
Hierarchical topological structure for the design of a
discrete modeling tool

Dexet M., Andres E.
SIC, Université de Poitiers

bât. SP2MI, Bvd Marie et Pierre Curie, BP 30179
86962 Futuroscope Chasseneuil Cedex, France

{dexet,andres}@sic.univ-poitiers.fr

ABSTRACT

In this paper, we present the design of a topological based geometrical modeler kernel. With this modeler, our
goal is to create, import and handle geometrical objects represented both in a rasterized and a polygonal form. The
aim is to provide a tool that mixes in a unified framework acquired discrete information (photos, MRI, ...) and
synthetic continuous information (modeled objects). We propose the use of a multi-level hierarchical structure
in which consecutive levels are linked. Each level of this structure corresponds to a particular representation of
a same object. The lowest level is the raster representation and the highest level is the polygonal one. The way
consecutive levels are computed, as well as the links between them are presented. Finally, we discuss the way the
structure is updated using existing links in case of a modification applied on one level.

Keywords
Discrete geometry, geometrical and topological modeling, hierarchical structure, rasterization, polygonalisation.

1. INTRODUCTION
2D and 3D digital images are composed of discrete el-
ements called pixels and voxels. Digital images can be
generated, acquired (MRI, photos, . . .) or can be the
result of a rasterization (or discretization) process ap-
plied on a polygonal object (according to a discretiza-
tion model). This data can be treated and manipulated
using tools provided by Discrete geometry. One of the
main problems we face when handling discrete infor-
mation is that geometrical laws can be different in the
discrete and in the continuous (Euclidean) world. For
instance, some operations like rotations are simple in
the Euclidean world while they present real difficulties
in the discrete one. On the contrary, intersection of two
objects is a simple operation in the discrete world and
more difficult to perform in the Euclidean one. Hav-
ing a discrete and a continuous representation of a same

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

FULL Papers conference proceedings ISBN 80-86943-03-8
WSCG’2006, January 30-February 3, 2006
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

object can therefore have some interest. So far most ex-
isting modeling systems handle either vectorial based
or raster information. Digital images can then be vec-
torized (using for instance ’Marching cubes’ [LC87])
and polygonal objects can be rasterized, but no modeler
proposes, to the best authors knowledge, to maintain
both a polygonal and a raster representation of an ob-
ject inside a same data structure. With this in mind, we
present here a topology based modeling software that
allows you to create, import or manipulate geometric
objects in a continuous as well as in a discrete repre-
sentation form. The particularity of this software is
that discrete and continuous representations of a same
object coexist inside a single hierarchical structure. It
is thus possible, according to a given operation, to
choose the most adapted representation. In a first ap-
proach [ABL01], objects where represented inside the
modeling software with four different representations:
continuous, discrete analytical, discrete contours and
discrete. The discrete representations were all built
based on the continuous one. Only the continuous rep-
resentation could be modified and in this case, the other
ones had to be entirely reevaluated. We now propose
a new four level hierarchical structure. Each level cor-
responds to one of the previous representation forms.
With this structure, each representation can be modi-
fied and all the others can be updated accordingly using
reconstruction or discretization methods. The differ-
ent consecutive levels in the hierarchical structure are

linked. These links allow to manipulate and propagate
modifications locally. Updating the whole structure is
thus not systematically needed. Of course such an ar-
chitecture comes with a prize. The complexity of the
hierarchical structure is much more complex than clas-
sical topology based modeling or imaging softwares.
Indeed, we introduce an architecture that aims at keep-
ing a topological and a geometrical coherence between
multiple representation forms. Finally, our structure is
designed in any dimension and our modeler is based
on a 3D topological structure (it is constructed as an
extension of a 3D topology based Euclidean modeler).
In the following, we briefly recall the definitions and
properties of the topological and discrete analytical
model that forms the basis of our structure. We also
present the discrete analytical recognition and recon-
struction processes.

Recalls on generalized maps
A topological model is used to explicitly specify adja-
cency and inclusion relationships between the different
cells (vertices, edges, faces and volumes for dimen-
sions 0, 1, 2 and 3) of a geometrical object. Informa-
tion, called embeddings, such as geometrical ones (for
instance vertex coordinates) can be added to the model.
The kernel of our modeler is based on generalized
maps [Lie94] which is a combinatorial model that al-
lows the representation of cellular quasi-manifolds, ori-
entable and non-orientable, with or without boundaries.
A generalized map is a set of abstract elements, called
darts, and applications on these darts. The definition
of an n-dimensional generalized map, also called n-G-
maps, is the following one:

DEFINITION 1 (n-G-MAP). Let n ≥ 0.
An n-dimensional generalized map is G =
(D,α0, α1, . . . , αn) where :

• D is a finite set of darts;

• ∀i, 0 ≤ i ≤ n, αi is an involution1 on D;

• ∀i, j, 0 ≤ i < i + 2 ≤ j ≤ n, αi ◦ αj is an
involution.

In an n-G-map, each topological cell of dimension i
corresponds to a subset of darts called orbit. Such an
orbit is denoted <α0, ..., αi−1, αi+1, ..., αn> and cor-
responds to the set of darts that can be reached starting
from a dart, using any combination of involutions ex-
cept αi. A cell of dimension i (or i-cell) is defined as
follows:

DEFINITION 2 (i-CELL). Let G =
(D,α0, α1, . . . , αn) be an n-G-map, d a dart and i ∈
N = {1, . . . , n}. The i-cell incident to d is the orbit
<>N−{i} (d) =<α0, . . . , αi−1, αi+1, . . . , αn>(d).
1An involution f on S is a one to one mapping from S onto
S such that f = f−1.

For example, in a 2-G-map, the orbits <α1, α2>,
<α0, α2> and <α0, α1> correspond respectively to
topological vertices, edges and faces. We can see in
Figure 1 the decomposition of a topological object in
cells. The object in Figure 1a can be decomposed into
topological faces linked by an α2 involution (see Fig-
ure 1b). In the same way, a face can be decomposed
into topological edges linked by an α1 involution (see
Figure 1c). To finish, an edge can be decomposed into
two darts which are linked by an α0 involution (see
Figure 1d).

α 2

α 0
α 1

(b)

(c)

dart

(a)

(d)

Figure 1: Topological decomposition of an object.
(a) A 2D Euclidean object. (b) Its decomposition
into topological faces. (c) Faces decomposition into
topological edges. (d) Edges decomposition into
darts.

In the following, in order to simplify figures, we will
represent 2-G-maps as shown in Figure 2.

α 2 α 1

dart

Figure 2: Representation of a 2-G-map.

The discrete standard analytical model
Our modeler allows to compute a discrete object from
a given continuous object. In 2D (resp. 3D), the re-
sulting discrete object must define 4-connected (resp.
6-connected) contours, in order to obtain a space
subdivided in 4-connected (resp. 6-connected) re-
gions. The discretization model we use is the stan-
dard model [And03]. We chose this model because it’s
the only model that allows the 4-connected analytical
discretization of 2D objects (vertices and edges of poly-
gons) and the 6-connected discretization of 3D objects
(vertices, edges and faces of polyhedra). Moreover,
this model is defined for any dimension.

In what follows, we focus on the 2D case. We first
give the definitions of a discrete standard line and a
discrete standard point. Then we explain how to com-
pute the discrete analytical description of a segment.
In [And03] the reader will find details about standard
objects in 3D and higher dimensions.

DEFINITION 3 (2D STANDARD LINE). A dis-
crete standard line of parameters (a, b, c) is the set of
integer points (x, y) verifying−ω ≤ ax+ by+ c < ω,
with ω = |a|+|b|

2 and a > 0 or a = 0 and b ≥ 0.

DEFINITION 4 (2D STANDARD POINT). Let P
be a real point of coordinates (i, j). The standard
discretization of P is the unique integer point (x, y)
verifying i− 1

2 ≤ x < i+ 1
2 and j − 1

2 ≤ y < j + 1
2 .

Figure 3 shows the standard discretization of a Eu-
clidean segment (S in the figure).

S

(0,0)P1

P2(7,3)

Figure 3: A standard segment and its analytical
description. Pixels in gray correspond to the stan-
dard discretization of S (bold dotted line), i.e. pix-
els crossed by S. Bold (resp. thin) lines correspond
to large (resp. strict) inequalities of the discrete an-
alytical description.

The analytical description of S is deduced from the
analytical descriptions of its end points P1 and P2, in
addition to the analytical description of the line includ-
ing S. These inequalities are:

• For the line: −5 ≤ 3x− 7y < 5

• For P1: − 1
2 ≤ x < 1

2 and − 1
2 ≤ y < 1

2

• For P2: 7− 1
2 ≤ x < 7 + 1

2 and
3− 1

2 ≤ y < 3 + 1
2

The discrete analytical description of S is then com-
posed of the following 6 inequalities (due to the re-
moval of 4 inequalities):

−5 ≤ 3x− 7y < 5
− 1

2 ≤ x
− 1

2 ≤ y
x < 7 + 1

2
y < 3 + 1

2

Note that two discrete spaces can be used to obtain dis-
crete objects: the classical discrete space in which dis-
crete points (i.e. integer coordinates points) are pixel

centers (see Figure 4a), and the dual discrete space
in which discrete points are pixel vertices (see Fig-
ure 4b). In our modeler, the discretization process is
done in dual space, because we want to discretize the
Euclidean region contours in order to obtain discrete
region contours. The discretization of a polygon in the
dual space is shown in figure 4b. Figure 4c shows the
discretisation of two adjacent polygons.

(b) (c)(a)

Figure 4: Standard discretization in the classical
and dual discrete spaces. Black points are discrete
ones. (a) Classical discrete space. (b) and (c) Dual
discrete space.

Recognition and reconstruction processes
The discrete recognition process determines if a set of
discrete points belongs or not to a given discrete object.
The 2D recognition determines if a set of pixels belongs
to a 2D discrete line. Figure 5a shows an example of
discrete segment recognition. Adjacent pixels with the
same color in the figure belong to the same discrete
standard segment.
We call discrete reconstruction the operation that con-
sists in obtaining a continuous object from a discrete
one. This operation corresponds to the reverse of the
discretization one, i.e. the discretization of the obtained
continuous object corresponds to the original discrete
object. Thus, the reconstruction of a 2D discrete seg-
ment is a Euclidean segment so that its discretization
corresponds to the discrete segment. We see in Fig-
ure 5b an example of reconstructed segments.

(a) (b)

Figure 5: Discrete segment recognition and recon-
struction. (a) Recognized discrete segments. Bi-
color pixels belong to two discrete segments. (b)
Three possible reconstructions for a same discrete
curve.

Note that the reconstruction of an object is not unique
(see Figure 5b). Indeed, an infinity of Euclidean ob-
jects have the same discretization. However, a recon-
struction choice can be imposed, given a specific re-
construction method, choosing a starting point position
(we choose the point with lowest abscissa and among

them the one with lowest ordinate) and a direction in
which doing it (in our application, we choose the clock-
wise direction).
In the following, we describe our structure in dimen-
sion 2. In Sections 2 and 3, the different levels of the
hierarchical structure are described, and the way each
level is computed from a neighbor level is detailed. In
particular, we focus on the computation of the links
between two consecutive levels. Section 4 explains
how those links are used to update the structure when a
modification of a representation is performed. A short
conclusion and perspectives are presented in Section 5.

2. MULTI-LEVEL STRUCTURE DE-
SCRIPTION

Continuous
representation

Discrete analytical
representation

Discrete border
representation

Discrete
representationLevel 0

Level 1

Level 3

Level 2

Figure 6: The hierarchical structure. Each level
corresponds to a specific representation and is
linked to its neighbors.

Our structure consists of four inter-dependent levels
(see Figure 6): the discrete level, the discrete border
level, the discrete analytical level and the continuous
level. Each level corresponds to a particular representa-
tion of a same object. More precisely, a same primitive
is represented either in a continuous form, and in three
different discrete forms. Discrete and continuous lev-
els are the end levels of the structure. The addition of
two intermediate levels allows a progressive evolution
from the discrete object to the Euclidean one, and vice
versa. Each level of the structure is a generalized map.
Information are associated with specific orbits of some
levels in order to define the geometrical shape of the
primitive.
In the following, we detail each level of this structure
in dimension 2, i.e. its corresponding 2-G-map and
embeddings. We illustrate our purpose by a simple
example.

Level 0: the discrete level
This level corresponds to the classical discrete repre-
sentation which is composed of pixels. The discrete
space considered here is the dual one (see Section 1.2).
The 2-G-map of this level corresponds to a space sub-
division into pixels (see Figure 7a). Each pixel is rep-
resented by a square topological face associated with
a color2 embedding (see Figure 7b). Moreover, inte-
ger coordinates are attached to each topological vertex.
The object in this level may be an imported image or the
result of the discretization process applied on level 3.
However, the G-map of this level requires a lot of mem-
ory space, and particularly in 3D. For example, the
memory space required for a 2D digital image of 5122

pixels is at least 72 MB and for a 3D digital image of
5123 voxels is 216 GB. In order to minimize the re-
quired memory space, the G-map of this level is coded
in a more compact way as follows: embeddings are
stored inside a matrix, and αi involutions are not ex-
plicitly stored but recomputed from the neighborhood
relations between the pixels. This is possible because
pixels have a very simple topological form and adja-
cency relations are implicite. In the same way, connec-
tions between darts of level 0 and level 1 are simulated.
This optimization brings the size of a 2D digital image
of 5122 pixels to less than 1 MB and the size of a 3D
digital image of 5123 voxels to 384 MB.

(b)(a)

Figure 7: The discrete level. (a) Discrete view: here,
a grayscale digital image. (b) Discrete 2-G-map:
each topological face and each topological vertex
are respectively associated with grayscale and in-
teger coordinates embeddings.

Level 1: the discrete border level
This level corresponds to the contours obtained for each
uniform colored 4-connected region. The representa-
tion of these contours is based on the interpixel model
[KKM90, Kov89] (see Figure 8a). Each discrete point
is represented by a point and two successive points are
linked by a segment. This representation simplifies the
coverage of level 0 regions boundaries. The 2-G-map
of this level corresponds to a space subdivision into
regions (see Figure 8b). There is no embedding at this
level and geometrical information needed for the visu-
alization of the level are located in level 0 and can be
accessed from level 1 (see Section 4.1).
2This embedding can also be a label.

(b)(a)

Figure 8: The discrete border level. (a) Discrete
border view. (b) Discrete border 2-G-map.

Level 2: the discrete analytical level
This level is an implicit representation of the discrete
border primitive. It corresponds to the discrete ana-
lytical description of the level 1 region contours (see
Figure 9a). More precisely, each contour is described
as a discrete analytical polygon computed according to
the discrete analytical standard model (see Section 1.2).
The main interest of this representation is that it doesn’t
depend on the number of discrete points of the object.
The 2-G-map of this level corresponds to a space sub-
division into regions (see Figure 9b), in which each
topological edge (resp. vertex) corresponds to a dis-
crete analytical segment (resp. point). Each discrete
segment (resp. vertex) is described by two (resp. four)
opposite inequalities. These inequalities are associated
to the topological edges and vertices of the level.

�� ��

(a) (b)

Figure 9: The discrete analytical level. (a) Discrete
analytical view. Gray areas are delimited by the
analytical inequalities. (b) Discrete analytical 2-G-
map. Inequalities are associated to each topological
edge and each topological vertex.

Level 3: the continuous level
This level is an explicit representation. In this level,
each region is described as a colored Euclidean poly-
gon in the classical boundary representation form (see
Figure 10a). The primitive of this level may be created
using the tools available inside the modeler, or may
be the result of the reconstruction process applied on
level 0 (see Section 1.3). 2D Euclidean vertex coordi-
nates and face colors are associated to the 2-G-map of
this level (see Figure 10b).
For this level to be coherent with the others, we must
ensure that the discretization (according to the standard
model) of the Euclidean polygons is equal to the regions
in level 1.

(a) (b)

Figure 10: The continuous level. (a) Continuous
view. (b) Continuous 2-G-map with color and real
coordinates embeddings.

3. CONSTRUCTION AND LINKS BE-
TWEEN THE LEVELS

Each level of the hierarchical structure corresponds to
a step of the reconstruction or discretization process.
In this section, we describe the way each level is built.
To build the structure starting from level 0 or from
level 3, topological operations are required. We won’t
describe them is this paper (see [DDAL05] for more
details). Since our goal is to quickly reflect a mod-
ification of a level of the structure on the others, we
set up bidirectional connections between the different
levels, and more precisely between the darts of each
level. The advantage of these connections is that all
structure’s embeddings become accessible for all lev-
els. The information redundancy inside the structure is
thus limited. In the next sections we explain how the
different levels are built and connected.

Links between level 0 and level 1

• Level 1 is obtained from the discrete primitive of
level 0 by merging pixels of same color.

• To build level 0 from level 1, we need to recon-
struct the pixels, for example by using a flood-fill
algorithm on a matrix corresponding to Level 1.

As shown in Figure 11, links are established between
the darts of level 1 and the corresponding darts in
level 0.

Level 0 Level 1

32

1 1

2 35

4

Figure 11: Links between level 0 and level 1. Black
darts are connected ones. For example, darts num-
bered 1 (resp. 2 and 3) in the two representations
are connected. Darts numbered 4 and 5 are not con-
nected with darts of level 1. Here, there are exactly
36 links between the two levels.

Links between level 1 and level 2

• To obtain level 2 from level 1, we use an an-
alytical recognition operation (see Section 1.3).
The recognition algorithm we use is described
in [BSDA03]. During the analytical recognition
step, all vertices that belong to the same discrete
segment are removed in order to keep only the two
edge extremities. Removed darts are level 1 darts
not connected with level 2 darts in Figure 12.

• To build level 1 from level 2, we need to discretize
the contours of level 2 according to the standard
model (see Section 1.2). Each edge of level 2 is
incrementally discretized from one end point to
the other, and a new vertex is inserted into the
edge while the other end point is not reached.

For each edge of level 2, links are established between
the darts of the edge and the extremity darts that belong
to the corresponding discrete segment in level 1 (see
Figure 12).

Level 1 Level 2

1
1

2
2

3

3

4
4

Figure 12: Links between level 1 and level 2. Black
darts are connected ones. For example, darts num-
bered 1 (resp. 2, 3 and 4) in the two representations
are together connected. Here, there are exactly 12
links between the two levels.

However, some problems can arise such as degenerated
vertices (see Figure 13b). These vertices disappear in
the discrete border level due to the loss of information
inherent to the discretization process. We choose to
delete these vertices (see Figure 13c), and move the
links existing with these darts (numbered darts in Fig-
ure 13d) to keep the levels coherent.

Links between level 2 and level 3

• To build level 3 from level 2, we make a copy of
level 2, and compute the Euclidean coordinates
embeddings during the analytical reconstruction
step (see Section 1.3). Reconstruction algorithms
and details on particular cases that can occur dur-
ing the analytical reconstruction are presented in
[BSDA03] and [SBDA05].

• To build level 2 from level 3, we also make a
copy of level 3, but we can eventually make some
simplifications. For example, the gray square

(a)

2

1
1

2

1

2

(b)

(d)(c)

Figure 13: Example of degenerated vertex. (a)
Level 2 primitive. (b) Primitive computed ac-
cording to the standard discretization process. (c)
Dashed darts are removed. (d) Level 1 primitive
obtained. Note that black darts are connected ones.

in Figure 14a contains vertices having the same
standard discretization. All corresponding topo-
logical vertices, except the two extremities, can
thus be removed (see Figure 14b).

(a) (b) (c)

Figure 14: Simplification of the discrete analytical
level. (a) Euclidean object. (b) The darts in gray
are removed. (c) Discrete analytical level. Note that
all black darts are connected ones.

Each dart of level 2 is connected with a dart of level 3
(see Figure 15). However, as in the example in Fig-
ure 14, some darts of level 3 may not be connected.

4. HIERARCHICAL STRUCTURE UP-
DATE

Information access
Stored information can be accessed using the links be-
tween consecutive levels. For example, integer coordi-
nates stored at level 0 can be accessed from level 3 using
successively the links between level 3 and level 2, the
links between level 2 and level 1 and the links between
level 1 and level 0. The main difficulty is to find linked
darts between the current level and the following one.
Indeed, all darts are not connected. For instance, some
darts in level 1 are not connected with darts of level 2
(see Figure 12). Lets consider a face F of level 1. If we
want to know the color associated to the face of level 3
corresponding to the reconstruction of F, we first must
search for a connection between a dart of F and the

Level 3Level 2

1

2

3

4

1

2

3

4

Figure 15: Links between level 2 and level 3. Black
darts are connected ones. For example, darts num-
bered 1 (resp. 2, 3 and 4) in the two representations
are together connected. On this example, there are
exactly 12 links between the two levels.

corresponding face of level 2. The color embedding
can then be reached using links between level 2 and
level 3 since each dart of level 2 is connected with a
dart of level 3.

Operations and updates on the structure
With our modeler, we can apply operations as well on
the continous primitives as on the discrete ones. The
most classical operation that can be used in level 0 is
changing the color of one or several pixels. Many dis-
crete operations can be based on it. Level 3 is based on
a 3D Euclidean geometrical modeler called Moka3 in
which a lot of geometric operations have been already
developed. Classical operations like translations, ro-
tations, scales, . . . or more elaborated operations like
corefinement can be performed. In case of complex
primitives (i.e. primitives composed of a great num-
ber of elements), updating all the structure consumes
too much time. However, a level does not need to be
totally recomputed when only a local modification is
done. Moreover, it is often advisable to keep some
details like those shown in figures 14a and 14b. In this
case, a whole update of the structure will involve the
loss of these informations. It is preferable to use the
links between levels in order to reflect local modifica-
tions.
In our structure, when a level is modified by an op-
eration, other levels may be updated. In this section,
we show two different examples of operations on the
structure: a discrete one and a continous one, and the
way updates are computed.

4.2.1 Discrete operation: segmentation
The structure we consider here is based on a grayscale
digital image (see Figure 16). We locally modify the
segmentation of the digital image by filling the two
middle regions in order to obtain only two regions.
Thus, we can determine which darts must be removed
in the other levels (darts connected – directly or not –
with black ones in Figure 17). Indeed, in the original

3Moka web site: http://www.sic.sp2mi.univ-
poitiers.fr/moka

digital image, these darts where surrounded by two
faces associated with different colors. After the edits,
these darts are surrounded by two faces with the same
color. Using the links between level 0 and level 1, we
can easily find the darts of level 1 to be removed. And
so on for level 2 and level 3. Here, the main interest of
using links of the structure is that we can make local
modification without recomputing the entire structure.

level 0

level 1

level 2

level 3

Figure 16: Our structure before and after color
changes. On the left, the original digital image and
the corresponding struture. On the right, the same
structure after updates due to color changes.

Figure 17: Darts concerned by the modification (in
black).

4.2.2 Continuous operation: translation
The structure we consider here is based on a continous
primitive (see Figure 18). We apply a non integer trans-
lation on level 3 (see Figure 19). We can see that the
topology of the level 2 and 3 are not touched. Existing
links between these two levels thus don’t need to be
changed. Nevertheless, we must modify the topology
of the level 1 according to the discretization of level 2.

Some discrete segments can be kept if their discretiza-
tion is still the same. Finally, level 0 has to be entirely
recomputed (as well as links with level 1) because of
the complexity of necessary local updates. We have
thus seen that a global modification on level 3 may not
require the structure to be entirely recomputed.

level 0

level 1

level 2

level 3

Figure 18: Our structure before and after level 3
primitive translation. On the left, the original Eu-
clidean object and the corresponding structure. On
the right, the same structure after updates due to
the translation.

5. CONCLUSION
In this paper we have presented a modeler kernel based
on a multi-level hierarchical structure. Each level cor-
responds to a particular representation of a same ob-
ject: continuous, discrete analytical, discrete border of
regions and discrete representations (see attached col-
ored images). Each level is linked with the level above
and below it. This ensures the coherence between all
the representations. The way each level is computed
from a neighbor one, as well as the way links are estab-
lished between consecutive levels are presented. Two
examples of operations on discrete and continuous lev-
els are also detailed. As a short term goal, we plan
to develop several operations and study more in de-
tails the propagation of local modifications inside the
structure in order to optimize the updates even farther.
Furthermore, a 3D extension is planned. Indeed, for
the moment, our modeler deals only with 2D primi-

(a) (b)

Figure 19: Discrete level before and after level 3
primitive translation. (a) Original continuous and
discrete levels. (b) Continuous and discrete levels
after translation.

tives because the 3D discrete analytical reconstruction
operation, which aim is to provide a more compact re-
construction than the Marching cubes method, is still
under developpement. A 3D version of our software
should be available soon.

6. REFERENCES
[ABL01] E. Andres, R. Breton, and P. Lienhardt.

Spamod: design of a spatial modeling tool. Digital
and Image Geometry, LNCS 2243:91–107, 2001.

[And03] E. Andres. Discrete linear objects in
dimension n: the standard model. Graphical
Models, 65:92–111, 2003.

[BSDA03] R. Breton, I. Sivignon, F. Dupond, and
E. Andres. Towards an invertible euclidean
reconstuction of a discrete object. In Discrete
Geometry for Computer Imagery, volume LNCS
2886, pages 246–256, Naples, Italy, 2003.

[DDAL05] G. Damiand, M. Dexet, E. Andres, and
P. Lienhardt. Removal and contraction operations
to define combinatorial pyramids: application to
the design of a spatial modeler. Image and Vision
Computing, 23(2):259–269, 2005.

[KKM90] E. Khalimsky, R. Kopperman, and P.R.
Meyer. Boundaries in digital planes. Journal of
Applied Mathematics and Stochastic Analysis,
3:27–55, 1990.

[Kov89] V.A. Kovalevsky. Finite topology as applied
to image analysis. CVGIP, 46:141–161, 1989.

[LC87] W. Lorensen and H. Cline. Marching cubes: a
high resolution 3d surface construction algorithm.
In SIGGRAPH, volume 21 of Computer Graphics
J., pages 163–169, Anaheim, USA, 1987.

[Lie94] P. Lienhardt. N-dimensional generalized
combinatorial maps and cellular quasi-manifolds.
International Journal of Computational Geometry
and Applications, 4(3), 1994.

[SBDA05] I. Sivignon, R. Breton, F. Dupond, and
E. Andres. Discrete analytical curve
reconstruction without patches. Image and Vision
Computing, 23(2):191–202, 2005.

