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ABSTRACT

Video-based rendering is a viable alternative to traditional realistic image synthesis techniques. It avoids the burden of time-
consuming modeling and expensive global illumination simulation. In this paper we propose a video-based synthesis and
animation system for fixed viewpoint scenes that feature rigid objects. We examplify this by using traffic video sequences. In a
first stage, we extract vehicles and their trajectories from the example footage using an intuitive semi-automatic segmentation
technique. Subsequently, the resulting vehicle “sprites” are dimensionally reduced using PCA in order to effectively extrapolate
trajectories from incomplete sequences. Background, occlusions and shadows cast by vehicles are extracted as well. We show
that convincing new footage can be synthesized readily from a single input video. Any number and variety of cars can be
inserted, and their trajectories can be edited to simulate such traffic scenarios as lane changes and traffic jams.

Keywords:
1 INTRODUCTION

Video-based rendering methodologies have proved
to be adept at synthesizing photo-realistic video
sequences from sparse real world data, e.g. Schodl et
al. [SSSEOQQ]. In the same spirit, we present a novel
technique to synthesize traffic scenes. Given an input
traffic video, we are able to reproduce a traffic scene
from the same viewpoint in which the configuration
and trajectories of the vehicles have been altered by a
user.

The main application of our technique is the valida-
tion and training of camera-based traffic analysis, e.g.
for accident, queue and presence detection [Tra]. These
systems cannot afford to have a high margin of error
and thus require a wide variety of initial test sequences.
Because these sequences are unique for each camera
placement, they usually have to be acquired by shut-
ting down highways and filming all desired scenarios
in situ. This is an expensive and time-intensive task. As
an alternative, one might synthesize video sequences
directly using traditional modeling and global illumi-
nation techniques [DBB03]. However, this is an over-
whelming task, both in terms of manual labor and com-
putational requirements. Moreover, one would need to
achieve a degree of realism that is hardly practical using
current modeling and rendering tools (e.g. to reproduce
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natural landscapes, weathered surfaces, etc...). Also,
it is unclear how imperfections of the camera system
would be simulated. By using recorded footage from
the targeted camera system, we achieve both goals im-
mediately. Aside from validation of camera-based traf-
fic detection systems, we believe that the techniques de-
veloped for this particular problem are general enough
to be applied to video-based sprite animation [SE02].

Akin to Debevec et al’s image based modeling
approach [DTM96], one might construct approximate
geometry for each vehicle of interest. However, this
will turn out to be a labor-intensive task, since this
process has to be carried out for each car separately.
Alternatively one might come up with a parameterized
model for vehicle geometry which can be fitted to the
image data [BV99]. It is unclear whether such a model
can be general enough to deal with the wide variety of
shapes found in real life.

The main challenge is to extract vehicle sprites from
the input footage and resynthesize them in a meaning-
ful and controllable fashion [SSSE00, SE02]. These
sprites are 2D images that represent an object of inter-
est that can afterwards be integrated at different loca-
tions in the input scene, or inserted into a novel scene.
We assume vehicle sprites travel along a straight path,
while Video Sprites [SE02] aims at reconstructing ar-
bitrary motions. This prior information is exploited in
our segmentation and easily allows for parameterizing a
vehicle’s trajectory and appearance. In contrast, Video
Sprites are a non-parametric representation based on
searching and copying the most suitable frame from the
input data. The parameterized representation facilitates
easy extrapolation of incomplete trajectories (e.g. when
the vehicle is not completely visible), and is friendly to-
ward storage.



In addition, we need to extract the background, which
we assume to be static, and deal with possible occlu-
sions along a vehicle’s trajectory (e.g. caused by a
bridge or lamp post). Schodl et al. [SSSE00, SE02]
record sprite images and accompanying shadows using
chroma keying. In our setting, this information cannot
be extracted under such controlled conditions.

Jojic et al.’s video sprite model [JFO1] copes with
inter-sprite occlusions efficiently. For our purposes this
is less of an issue, but static obstructions like lamp posts
have to be dealt with.

The outline of our system is presented in Figure 1.
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Figure 1: Outline of our traffic animation system.
Starting from an input video and some user assis-
tance, the analysis phase outputs a background,
an “occlusion map” and extracted vehicles with
associated trajectories. This data is used as in-
put for the synthesis phase, where the vehicles are
drawn onto the background to obtain a new ani-
mated video.

The rest of the paper is organized as follows. We
start by reviewing related work in the areas of traffic
detection techniques and video based animation sys-
tems. Section 2 gives an outline of our system. Section
3 presents our results and discusses practical issues. Fi-
nally, in section 4 we will present our conclusions and
suggestions for future work.

1.1 Related Work

Video-based representation, rendering and animation
techniques have received increasing interest in the
graphics and vision community in the past few years.
A recurring technique is rearranging frames in an
input video to create novel footage, either globally
on a per-frame basis [BCS97, SSSE00, AZP*05], or
locally on a per-sprite basis [SSSE00, SE00, SE02].

This approach allows for efficient animation of e.g.
natural phenomena or animals. Our approach differs
by not reordering frames but rather building a simple
parametric motion and appearance model for vehicle
sprites, similar in spirit to Fitzgibbon [Fit0O1]. Conse-
quently, less input is required and this representation
even facilitates extrapolation.

Layered video models [WA94, JFO1] automatically
extract layered sprites and moving parts from input
footage. In our particular problem the layers are fixed:
background, vehicle sprites and occluders (such as a
lamp post). Background and occluders are automat-
ically recovered, while a user assisted process is em-
ployed to extract the vehicles.

The flow-based video synthesis technique [BSHKO04]
analyzes the motion of textured particles in the input
video along user-specified flow lines, and synthesizes
video of arbitrary length by enforcing temporal conti-
nuity along a second set of user-specified flow lines.
The main difference between this approach and ours is
that we not only redraw input pixels, but also capture
and reuse the entire appearance of the objects in the in-
put video.

Auto-regressive stochastic processes [CV05, CV06]
model traffic flow from video. This method does not
require segmentation or tracking, but lacks the per-
vehicle control that our approach offers.

Segmentation and tracking of vehicles is a cen-
tral problem in traffic analysis [ZCSP03, CGPPOO,
CBMMO98, KMO03], which has to be fully automated.
We opted for a simple and robust semi-automatic
system, though in a more general settings, these
techniques could be used as well.

2 SYSTEM OVERVIEW

Our system consists of an analysis stage and a synthesis
stage, which will be detailed in the following sections.

2.1 The Analysis Stage

The analysis stage extracts a background image, an oc-
clusion map and vehicle sprites together with their tra-
jectories.

Background We obtain an appropriate background as
the per-pixel median intensity along the time dimension
[GASK95]. This simple technique works very well on
our video sequences, which have virtually static back-
grounds. This rendered the implementation and testing
of other, more complicated, techniques (e.g. [SG99])
unnecessary for us. An example of a calculated back-
ground image is shown on the left side of Figure 3.

Occlusion Map The occlusion map indicates which
pixels remain unchanged during the entire length of the
input video. Those pixels that fluctuate significantly
w.r.t. some threshold 7' can be considered “possibly
foreground”, here the background should always be
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drawn behind the sprites. A static pixel will either be
an occluder (for example the bridge in Figures 2 and
3) or just background, and should be drawn on top of
the sprite layer. We empirically estimated 7 to an in-
tensity value of 0.012 in our experiments. If necessary,
the occlusion map can be edited easily with any image
editing tool to clean any impurities. We have made use
of this feature to correct a very small number of pixels
that slipped through the threshold. See Figure 3 for an
example occlusion map.

Figure 3: Left: extracted background image from
an input video. Right: occlusion map. Static pixels
(occluder or background) are black and fluctuating
pixels (possibly foreground) are white.

Segmentation  Extracting a vehicle from the input
video is a semi-automatic process, which starts with a
small amount of user interaction. The user takes three
frames in which a particular vehicle can be seen at dif-
ferent positions: one frame where the vehicle has ini-
tiated its trajectory, one where it is approximately half
way, and one near the end. The user indicates a win-
dow around the vehicle in each of these three frames.
The content of this window captures all relevant infor-
mation about the vehicle: its appearance and surround-
ing illumination effects (i.e. shadows). This window
does not need to be drawn very precisely, it is only nec-
essary that the vehicle and illumination effects are in-
cluded and that no other vehicles or parts of other ve-
hicles appear inside the window. The position of the
window also defines where the vehicle is located at a
known instance in time (fig 2).

Vehicle Sprite Appearance Model In this section we
detail the vehicle appearance model, which is based on
the user masks and pixel intensities in the window.
Assuming that the vehicle moves at a near constant
speed and travels along a fairly straight line, we can
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Figure 2: Windows drawn around a particular vehicle by the user, with on the right a calculated trajectory

interpolate the windows for the intermediate frames
in time () by fitting the following simple parametric
function to each of their corner positions x:

*(r) = (axt)+b
t+c
Thus, we can model the vehicle’s trajectory with a sim-
ple function that takes into account perspective projec-
tion.
In the next step, the user draws a mask for the vehicle
in the three initially indicated windows (see Figure 4).

Figure 4: Left: user drawn mask. Middle: vehicle
for which the mask is drawn. Right: result of the
mask operation.

In a more general setting, this manual intervention
may be replaced with an automatic technique.

In order to obtain the masks for intermediate frames,
we convert the masks to polygonal shapes and interpo-
late them. However, the number of vertices for different
masks is not guaranteed to be the same. Inspired by the
morphing algorithm of Kent et al. [KCP92], we solve
this problem as follows. Let A, B and C be the 3 user
defined mask polygons. Polygon A is placed on B and
we project and add each of A’s vertices to B. This step
is repeated from A to C, B to A, etc... We are able to
reconstruct the mask for each frame simply by raster-
izing the corresponding interpolated polygon. In addi-
tion, we soften the edges of the binary masks using con-
volution to avoid possible seams between vehicle and
background. The results of this simple matting tech-
nique, are qualitatively the same for our input videos
as results that can be achieved by using more advanced
matting techniques [CCSS01, SITS04].

The vehicle’s appearance inside the mask mainly
evolves due to a small relative rotation w.r.t. the camera
and environmental illumination (e.g. from street



Figure 5: Left: source polygon placed on target
polygon. Middle: extra interpolation step. Right:
inverse direction extra interpolation step.

lights). In addition to pixels belonging to the vehicle
itself, shadow information is extracted by dividing
the window content by the background. This yields
a background-invariant multiplicative “shadow map”,
as seen in Figure 6. Naively storing full windows is
dependent on the background, and might corrupt the
appearance when altering the location of a vehicle. We
therefore also blur out all detail surrounding the mask
in the vehicle sprite (not done for the shadow map).

P

Figure 6: Shadow map computation (right image is
contrast enhanced).

Given the full appearance of a vehicle at each frame,
we reduce it using PCA. Before we do this, we need to
scale our masks, sprites and shadow maps to a common
size, for which we take the maximum window size of
the indicated windows. Then, the polygon vertices rel-
ative to the midpoint, the sprites’ pixel intensities and
the shadow map intensities are each concatenated into
a long vector with dimensionality V. Usually V is quite
large (e.g. 10%) while the number of frames N is small
(e.g. 100), yielding a V x N matrix D that features an
impractically large covariance matrix. We follow Ma-
tusik’s variant on PCA [Mat03] to circumvent this prob-
lem. More precisely, we perform an eigenvalue decom-
position of the N x N dimensional covariance matrix of
the zero mean Dy. The obtained eigenvectors (eivec)
are sorted by ascending eigenvalues (eival), while the
vectors with very low eigenvalues are thresholded. Fi-
nally, our PCA representation of the appearance of the
vehicles consists of:

. . . . |
e transformation matrix: T = Dy X eivec X (eival ™)
e PCA coefficients matrix: X =T x Dy

e mean image of the frames: u

The eigenvectors corresponding with the highest
eigenvalues contain the coarse details, while subse-
quent values express the finer details. Reconstruction

quality can be traded off against the level of com-
pression by discarding eigenvectors that have a small
eigenvalue associated with it. We found that the 20 (out
of 10° in total) largest eigenvalues and accompanying
eigenvectors are sufficient to reconstruct a sprite’s
appearance.

Usually, we cannot capture a vehicle’s full trajectory
on the screen, because the sprite is cropped at the edge
of the screen near the beginning and end, or possibly
occluded. The inclusion of these sprites in the input
data will result in a somewhat distorted PCA result.
Therefore, we don’t take these frames into account,
but solve this problem by extrapolating the PCA coeffi-
cients that parameterize the vehicle’s appearance, using
autoregression [Fit01, NS04]. These “fitted” PCA co-
efficients will be used in the synthesis step to complete
the trajectory of the vehicles at points in time where the
vehicle was not segmented.

A comparison of our extrapolation technique with
ground truth is shown in Figure 7. From this we can
conclude that the shape of the vehicle is approximated
fairly well, while interlacing artefacts are partly
smoothed out by the PCA algorithm.

Figure 7: Left: extrapolated vehicle at the end of
its trajectory. Right: Ground truth.

2.2 The Synthesis Stage

The synthesis step is relatively straightforward. We ini-
tialize the frame buffer with the background image. For
each vehicle and a given frame we need to perform the
following steps, of which only number 1 needs a more
in-depth explanation.

1. Compute the vehicle’s appearance.

2. Scale the vehicle to its original window size

3. Paste the vehicle onto the frame buffer

4. Multiply the frame buffer with the shadow map.

The sprites are rendered in back to front order to
correctly resolve inter-vehicle occlusion.

Step 1 consists of rebuilding the appearance of the ve-
hicle out of the PCA representation. We start off with
the mean image U, and iteratively add more detail. We
do this by reshaping the next-in-line eigenvector from
the transformation matrix T to an eigenimage, multi-
plying it with its associated PCA coefficient and adding



the result to the mean image. Figure 8 shows some ex-
amples of intermediate results of this iterative process.
We have empirically fixed the number of used PCA lev-
els to 20.
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F|gure 8: lterative reconstruction from PCA data:
the first image shows the mean appearance of the
vehicle without extra detail added to it. The next
images show the mean image with respectively 2,
10 and 20 PCA levels added. It is clearly visible
that the first PCA levels contain the most important
information, while the lower levels add only little
detail.

3 RESULTS AND DISCUSSION

We extracted five different vehicles from a short input
video and out of this data synthesized four videos that
display different animated traffic situations:

e normal traffic
e atraffic jam

e a vehicle that suddenly stops while the rest of the
traffic continues on the other lanes

e a vehicle that drives backwards while the rest of the
traffic drives normally on the other lanes

The extracted vehicles that were used for the rendering
of these new videos are shown in Figure 9.

Figure 9: Extracted vehicles, scaled to the same
height for presentation purposes.

The amount of user-interaction involved in the cre-
ation of these results is fairly low. In the analysis stage,
three rectangles have to be drawn around each vehicle,
which typically takes a few seconds. The most time-
consuming step is drawing a mask for each rectangle.
This task may require a couple of minutes per mask for
an unexperienced user. Note that these steps need to be
performed only once per segmented vehicle.

Due to memory restrictions in MATLAB we were un-
able to simultaneously load more than five vehicles into
memory. As a quick workaround for this problem, we
resorted to using the same vehicles more than once in
our synthesis progress. Another option, in a commer-
cial context, would be to introduce a database where

the vehicles could be stored and queried in their com-
pact representation.

Our synthesized videos suffer from such artefacts as
interlacing and motion blur. These artefacts are already
present in the input video (as can be seen in Figure 9),
so it is only logical that they also occur in our output
videos. As our algorithm was developed for detection
systems, this actually becomes a major advantage. Syn-
thesized videos that look too polished provide an unre-
alistic training test for these systems that does not cor-
respond with the real world conditions.

In the accompanying videoclips (available on the
CD-ROM), we can clearly see that thanks to our
occlusion map, all occlusions are handled correctly.
The videos show vehicles departing from underneath
a bridge, where they are correctly hidden from view
thanks to the occlusion map. In frames where the vehi-
cles are only partially visible, we apply extrapolation
of the PCA components to obtain an approximation
of the entire vehicle. The shape and appearance of
remote vehicles are accurately estimated using our
autoregression algorithm as their orientation barely
changes. Closer to the camera however, the orientation
of the vehicles can vary rapidly w.r.t. the camera.
Autoregression has a hard time estimating changes
before they occur because its prediction is based on
previous frames. This may cause a slightly thicker
edge around the vehicle. This problem however only
occurs on a few synthesized vehicles and is visible in
just a small area in a few frames, rendering its impact
on traffic detection systems negligible.

7

Figure 10: An edge that might appear around a ve-
hicle when its orientation suddenly changes.

The trajectories of the vehicles in the synthesized
videos are restricted to their original trajectories in the
input video. This is because the camera has a different
perspective view on each lane. If a vehicle is synthe-
sized on a different lane than the one it originally occu-
pied, it will be perceived to be sliding on the road sur-
face instead of driving down the road. However, slight
deviations are allowed.

The effectiveness of our shadow maps in synthesizing
the illumination effects around the vehicles is illustrated
in Figure 11.
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Left:
shadow map. Right: synthesized vehicle without
using a shadow map.

Figure 11: synthesized vehicle using a

4 CONCLUSION AND FUTURE
WORK

In this paper, we presented a novel video based method
for rendering and animating rigid objects in fixed view-
point video scenes. Our method was examplified by us-
ing traffic video sequences. A parameterized sprite ap-
pearance model is central in our approach. It describes
how the sprite evolves in shape and pixel intensity, and
also allows for interpolation, extrapolation and compact
storage. Using this information, we can synthesize new
videos that feature these sprites, in such a way that the
videos exhibit animated traffic situations.

We would like to explore approximate geometric rep-
resentations to more rigorously represent the relative
rotation of the vehicles. Furthermore we believe that
variable weather conditions and intricate illumination
effects like vehicle headlights can be a valuable addi-
tion to our framework.

New trajectories for vehicles could be synthesized if
control over the input of the videos is available. A ve-
hicle filmed driving on several different lanes may then
be interpolated horizontally afterwards.

Further research is also needed for solving the thick
edges that sometimes appear around vehicles near the
end of their trajectories. Different prediction and esti-
mation techniques may need to be investigated for this.
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