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ABSTRACT

Outdoor scenes require vegetation to make them look realistic. Current hardware cannot afford real-time rendering of these
scenes because of the large number of polygons. Multiresolution modelling has been successfully presented as a solution to the
problem of efficient manipulation of highly detailed polygonal surfaces. This article describes a new continuous multiresolution
hardware-oriented model that can represent tree foliage with different levels of detail. The multiresolution model presented in
this paper,Level of Detail Foliage, takes advantage of the programmable rendering pipelines nowadays available in most video
cards. The geometry of the foliage is divided into a number of clusters, in some of which the detail can change while the rest
of the clusters remain unaltered. This division of the foliage remarkably diminishes the number of vertices sent to the graphics
system because only the information of the changed clusters are updated. The independent clusters condition a data structure
that makes the time required for visualisation of the foliage more efficient. Here we present the data structure and the retrieval
algorithms, which favour the extraction of an appropriate level of detail for rendering.

Keywords: Tree visualisation, interactive visualisation, multiresolution modelling, level of detail, hardware-oriented data
design, clustering.

1 INTRODUCTION

Many of the interactive applications currently available
such as flight simulators, virtual reality environments
or computer games take place in outdoor scenes. In
these environments, the vegetation is one of the essen-
tial components. The lack of trees and plants can de-
tract from their realism. Nowadays, research on rep-
resentation of plants has made possible to obtain very
realistic models formed by a vast amount of polygons
(Figure 1). This is a drawback for obtaining real-time
visualisation.

Several methods have appeared up to now to solve
this problem. They can be classified in two main
groups: image and geometry based rendering. The
geometry-based approach do not lose realism even
when the camera is extremely near the object. Besides,
this approach makes it possible to take advantage of
the current graphics hardware, obtaining shadows or
different ilumination effects. Other advantage is that
geometry can be stored either in the main memory
or directly in the graphics hardware, producing great
acceleration in rendering.

Some techniques have been used in order to achieve
interactive visualisation of very detailed objects. Mul-
tiresolution modeling has proved to be a good method
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Figure 1: Tree generated with the Xfrog commercial
tool [22].

as it adapts the geometric detail of these objects to the
capacity of present-day graphics systems. These mod-
els typically work with general meshes. Nevertheless,
Remolar et al. [16] presented in their work a multireso-
lution method especially designed to deal with the iso-
lated polygons that form the foliage. (Figure 2).

In this article, it is presented an efficient implementa-
tion of this multiresolution model, calledLevel of Detail
Foliage LoDF. Its data structure has been designed as
hardware-oriented in order to obtain a fast visualisation
of the data. Besides, LoDF allows us to change the uni-
form level of detail in a continuous way. The basic idea
of LoDF is to group the leaves in a number of indepen-
dent clusters. This division makes it possible to exploit
the capabilities of the latest hardware. All the geomet-
ric data is initially stored in the graphics card. In every
change of level of detail, only the information about
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Figure 2: Detail of the foliage in a tree.

the clusters affected is updated and sent to the graphics
system. The rest of clusters remain unchanged. This
considerably reduces the traffic of data through the PCI
bus and accelerates the visualisation process.

The article presents the following structure. Section
2 offers a brief review of the most important works in
the visualisation models that have appeared up to now.
In section 3 LoDF is analysed in depth, detailing the
data structures it uses to store the information and the
algorithms required to access these structures in order
to retrieve that information in the most efficient manner.
The visualisation process is proposed in section 4. Sec-
tion 5 compares the results obtained with LoDF against
the obtained using the modelView-Dependent Foliage
VDF presented by Remolar et al. [16]. Lastly, section
6 presents the conclusions and our future lines of work
are outlined.

2 RELATED WORK

Research into real time visualisation of detailed plants
is aimed at adapting the number of polygons used to
represent the plants to the requirements of graphics
hardware. As it has been previously said, these works
can be grouped into two broad directions, depending on
the method used to represent them. These can be works
that use images or works that use geometry to represent
the plants.

Image-based rendering is one of the most popular
methods to represent trees because of its simplicity. Im-
postors [8] are the most common example of this ap-
proach. All the geometry that forms the tree model is
previously rendered so as to obtain an image of it. This
image is textured on a polygon using transparencies for
correct immersion in the scene by replacing the geo-
metric object. This way of representing vegetation has
many problems, like the lack of parallax or the invari-
ability of the rendered image when the camera changes
its position. Some authors, such as Shade et al. [17],
Marshall et al. [9] and House et al. [5], divide the scene
into zones depending on the distance from the object to
the viewer. Objects far away from the camera are repre-

sented by an image and objects near the viewer are de-
picted by geometry. Max [10] and Shade et al. [18] add
depth information to the precalculated images. Other
authors obtain 2D images from volumetric textures and
combine them depending on the position of the cam-
era. Meyer et al. [11] and Decaudin et al. [1] focused
their work on forest visualisation, while Jakulin [6] and
Reche et al. [13] were more interested in the representa-
tion of a single tree. Garcia et al. [3] solve the parallax
problem using textures that group sets of leaves. One of
most important commercial applications that uses this
method to visualise trees is SpeedTree [19], which uses
billboards, that is, impostors that are always oriented
towards the viewer.

Regarding geometry-based rendering, the number of
polygons that form the tree objects makes it necessary
to use certain techniques to obtain interactive visual-
isation. Most of the works published to date change
the display primitive using points or lines. Reeves and
Blau [14] use particle systems to render trees in a for-
est, representing them with little circles and segments of
straight lines. Weber and Penn [21] introduce level of
detail techniques. In their work, leaves are represented
with points while branches and limbs are represented
with lines. The number of primitives that are displayed
can be adapted depending on the size of the tree in the
final image. Stamminger et al. [20] use points to rep-
resent trees in their work, changing the point density in
real time depending on the relevance of the tree in the
scene. Deussen et al. [2] and Gilet et al. [4] combine
point and line representation with geometric represen-
tation. Their basic idea is to keep constant the number
of vertices used to represent the forest. Trees near the
camera are represented by geometry and trees situated
far away from it are shown by points and lines.

In recent years, several works based on multiresolu-
tion models have appeared. Meyer et al. [12] and Lluch
et al. [7] use a representation based on multiresolution
models of images while Remolar et al. [16] deals with
the geometry of the trunk and the foliage separately.
They present a multirresolution model that adapts the
number of leaves that form the tree in real time.

3 MULTIRESOLUTION MODEL
In general, a multiresolution model representation
is constructed from two main elements: the original
geometry of the objectF0, and the different approxima-
tions given by a simplification method,F1,F2, ...,Fn−1.
The multiresolution scheme presented in this article is
based on the Foliage Simplification Algorithm (FSA)
[15]. The simplification operation of this method is
leaf collapse: two leaves are collapsed into a new one.

LoDF uses two operations in order to increase or de-
crease detail in the approximation:leaf split and leaf
collapse(Figure 3). The leaf-collapse operation dimin-
ishes the detail of the current approximation because it
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Figure 3: Example of leaf collapse and split operations.

Figure 4: Example of data organisation in a F r repre-
sentation.

eliminates two leaves and adds a new one. In the ex-
ample, leaveslold1 andlold2 will be eliminated andlnew

added to the new approximation. However, the leaf-
split operation adds detail to the representation being
visualised. It eliminates one leaflnew from the current
approximation and adds the two leaves that were previ-
ously simplified,lold1 andlold2.

Collapse(lold1, lold2) = lnew (1)

Split(lnew) = (lold1, lold2) (2)

The sequence of leaf-collapse operations obtained
from FSA is processed to build the new multiresolu-
tion representationF r . Each simplification operation
creates one new leaf, numbered sequentially. In the
case of a foliage with 9 leaves, labelled froml0 to l8,
the first collapse operation creates the leafl9, the next
simplification operation the leafl10, etc. One exam-
ple of this data organisation is shown in Figure 4. The
data are organised as a forest of binary trees, where the
root-nodes are the leaves that formFn−1, the coarsest
approximation, and the leaf-nodes are the leaves of the
original tree model,F0. In this example,F0 is formed
by 9 leaves, andFn−1 by 3 leaves.

In the least detailed levelFn−1, several leaves fromF0

are represented by an only leaf. All of the leaves that
form a binary tree in the data organisation are grouped
in clusters in LoDF. In that way, foliage can be divided
into independent groups. These clusters determine the
data structure used in our model. Following the data

Figure 5: Organisation of Groups in F r .

Figure 6: Information obtained in the preprocess.
Every leaf and every collapse information is classified
in one group.

structure shown in Figure 4, the groups that form this
example are shown in Figure 5.

3.1 Obtaining the data structure
First of all, it is necessary to determine the number
of independent clusters that form the foliage. In this
way, the information obtained from the simplification
process FSA has to be processed. This simplification
method provides the sequence of leaf-collapse opera-
tions to obtainFn−1 from the original modelF0. In or-
der to build the multiresolution model, this sequence is
processed in a previous process to obtain the number of
the group every collapse concerns. It allows us to deter-
mine the number of final clusters in the foliage. When
processing this information, every leaf in the foliage is
assigned to one of the clusters. Regarding the example
of Figure 4, the obtained data are shown in Figure 6.

Finally, this information is used to build the multires-
olution data structureF r .

3.2 Data Structure
All the leaves that form the foliage (not only the orig-
inal ones but also those obtained in the simplification
process) are stored inF r . They are organised as an array
of clusters, where all the leaves that form each group
are stored together with some information enabling a
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Figure 7: Example of data stored in the array of clus-
ters that form F r .

correct visualisation. In each cluster, leaves are stored
traversing the binary tree by levels of depth. In Figure
7 is shown the data organization for the example of the
Figure 6.

For every leaf in this array, it is stored the index of
the leaf, the index of the vertices that form it and the
position of the next leaf in the group to be visualised.

In addition, every cluster stores some information
needed to obtain the appropriate sequence of leaves to
be visualised in the required approximation:

Active_leaves.Stores the number of leaves to be visu-
alised in the current level of detail.

Init_group. This information is used to store the posi-
tion in the array of the first leaf to be visualised in
the current approximation.

Changes_number.It contains the number of leaf col-
lapse or split operations that have to be processed in
the group to obtain the new level of detail required.

Data stored in Figure 7 are the ones of the original
foliage F0. All the clusters have as theinit_group the
0 position. Active_leavesstores the number of leaves
to visualise in each group, in this case, 3 leaves in the
0 group, and 4 and 2 for the next ones. In the exam-
ple, the shaded fields represent the leaves in the cur-
rent approximation. No changes has to be processed,
sochanges_numberis initialized to 0.

Finally, it is necessary to store the sequence of leaf
collapses obtained by the FSA. As a consequence of
the data organization, only the number of the cluster
where the simplification happens is necessary. So, fol-
lowing the example of the data structure of the Figure
4, it is stored the data shown in Figure 8. The field
init_position indicates the position of the last leaf col-
lapse operation performed. Initially, it is situated in the
0 position of the array.

This information allows us to change the detail of the
approximation visualized in real-time.

Figure 8: Changed_group structure. Information
stored in order to achive an appropriate data retrieval.

Storage Cost Let F r be an arbitrary LoDF representa-
tion; this stores the basic elements that compose a tree,
that is to say, its vertices and polygons. Let|Vr | and|Lr |
be the number of vertices and leaves stored inF r , and
V andL be the initial numbers of vertices and leaves
that composed the crown of the tree. Note that in our
multiresolution model:

|Vr |= V (3)

since the simplification algorithm LoDF is based
on, FSA, does not add new vertices when performing
the leaf-collapse operation. Regarding the number of
leaves, letL be the initial number of leaves,

L =
V
4

(4)

since each leaf is formed by 4 vertices independent of
the ones forming the other leaves. In every leaf-collapse
operation, two leaves disappear and a new one is in-
cluded. In the worst case, when the maximum number
of leaf-collapse operations are carried out,L− 1 new
leaves are added to the initialL.

|Lr |= L+(L−1) = 2L−1. (5)

Let G the number of groups in the model. This num-
ber is conditioned by the number of leaves in the coars-
est approximationFn−1. In the worst case, when the
model processes the maximum number of leaf collapse,
Fn−1 will be formed by a single leaf, that is to say, one
group.

G = 1 (6)

Let us suppose that the storage cost of an integer, real
number or pointer is one word. The current implemen-
tation is not optimised for space, so each leaf would
therefore have a cost of 6 words and each vertex 3. In
this case, the main data structure of the model has a cost
of:

3|Vr |+6|Lr |+3G≈ 3|Vr |+6|Lr | (7)

The number of leaf collapses conditions the size of
theChanged_groupstructure. As said above, if we add
L−1 new leaves, then this will be the number of leaf-
collapse operations processed in our model. So, the size
of Changed_groupis L− 1, i.e., L. Finally, the data
structure cost is:

3|Vr |+6|Lr |+L (8)
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Summarising, applying the equations 4 y 5, we can
say that the storage cost of LoDF is O(V).

3V +13V/4≈ 6,25V (9)

3.3 Retrieval Algorithms
The geometric data of the original modelF0 are initially
stored in the graphics card.The application where the
multiresolution representation of the foliage is used de-
termines a level of detail depending on the relevance of
the tree in the final image. The number of leaves that
form the approximation can be changed in real time,
adapting it to the requirements of the application. Once
this number has been determined, two cases can hap-
pen:

• If the current number of leaves is greater than the
determined by the application, some leaf collapse
operations have to be performed. Considering that
every collapse operation eliminates two leaves and
adds a new one, it will be performed as many sim-
plification operations as the number of leaves that
have to be reduced in the new approximation.

• If the current number of leaves is less than the deter-
mined by the application, some leaf split operations
have to be performed. Then, it will performed as
many leaf split operations as the number of leaves
have to be increased in the level of detail.

The sequence of simplification operations, as it is
said in the previous section, is determined by the groups
where each collapse happens (Figure 8). The level of
detail of the current approximation can be changed tra-
versing this information. Each time one simplification
operation has to be performed in one cluster, it is in-
creased its fieldchanges_numberin one.

Once this process is finished, all the clusters whose
stored fieldchanges_numberis other than 0, has to be
updated. In every affected group, some process has to
be carried out.

Reducing detail. Each collapse operation will be as
follows:

• init_groupwill be updated with the new position
of the first leaf to be visualised,

init_group+2×changes_number (10)

because in each leaf collapse two leaves disap-
pear.

• the active_leaveswill be updated with the new
number of leaves to be visualised. The new value
will be

active_leaves−changes_number (11)

Figure 9: Data information after processing three leaf-
collapse operations from F0.

Increasing detail. For each split operation, the algo-
rithm will involve the inverse process, that is to say:

• regarding the fieldinit_group,

init_group−2×changes_number (12)

• and every split operation involves increasing the
number of leaves to be visualised by one, so the
field active_leaves

active_leaves+changes_number (13)

Let follow the example of data shown in Figure 4
and the sequence of simplification operation shown in
Figure 8. In the case of performing three leaf-collapse
operations from the data organisation of Figure 7, ac-
cording to the stored information, these would affect
groups 0 and 1. New data structure will be as the one
shown in Figure 9. The leaves to visualise in the cur-
rent approximation are the shaded ones. Besides, the
new value stored ininit_positionof theChanged_group
data structure would be 3. The last process, once the af-
fected groups have been updated, is to reset to 0 the
changes_numberfield into all the groups.

4 VISUALISATION PROCESS
Every simplification operation only affects one group.
This characteristic allows us to send only information
about the group affected to the graphics card, instead of
sending all the geometry of the foliage. Once the cluster
affected is updated, the new leaves to be visualised will
be the only information that will pass to the hardware.
The rest of the groups will remain in the graphics card
without modifications, that is to say, just as they were
before the change. Thus, we will be updating the in-
formation in the card group by group. The model also
offers the possibility of doing more than one simplifi-
cation operation at a time and only those groups where
some change has taken place will be sent to the hard-
ware. This process reduces the visualisation time of a
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tree considerably if we compare it with other methods
that do not take advantage of the coherence property of
the graphics card.

5 RESULTS
The method developed here was implemented with
OpenGL on a PC with Windows XP operating system.
The computer was a dual Pentium Xeon at 1.8GHz.
with an NVIDIA GeForce 6800 Series GPU. The
trees used in our study were modeled by the Xfrog
application [22]. Results are shown in Figures 10 and
11.

In the experiments, the level of detail varies between
0 and 1, 0 being the most detailed approximation and
1 the least. In the figures it is shown how the number
of leaves changes for each level of detail. The tests we
carried out consist in traversing all levels of detail with a
uniformstep. This step represents the number of leaves
that will appear or disappear in every approximation. It
is proportional to the difference in the number of leaves
betweenF0 andFn−1.

Results obtained using LoDF are compared with the
ones obtained using VDF. Besides how the number of
leaves changes, two graphs are offered in every figure,
showing the results:

Total time. Time that the models spends on extracting
and also visualising each level of detail.

Extraction time. Time that the models use to extract
the necessary geometry to change from the most de-
tailed approximation to the coarsest one.

In the figures it is easily seen how the presented
model remarkably improves the results obtained with
the VDF model. The hardware-oriented design of the
structure accelerates the time employed in visualising
a level of detail from a 63% in the case of theBetula
lenta to a 88%, and in the case of theTaxus baccata.
The extraction time is also reduced. It also depends on
the number of leaves that form the foliage. The more
leaves the foliage has the higher percentage of saving
visualisation and extraction time it has. In the case of
theBetula lentathis time is reduced in a 42% and in the
case of theTaxus baccata, in 70%.

In Figure 12, some different levels of detail of the tree
Carya ovata are shown. They vary in a uniform way
from 114.114 to 28.528 leaves. Besides, the different
approximations are composed following the distance to
the viewer criterion. It can be observed how the repre-
sentations maintain a high similarity with the original
tree.

6 CONCLUSION AND FUTURE
WORK

In this article we have presented a new multiresolution
model that exploits the characteristics of current graph-

ics hardware. This model,Level of Detail Foliageal-
lows us to change the level of detail of a foliage rep-
resentation in a continuous way. Its main advantage
is that it tries to reduce the traffic of data through the
AGP/PCIe bus diminishing the information that is sent
to it when a change of level of detail is produced. This
is obtained by grouping leaves in independent clusters
and only modifying a small set of data.

This model allows us to represent forest scenes in in-
teractive applications by instancig trees. It produces
better results than current models based on images or
points. Using geometry to visualise foliage makes it
possible to render every detail of the tree. Another ad-
vantage of the geometry is that this can be adapted to
the characteristics of the graphics hardware.

Another line of research we are currently working on
is to obtain advanced ilumination effects and animation
of the foliage. We are working on taking advantage of
graphics hardware programming.
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Figure 10: Results obtained for the tree Betula lenta.
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Figure 11: Results obtained for the tree Taxus baccata.
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