translatingvi according to the translationTj of its con-
nectors with respect to the assigned weightsωij :

T (vi) =
∑

ωijT (vj) . (4)

4.2 Internal layer generation
Taking the resulting decimated surface as initial
source, we introduce a method to generate a full and
closed layer of tetrahedrons underneath it.

The reason of creating layers instead of filling the
model with a uniform mesh is that real time animation
of mass-spring systems is still a computational expen-
sive task with time complexity ofO(n + e), wheren
is the number of mass-points ande is the number of
springs [21]. While simulating structured meshes is
more stable and in general faster, such meshes do not
fit to complicated geometric shapes well. Since in our
case the amount of storage and the preprocessing time
does not influence the simulation, we decided to use an

advancing front approach combined with the Delaunay
criterion [5] to create the physical structure. The solu-
tion we have chosen allows at the same time to access
different layers of the mesh and adjust attributes like
spring constants and mass values, so that different de-
grees of stiffness can be reached.

In the first step we use the ”biting spheres” approach
[24] to provide proper points in the domain. This
method is based on the sphere packing: the basic idea
is to fill a three-dimensional geometric domain with
spheres (bubbles) to generate new points in the inte-
rior. Since we want to create only layers of tetrahe-
drons instead of stuffing the whole object, we combine
this method with the advancing front approach as pro-
posed by Li [25].

Starting from the reduced surface mesh we define a
sphere on each vertex with the radius of the half of the
distance to the next neighbour vertex. On each inter-
section of at least three spheres we create new points
in the interior of the object. Iterating this procedure
with the newly created points generates the next layer
of steiner points in the geometric domain.

Next, we use the Delaunay criterion to create new
tetrahedrons from existing points, which we define as
follows: let P be subset of the whole geometric do-
mainΩ whereP contains the inner pointspl created by
the procedure described above. Assume that none of
the faces4pjpkpl

containing the pointspjpkpl ∈ Ω is
a surface face. The Delaunay point for every4pjpkpl

is a pointpdelaunay ∈ P such that:

(‖pdelaunay − pj‖ < ‖pdelaunay − pm‖) ∧
(‖pdelaunay − pk‖ < ‖pdelaunay − pm‖) ∧
(‖pdelaunay − pl‖ < ‖pdelaunay − pm‖),

where ∀m 6= j, k, l and pm ∈ P.
In fact, this condition is still not sufficient to find

proper points for creating new cells, therefore prior
tests such as verifying the positive distance of the
points with respect to the faces are needed. This boils
down to finding the proper pointspdelaunay, and con-
necting them with their corresponding faces4pjpkpl

creates new tetrahedronstetpjpkplpdelaunay
. Accord-

ing to the generated mesh, we create mass-points and
springs for the physical system.

To reach best elasticity while preserving shape dif-
ferent stiffness properties of springs and different mass
values are needed in the different layers. Since we can
separately access springs and mass-points lying on the
surface, on the interior, or even in between, changing
their attributes ends up in different physical behavior
of the simulated material.

During the simulation, forces applied on several
points propagate stepwise to the whole structure. To
transmit the deformations to the surface, each outer
mass-point is tied in position to its reduced surface

vertex, and after every simulation step the position of
the polygonal surface is updated. After this operation,
a separate rendering module can access the data and
display the puppet.

5 Real time elastic simulation
The first issue that has to be addressed when imple-
menting latex puppets is the simulation of the physi-
cal properties of the materials involved. Since a lay-
ered structure of different materials is to be simulated,
an adjustable and flexible physical model is needed,
which allows that different extents of elasticity, vis-
cosity, plasticity, etc. are present within it. The model
must furthermore be able to perform in real time.

Mass–spring systems meet these requirements, and
have been frequently used for the simulation of de-
formable objects, such as hair [32, 1, 2], cloth [27, 14,
21]3 and three dimensional bodies [8, 22]. Terzopou-
los was among the first to suggest mass–spring sys-
tems in computer graphics [35, 34, 36] for simulating
elastic behaviour. In 1988, Miller [28] simulated dy-
namics of snakes and worms using a chain of masses
and springs. With an increase of computation power of
computer systems, more complex structures have been
animated, and it is nowadays possible to simulate them
in real time.

Mass–spring systems involve complex mathemat-
ics: they base on Newtons fundamental law~F = m~a.
For a model consisting ofn masses a system ofn sec-
ond order differential equations (ODEs)

Mp̈ = F (t, p, ṗ) (5)

has to be solved. Then dimensional vector
p = (p1, p2, . . . , pn)T represents the positions
pi = (xi, yi, zi)T of all points. Then×n dimensional
matrix M stores the masses of all particles on its
diagonal, andF is a function which describes the
system’s force field at timet. Equation 5 can be
reduced to the system of2n ODEs of first order

d

dt

(
p
ṗ

)
=

d

dt

(
p
v

)
=

(
v

M−1F (t)

)
(6)

by introducing the velocityv = (v1, v2, . . . , vn)T as a
separate variable.

There exist several ways to numerically solve such
a system of ODEs. Numerical time integration meth-
ods range from the simple explicit Euler scheme [28],
which is very fast at expense of accuracy and instabil-
ity, over higher order explicit methods such as Runge
Kutta, to implicit predictor–corrector schemes [3, 27],
which are considered more stable [11].

3See [26] for an up to date overview of deformable models in
cloth simulation.

For our system, we use the implicit Euler scheme

p(t + h) = p(t) + hv(t + h)
v(t + h) = v(t) + hM−1F (t + h) (7)

to find the positions at the next time stept + h. Here,
the system’s force fieldF (t + h) has to be approxi-
mated through the second order Taylor series

F (t+h) = F (t)+J∆p(t + h)+H∆v(t + h), (8)

whereJ is the Jacobian andH the Hessian matrix of
the system’s force field with respect to the positions
and, respectively, velocities. With∆p(t+h) = hv(t+
h) and∆v(t + h) = hM−1F (t+h) in Equation 7 we
derive

∆p(t + h) = h(v(t) + ∆v(t + h)), (9)

which is a non–linear equation of the form

y(x + h) = f(x + h, y(x + h)). (10)

Equation 10 can be solved iteratively through

y(x + h)0 = f(x, y(x))
y(x + h)µ+1 = f(x + h, y(x + h)µ), (11)

whereµ represents the iteration number. As suggested
in [21], we use the result after one iteration which is
sufficient approximation of the solution for real time
purposes.

In order to imitate the multi–layered material be-
haviour of real puppets, a three–dimensional mesh has
been created as described in Section 4, and layers have
been defined. The entire mesh forms a single mass–
spring system. The layered structure is achieved by
tuning parameters of the mass–spring system accord-
ing to the desired materials properties of each layer.
This results in a mass–spring system in which the
layers result from regions having the same parameter
values. Material properties can be made to resemble
foam, latex or other materials used for real puppets.

The parameters influencing the behaviour of the
puppet are:

• The time steph, which has a very strong influ-
ence on the behaviour of the simulation. It can be
set by the user within reasonable limits. A very
small time step decreases the system’s reactive-
ness because of increased computations, whereas
a too large time step will lead to instability. Once
set, the step size usually stays constant over the
whole simulation.

• The massM of the physical points, which de-
termines how big the inertia on the system is. If
masses are increased, the reactiveness to external
and internal forces is reduced. ThusM can be
used to achieve different behaviours of the model.

• Thespring constantsCspring, which are used to
calculate the Hookean part of the internal forces.
A layered structure (e.g. foam and latex) can be
modeled by adjusting the spring constants within
the layers.

• The damping coefficientsCdamp, which deter-
mine how quickly mass points can be moved by
spring forces. It is therefore a measure of the vis-
cosity of the deformable body and strongly af-
fects its elastic behaviour.

• The topologyT of the three–dimensional mesh,
which influences the stiffness of the puppet, and
is given by the arrangement and density of mesh
points within the puppet’s body.

Mass–spring systems are often prone to instabil-
ities, especially if an explicit integration scheme is
used. The time steph has to be set very small to
ensure stability. We use the implicit Euler method
because it is accurate while allowing the step sizeh
to be larger [11]. Assuming that the non–linear sys-
tem of equations is solved properly, the implicit Eu-
ler method is unconditionally stable [20] because the
systems force field is consistent over time. If the non–
linear system of equations is solved iteratively, as in
our case, new restrictions on stability arise. A detailed
mathematical analysis of the problem is not done here,
since the majority of parameter configurations ofM ,
Cspring, Cdamp andT do not cause instabilities when
the time steph is within a proper range, i.e., for normal
usage of the system.

For puppet simulation real time interaction is re-
quired, and the performance of the system is very im-
portant. The easiest way to decrease the computational
complexity is to reduce the size of the mass–spring
system, i.e., to decrease the number of mass points and
springs. Table 1 shows the performance of the physical
solver. At the required frame rate of a PAL television
(25fps) it is possible to simulate in real time a mass–
spring system constituted by up to 5000 mass points
and 14600 spring links. Through the decimation and
layer generation methods presented above, we reduced
the models to such sizes.

Masses Springs Update time (in s)

3744 1872 0.015
3744 6952 0.025
5664 15056 0.043
9978 25892 0.076

Table 1: Performance of the physical system.

6 Applying forces to the puppet
To generate the shape of the Puppet, a separate mod-
eler is used. Five node regions on the physical mesh
are marked by hand, one for each finger of the data
handglove. The individual regions must of course con-
sist of adjacent points, and must be disjunct. The
marked points are preserved through the mesh reduc-
tion process, so that the corresponding nodes do not
disappear in the simplification.

When the puppeteer moves his fingers, the move-
ment of the fingertips is converted into forces accord-
ing to Newton’s first law, and fed to the physics engine
as external forces acting on the corresponding nodes.
The physical simulation then computes the state of the
mass–spring system in the next time interval, and up-
dates the position of the mesh nodes. Since puppets
are used in live production the system must be tuned
for output at TV signal frame rates.

Figure 3 shows the result of opening the dataglove
on the face of a computer generated puppet. The ac-
companying video shows a real time recording of the
computer output while operating the puppet.

Figure 3: Elastic simulation propagates the movement
of the dataglove to the mouth of the puppet

7 Conclusions and future work
We have presented a system for the simulation of hand
puppets made of latex. The system is capable of
running the simulation in real time on low cost ma-
chines, allowing a puppeteer to interactively ”operate”
the puppet, and allowing real time output feeding in
a chroma key device, and consequently the mixing of
the simulated puppet with a live television signal.

The system couples a data hand glove to applica-
tion points of a three-dimensional mass-spring sys-
tem. When the finger sensors of the data glove are
moved, a force is applied to the corresponding points
of the mass-spring system, which in turn propagate
the movement to the rest of the nodes. The surface
of the puppet is attached to the mass-spring system,
and therefore is moved indirectly by the hand of the
puppeteer. The system is capable of computing in real
time (at 25 frames per second) the dynamic simula-
tion for a mass-spring system having more than 5000
mass points and around 14600 springs, and to display
the deformed surface of the puppet at the frame rate
mentioned above.

Since the resolution of the mass spring system is
much lower than the polygon resolution needed to dis-
play the detail needed for a broadcast quality puppet,
a method for the derivation of the mass-spring mesh
from the surface mesh of the puppet has been devel-
oped. This method computes first a simplification of
the surface mesh, reducing the number of polygons to
a predefined number. The centers of the resulting poly-
gons are glued to the surface mesh of the puppet and
constitute the first layer of the physical mass spring
mesh. From this reduced layer, a new method for the
generation of the internal layers of the mass spring sys-
tem has been developed.

Although the system works well in all tested cases,
the resulting mass spring mesh is not uniform. This be-
cause polygon simplification algorithms are optimized
for visual shape appearance, not for regularity. It is
known [29] that uniform tetrahedral meshes behave
well as mass-spring systems. Theoretically, this makes
the system prone to instability. However, even during
several long test session made by children, the mesh
topology did not generate unexpected behaviours. We
are currently working on mesh simplification algo-
rithms tuned for mesh regularity.

One of the challenging aspects of numerically solv-
ing partial differential equations is understanding how
parameters like time step or mesh configuration influ-
ence the stability of the solvers. Time step size adap-
tion helps greatly the stability of the system at the cost
of speed. It would be of benefit to study when and at
which costs step adaption can to be applied.

Acknowledgments
We are grateful to the ABS-CBN Foundation, Quezon City, Philip-
pines for allowing Jing Augusto to come to Weimar for the entire
project duration. Thanks also to the students that have been involved
in the project and implemented parts of the system: Uwe Hahne,
Bernhard Bittdorf, Benjamin Schmidt, Annekathrin Linge, Andreas
Emmerling, Andreas Kunze, Jonas Schild, Sebastian Knoedel and
Marc Pelao.

References
[1] K. Anjyo, Y. Usami, and T. Kurihara. A simple method

for extracting the natural beauty of hair. InProc. of
SIGGRAPH ’92, pages 111–120. ACM Press, 1992.

[2] Y. Bando, T. Nishita, and B. Chen. Animating hair with
loosely connected particles.Comp. Graphics Forum,
22(3):411–418, 2003.

[3] D. Baraff and A. Witkin. Large steps in cloth simula-
tion. In Proc. of SIGGRAPH ’98, pages 43–54. ACM
Press, 1998.

[4] J. Bell. Strings, Hands, Shadows: A Modern Puppet
History. Detroit Institute of Arts, Detroit, MI, 2000.

[5] M. Bern and P. Plassmann. Mesh generation. In J. Sack
and J. Urrutia, editors,Handbook of Computational
Geometry, chapter 6. Elsevier, 2000.

[6] D. Bielser, V. Maiwald, and M. Gross. Interactive cuts
through 3-dimensional soft tissue.Comput. Graph. Fo-
rum, 18(3):31–38, 1999.

[7] B. Bodenheimer, C. Rose, S. Rosenthal, and J. Pella.
The process of motion capture - dealing with the data.
In Proc. of the Int. Conf. on Computer Simulation
and Animation 97, Budapest, Hungary, pages 3–18.
Springer Verlag, Vienna, Austria, 1997.

[8] D. Bourguignon and M.-P. Cani. Controlling
anisotropy in mass-spring systems. InProc. of Com-
puter Animation and Simulation ’00, pages 113–123,
Wien, aug 2000. Springer.

[9] T. Brierton. At last, foam puppet fabrication explained!
Animation World Magazine, 1(2), 1998.

[10] T. Brierton. Stop-Motion Puppet Sculpting: A Manual
of Foam Injection, Build-Up and Finishing Techniques.
McFarland & Company, Jefferson, N.C., 2004.

[11] I. Bronstein, K. Semendjajew, G. Musiol, and
H. Mühlig. Taschenbuch der Mathematik. Verlag Harri
Deutsch, Frankfurt am Main, Thun, third edition, 1997.

[12] G. Cameron, A. Bustanoby, K. Cope, S. Greenberg,
C. Hayes, and O. Ozoux. Motion capture and CG char-
acter animation (panel). InProc. of SIGGRAPH‘97,
pages 442–445, 1997.

[13] P. Cignoni, C. Montani, and R. Scopigno. A compar-
ison of mesh simplification algorithms.Computers &
Graphics, 22(6):37–54, 1998.

[14] M. Desbrun, P. Schröder, and A. Barr. Interactive an-
imation of structured deformable objects. InProc. of
Graphics Interface ’99, pages 1–8, Kingston, ON, June
1999.

[15] C. Esposito, W. B. Paley, and J.-C. Ong. Of mice and
monkeys: A specialized input device for virtual body
animation. InSimposium of Interactive 3D Graphics,
pages 109–114, 213, Monterey, CA., 1995.

[16] F. Ganovelli, P. Cignoni, C. Montani, and R. Scopigno.
A multiresolution model for soft objects supporting in-
teractive cuts and lacerations.Computer Graphics Fo-
rum, 19(3), 2000.

[17] M. Garland and P. Heckbert. Surface simplification us-
ing quadric error metrics. InProc. of SIGGRAPH ’97,
pages 209–216. ACM Press, 1997.

[18] M. Garland and P. Heckbert. Simplifying surfaces with
color and texture using quadric error metrics. InProc.
of IEEE Visualization 98, pages 263–269, 1998.

[19] M. Gleicher. Retargeting motion to new characters. In
Proc. of SIGGRAPH 98, pages 33–42, 1998.

[20] M. Hauth. Visual Simulation of Deformable Models.
PhD thesis, Univ. of T̈ubingen, 2004.

[21] Y.-M. Kang and H.-G. Cho. Complex deformable ob-
jects in virtual reality. InVRST ’02: Proc. of the ACM
symposium on Virtual reality software and technology,
pages 49–56. ACM Press, 2002.

[22] U. G. Kühnapfel, H. K. Çakmak, and H. Maaß. En-
doscopic surgery training using virtual reality and de-
formable tissue simulation.Computers & Graphics,
24(5):671–682, 2000.

[23] J. Laszlo, M. van de Panne, and E. Fiume. Interac-
tive control for physically-based animation. InProc. of
SIGGRAPH 00, pages 201–208, 2000.

[24] X.-Y. Li, S.-H. Teng, and A.Üngör. Biting spheres
in 3d. In 8th Int. Meshing Roundtable, pages 85–95,
1999.

[25] X.-Y. Li, S.-H. Teng, and A.Üngör. Biting: advancing
front meets sphere packing.Int. Jour. for Numerical
Methods in Engg(2000), 2000.

[26] N. Magnenat-Thalmann, F. Cordier, M. Keckeisen,
S. Kimmerle, R. Klein, and J. Meseth. Simulation of
Clothes for Real-time Applications. InProc. of Euro-
graphics 2004, Tutorial 1, 2004.

[27] M. Meyer, G. Debunne, M. Desbrun, and A. Barr. In-
teractive animation of cloth-like objects in virtual real-
ity. Journ. of Visualisation and Comp. Anim., 2000.

[28] G. S. P. Miller. The motion dynamics of snakes and
worms. InProc. of SIGGRAPH ’88, pages 169–173.
ACM Press, 1988.

[29] N. Molino, R. Bridson, J. Teran, and R. Fedkiw. A
crystalline, red green strategy for meshing highly de-
formable objects with tetrahedra. InProc. of the 12th
Int. Meshing Roundtable, Santa Fe, NM, 2003.

[30] S. Oore, D. Terzopoulos, and G. Hinton. Local physi-
cal models for interactive character animation.Comp.
Graphics Forum, 21(3):1–17, Sept. 2002.

[31] F. I. Parke. A Parametric Model for Human Faces.
PhD thesis, Dept. of Computer Science, Univ. of Utah,
1974.

[32] R. E. Rosenblum, W. E. Carlson, and E. Tripp, III.
Simulating the structure and dynamics of human hair:
modelling, rendering and animation.Journ. of Visuali-
sation and Comp. Anim., 2(4):141–148, 1991.

[33] H.-J. Shin, J. Lee, S.-Y. Shin, and M. Gleicher. Com-
puter puppetry: An importance-based approach.ACM
Trans. on Graphics, 20(2):67–94, 2001.

[34] D. Terzopoulos and K. Fleischer. Modeling inelastic
deformation: viscolelasticity, plasticity, fracture. In
Proc. of SIGGRAPH ’88, pages 269–278. ACM Press,
1988.

[35] D. Terzopoulos, J. Platt, A. Barr, and K. Fleischer.
Elastically deformable models. InProc. of SIGGRAPH
’87, pages 205–214. ACM Press, 1987.

[36] D. Terzopoulos, J. Platt, and K. Fleischer. From goop
to glop: Heating and melting deformable models. In
Proc. of Graphics Interface ’89, pages 219–226, 1989.

[37] D. Terzopoulos and K. Waters. Analysis and synthesis
of facial image sequences using physical and anatom-
ical models.IEEE Trans. on Patt. Analysis and Mach.
Intelligence, PAMI-15(6):569–579, 1993.

[38] S. Vacchi, G. Civati, D. Marini, and A. Rizzi. Neo
euclide: A low-cost system for performance animation
and puppetry. InProc. of Gesture Workshop ’03, pages
361–368, Wien, 2003. Springer Verlag.

[39] L. Williams. Preformance-driven facial animation.
Proc. of SIGGRAPH ’90, 24(4):235–242, 1990.

[40] R. Yagel, D. Stredney, G. Wiet, P. Schmalbrock, L. B.
Rosenberg, D. Sessanna, and Y. Kurzion. Building a
virtual environment for endoscopic sinus surgery sim-
ulation.Computers & Graphics, 20(6):813–823, 1996.

