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ABSTRACT
In this paper we present a novel subdivision scheme that can produce a nice-looking interpolation of the control
points of the initial polyline, giving the possibility of adjusting the local shape of the limit curve by choosing a
set of tension parameters associated with the polyline edges. If compared with the other existing methods, the
proposed model is the only one that allows to exactly reproduce conic section arcs of arbitrary length, create a
variety of shape effects like bumps and flat edges, and mix them in the same curve in an unrestricted way. While
this is impossible using existing 4-point interpolatory schemes, it can be easily done here, since the proposed
subdivision scheme is non-stationary and non-uniform at the same time.
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1 INTRODUCTION
Curve-subdivision is an iterative process that de-
fines a smooth curve as the limit of a sequence of
successive refinements applied to an initial polyline.
If, at each refinement level, new points are added
into the existing polyline and the original points
remain as members of all subsequent sequences,
becoming points of the limit curve itself, the scheme
is called interpolatory. In 1987 Dyn et al. [Dyn87a]
introduced the first interpolatory subdivision scheme
for curves, known in the literature as the "classical"
4-point scheme. This name derives from the fact
that, starting from a coarse control polygon, the new
points recursively introduced between each pair of
old points are computed by a linear combination of
the immediate four neighboring points. The proposed
scheme can generate smooth interpolatory subdivision
curves characterized by a tension parameter (denoted
by ω) that can only be used to control the shape of
the whole limit curve. Another disadvantage of this
method is that the global parameterω acts as a tension
parameter only in a very restricted range.
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More precisely, if 0≤ ω1 < ω2 ≤ 1
16, the limit curve

corresponding toω2 will be looser than the one cor-
responding toω1. But outside of the range[0, 1

16]
nothing can be predicted. Recent works in interpo-
latory subdivision theory [Mar05a, Bec05a, Oht03a]
improved the performance of the "classical" 4-point
scheme, but, although providing users many choices to
fit the different requirements in applications, they still
suffer from some limitations to be very useful in future
modelling systems. In fact, even though some of them
provide degrees of freedom for controlling the shape
of the limit curve, no interpolatory schemes have been
designed yet to make user manipulations as intuitive
as possible and allow the generation of a curve whose
behavior can be locally modified in any desirable way.
These considerations motivated the research reported
in this paper, where we propose a novel scheme that
contains [Dub86a, Dyn87a] as special cases and ge-
neralizes the non-stationary and uniform interpolatory
4-point scheme in [Bec05a] to possess local shape de-
sign parameters which have a visual interpretation on
the screen. Due to its versatility, the scheme we are
going to present can be used conveniently both for in-
teractive design and for automatic curve fitting. There-
fore it is very well-suited for design applications in
various fields including Image Processing, CAGD and
Computer Graphics.

The paper is organized as follows. In Section 2 we
construct and analyze the novel scheme. In Section
3 we investigate its properties and we show its per-
formance. Next in Section 4 we conclude the paper



with some examples and propose some applications
for which the novel scheme is very well-suited.

2 DEFINITION OF THE NOVEL IN-
TERPOLATORY 4-POINT SCHEME

In this section we are going to present a novel interpo-
latory 4-point scheme that allows to adjust the shape
of the limit curve by choosing a set of local tension
parameters that, when increased within their span of
definition, allow to appreciate considerable variations
of tension in the corresponding regions of the limit
curve. Such tension parameters are associated with
the edges of the coarsest polyline and are opportunely
updated at each refinement level. In this way, the mask
which provides a rule to pass successively from one set
of control points to the following, is simultaneously
non-stationary (since it is different for each iteration
of the subdivision process) and non-uniform (since it
also changes along the curve). However, the scheme
is very easy to implement because the same rule for
generating the new tension parameters is used at each
subdivision step.
Consider an oriented polylineP0 = {p0

i }i∈Z (where
the upper index 0 indicates that no subdivision steps
have been applied yet) and assign a tension value
vi,0 ∈]− 1,+∞[ to each edgep0

i p0
i+1. The subindex

(i,0) underlines that the tension valuevi,0 is associa-
ted with thei-th edge of the polyline defined at the
0− th subdivision level. Next, for anyk≥ 1, update
the tension parametersvi,k−1 into vi,k through the rela-
tion

vi,k =

√
1+vi,k−1

2
(1)

and successively compute the coefficients

wi,k =
1

8vi,k(1+vi,k)
(2)

that will be used to map the polygonPk−1 =
{pk−1

i }i∈Z to the refined polygonPk = {pk
i }i∈Z by

applying the following subdivision rules:

pk
2i = pk−1

i (3)

pk
2i+1 = −wi,k (pk−1

i−1 + pk−1
i+2 )

+
(

1
2

+wi,k

)
(pk−1

i + pk−1
i+1 ).

Remark1. Since after each round of subdivision one
new point is inserted between two old ones, every edge
of the old control polygonPk−1 is split into two new
edges in the refined one. Thus, denoted byvi,k−1 the

tension parameter associated with the edgepk−1
i pk−1

i+1 ,
since such an edge is split into the two new edges
pk

2i p
k
2i+1, pk

2i+1pk
2i+2, according to (1) we will make

them inherit respectively the tension valuesvi,k that is
v2i,k = v2i+1,k = vi,k.

Remark2. Note that the initial tension valuesvi,0 are
updated before computing the coefficientswi,1 used in
the first subdivision step. Hence, for any choice of
vi,0 ∈]−1,+∞[, (1) implies thatvi,k ∈]0,+∞[ ∀k≥ 1
and (2) leads towi,k > 0 ∀k≥ 1.

2.1 Convergence analysis
In this paragraph we are going to show that our novel
interpolatory subdivision scheme always generates a
C0-continuous limit curve. More precisely, we will
prove that, given an initial polylineP0, the subdivision
rules in (3) define an increasingly dense collection of
polylinesPk that converge to a continuous curve. To
show this, we will exploit two important properties of
our scheme described in the following lemmas.

Lemma 1. Given the initial parameter
vi,0 ∈] − 1,+∞[, the recurrence relation in (1)
satisfies the property:

lim
k→+∞

vi,k = 1. (4)

Proof 1. To prove this we recall that a monotonic and
bounded sequence is always convergent and in par-
ticular: if it is non decreasing and upper bounded,
then it converges to the upper bound of the values
it assumes, whereas if it is non increasing and lower
bounded, then it converges to the lower bound of the
values it assumes. For the sequence defined by

vi,0 ∈ ]−1,+∞[

vi,k =
√

1+vi,k−1
2 ∀k > 1

(5)

it holds:

- if vi,0 = 1, then the sequence{vi,k}k≥1 is statio-
nary;

- if vi,0∈ ]−1,1[, then the sequence{vi,k}k≥1 is non
decreasing;

- if vi,0∈ ]1,+∞[ , then the sequence{vi,k}k≥1 is non
increasing.

Therefore, in all these casesvi,k is convergent and con-
verges to 1. In fact, called̀its limit, we have

` = lim
k→+∞

vi,k = lim
k→+∞

(√
1+vi,k−1

2

)
=

√
1+ `

2
.

Thus, solving the last equation with respect to` we get
`= 1. �

Lemma 2. Due to the recurrence (1), the parameters
vi,k−1 and vi,k satisfy the relation

1−vi,k

1−vi,k−1
<

1
2

(6)

for any vi,k ∈ ]0,+∞[ , k > 1.



Proof 2. Exploiting recurrence (1) we can write the

ratio
1−vi,k

1−vi,k−1
in the following way

1−vi,k

1−vi,k−1
=

1−
√

1+vi,k−1
2

1−vi,k−1
=

1

2+
√

2
√

1+vi,k−1

and observe that since
√

2
√

1+vi,k−1 > 0∀k> 1, thus

1−vi,k

1−vi,k−1
<

1
2
. �

Now, exploiting the well-known theorem in [Dyn95a],
that relates the convergence of a non-stationary
scheme to its asymptotically equivalent stationary
scheme, we are going to show the following result.

Proposition 3. The locally controlled scheme in (3)
converges and generates C0-continuous limit curves.

Proof 3. To prove our thesis we need to show that,
given an initial polyline, the novel locally controlled
scheme defined by the following mask

mk−1 =
[
− 1

8vi−1,k(1+vi−1,k)
, 0,

(2vi,k +1)2

8vi,k(1+vi,k)
,

1,
(2vi+1,k +1)2

8vi+1,k(1+vi+1,k)
, 0, − 1

8vi+2,k(1+vi+2,k)

]
(7)

converges to aC0-continuous limit curve.
Since from (4) it follows that

m∞ ≡ lim
k→+∞

mk−1 =
[
− 1

16
, 0,

9
16

, 1,
9
16

, 0, − 1
16

]
,

then the non-stationary subdivision scheme asso-
ciated with (7) converges to the stationary scheme
in [Dub86a], that is exactly the "classical" 4-point
scheme in [Dyn87a] obtained withω = 1

16.
Next, by computingmk−1−m∞ we have that

‖mk−1−m∞ ‖∞ =
|1−vi−1,k|(2+vi−1,k)
16vi−1,k(1+vi−1,k)

(8)

+
|1−vi,k|(2+vi,k)
16vi,k(1+vi,k)

+
|1−vi+1,k|(2+vi+1,k)
16vi+1,k(1+vi+1,k)

+
|1−vi+2,k|(2+vi+2,k)
16vi+2,k(1+vi+2,k)

wherevi−1,k, vi,k, vi+1,k, vi+2,k ∈ ]0,+∞[ , ∀k > 1.
Now, by the well-known theorem in [Dyn95a], if

+∞

∑
k=1

‖mk−1−m∞ ‖∞< ∞, (9)

then the two schemes are asymptotically equivalent,
and sincem∞ is C0, we can conclude that the scheme

associated withmk−1 isC0 too. Thus, to show our the-
sis we only have to prove that relation (9) holds as the
parametersvi−1,k, vi,k, vi+1,k, vi+2,k vary in the inter-
val ]0,+∞[. For space limitations, we just give a brief
sketch of the proof here. Observe that, from the ana-
lytic properties of the series, once we have proved the
convergence of each term in (8), relation (9) will im-
mediately follow. To this aim, thanks to the results in
lemma 1 and 2, we can repeat, for each term of the
sum in (8), the calculations presented in [Bec05a] and
claim that the schemesmk−1 and m∞ are asymptoti-
cally equivalent, which proves our thesis. �

Remark3. Note that the proposed scheme is asymp-
totically equivalent to the "classical" interpolatory 4-
point scheme in [Dyn87a] with parameterω = 1

16, that
is C1. Hence, since according to [Dyn95a], the conti-
nuity level of a non-stationary scheme is, in general,
the same as that of the stationary scheme to which this
scheme converges, we expect the limit curve genera-
ted by the scheme in (3) to beC1.

3 THE LOCAL TENSION PARAME-
TERS

The novel scheme described by (3) has a very power-
ful and intuitive geometric interpretation. If we write
the second line of (3) in the form

pk
2i+1 =

pk−1
i + pk−1

i+1

2
(10)

+ 2wi,k

(
pk−1

i + pk−1
i+1

2
−

pk−1
i−1 + pk−1

i+2

2

)

it is clear that the new pointpk
2i+1 turns out to be the

mid-point of the edgepk−1
i pk−1

i+1 , corrected by a vec-
tor 2wi,ke, wheree denotes the vector connecting the

mid-points of the edgespk−1
i pk−1

i+1 and pk−1
i−1 pk−1

i+2 (see
Figure 1).

p k−1

e

k−1p

2i+1
kp

p
i+1

k−1

i

i−1

p
i+2
k−1

i,k
2w   e

Figure 1: Geometric interpretation of the local pa-
rameter wi,k.



The value ofwi,k in (10) clearly depends on the choice
of the initial tension parametervi,0. For different va-
lues ofvi,0 ranging from -1 to+∞, we will have diffe-
rent values ofwi,1 in ]0,+∞[. The important cases to
be mentioned arevi,0 = 1 (wi,1 = 1

16) andvi,0 → +∞
(wi,1 → 0). In the first case, in fact, the subdivision
scheme becomes stationary and the limit curve we ob-
tain coincides with the one generated by [Dub86a] and
by [Dyn87a] choosing the parameterω equal to 1

16. In
the second case, instead, the portion of curve confined
to the endpoints of thei-th edge is pulled towards the
linear interpolant of those two points, since whenwi,1

is exactly zero, the scheme exactly generates the linear
interpolant to the initial control points.
In particular, progressively increasing the value ofvi,0,
the portion of curve confined to the endpoints of thei-
th edge will become progressively tighter and tighter.
It is interesting to note also that, by setting all initial
tension parameters equal to the same valuev0, we get
the uniform tension-controlled interpolatory scheme
defined in [Bec05a].

3.1 Local tension parameters provided
by the user

The local tension parametersvi,0 that define the inter-
polatory scheme presented in Section 2, can be either
arbitrarily provided by the user to intuitively model the
limit shape, or automatically set to let the limit curve
fit special requirements in applications.
In Figure 2 we show an example of interactive design
where the local tension parameters play an important
role in the overall display of the final shape. The top
left curve has been obtained by setting all the para-
meters{vi,0}i=0,...,6 to γ = cos(2π

7 ). As explained in
[Bec05a], such a configuration of tension values, ap-
plied to the regular heptagon denoted by the dashed
line, generates the exact circle interpolating its ver-

tices
(

cos(2 jπ
7 ),sin(2 jπ

7 )
)

, j = 0, ...,6. The consecu-

tive five interpolants demonstrate the role of the local
tension parameters specified in the arrayv, by showing
their influence on the resulting shapes. Comparing the
six figures, we can see that, by opportunely modifying
the tension valuesγ, we can obtain different ways of
achieving local shape control on the limit curve.
These results and many others, obtained using diffe-
rent initial polylines and various local tension parame-
ters, confirm our conjecture about theC1-smoothness
of the curve generated by the refinement scheme in
(3).
Additionally, they point out that the model we have
proposed exhibits many properties that a subdivision
scheme should include to become useful for geome-
tric modelling applications. Indeed, it allows:

• Intuitive shape deformations
Among all the shape parameters that we can find in

v=[γ, γ, γ, γ, γ, γ, γ] v=[1000, 1000, -0.8, 1000, -0.95, 1000, -0.8]

v=[γ, γ, γ, 1000, γ, γ, γ] v=[γ, γ, γ, -0.85, γ, γ, γ]

v=[γ, γ, 1000, 1000, 1000,γ, γ] v=[γ, γ, -0.85, 1000, -0.85,γ, γ]

Figure 2: Closed subdivision curves produced by
interpolation of the vertices of a regular heptagon
using the tension parameters in the indicated array
v where γ = cos(2π

7 ).

existing subdivision models, the ones that provide
a tension effect indeed appear totally intuitive and
possess a direct visual interpretation on the screen
(see Figure 2).

• Local control
Each tension parameter, associated with a specified
edge of the initial polyline, influences the shape
of the limit curve only in a restricted zone, corre-
sponding to the related edge and the neighboring
parts of its two adjacent edges. This allows a very
powerful local shape control (see Figure 2).

• Warping, flattening and mixed effects
Warping is a tool which can be used to deform a
local segment of a curve pulling out a bump; flat-
tening is a tool which allows to easily introduce
straight line segments into curves. The local ten-
sion parameters can reproduce both warping and



flattening behaviors as well as provide a variety of
interesting shape effects. The subdivision curves
that we can generate, in fact, are able to incorpo-
rate both round shapes and flat shapes, like bumps
and localized flat edges. Additionally such effects
can be mixed in the same curve in an unrestricted
way, always allowing soft transitions between them
(see Figure 2).

3.2 Local tension parameters automati-
cally set

In this subsection we will show the capability of the
proposed subdivision scheme to fit certain classes of
curves widely used in CAGD applications, like po-
lynomials, conic sections and piecewise cubic Bézier
curves.
Since an interpolatory subdivision process defines a
smooth curve as the limit of a sequence of successive
refinements applied to an initial polyline, the approxi-
mating algorithm we are going to describe requires to
select an adequate set of points on the reference curve
C to start the locally controlled refinement procedure
described in Section 2. Note that, the greater the num-
ber of selected points is, the more the approximating
shape tends towards the original curveC, but the more
the shape descriptor size and the number of compu-
tations increase. To balance these two extreme sce-
narios, the strategy adopted for determining the initial
polyline to which apply the refinement process should
select the minimum number of points needed to get a
visually precise reconstruction. By the termvisually
precisewe mean that, if you compare our interpola-
tory subdivision curve with the original one, you can
hardly spot the differences between them (see Figures
4, 5, 6, 7).
Let P0 = {p0

i }i∈Z be the initial sequence of points
opportunely sampled onC. Due to (10), the points
p1

2i+1 computed at the first subdivision step, will be
placed on the liner passing through the mid-points
of the edgesp0

i p0
i+1 and p0

i−1p0
i+2, at a distance from

p0
i +p0

i+1
2 inversely proportional to the tension valuevi,0.

Therefore, in order to achieve a visually precise fitting,
each pointp1

2i+1, defined in correspondence of thei-

th edgep0
i p0

i+1 of the coarsest polygonP0, should be
placed exactly on the curveC. According to this re-
quest, the initial tension valuevi,0 will be determined
in such a way the pointp1

2i+1 turns out to be the in-
tersection point between the liner and the curveC.
Repeating this procedure for each curve segment, we
will be able to automatically determine a tension value
vi,0 that, used in the refinement process (3), gene-
rates the interpolatory subdivision curve that appro-
ximates the given curveC. Although we have no gua-
rantee that in the following refinement levels the sub-
division process will insert all the new points on the

curveC, whenever we start from a sequence of points
P0 = {p0

i }i∈Z suitably sampled onC, all our experi-
ments showed visually precise reconstructions.
The following algorithm implements an automatical
procedure to get an interpolatory subdivision curve
that turns out to be visually precise in respect to the
original curveC.

Algorithm 1

1. Determine the initial polyline P0 = {p0
i }i∈Z;

2. compute the tension parameters vi,0 associated with
the edges p0

i p0
i+1, in such a way the points p1

2i+1,
inserted through (3), lie on C (for each edge of the
initial polyline, this requires to solve the system of
equations deriving by forcing the point p1

2i+1 to be
placed on C);

3. for k = 1 to the desired refinement level
3.1 compute the tension values vi,k through (1);

3.2 compute the coefficients wi,k through (2);

3.3 apply the refinement rules (3);

4. stop.

Remark4. Note that, due to the rule in the second
line of equation (3), to insert a new pointpk

2i+1 in
the refined polylinePk, it is necessary to possess a
well defined two-neighborhood (given by two points
on its left and right side in the coarsest polylinePk−1).
Hence, ifC is an open curve, the initial polylineP0

should be extended to contain two more sample points
both at the beginning and at the end of the initial se-
quenceP0 = {p0

i }i∈Z.

In the following we will show how the proposed algo-
rithm leads to some useful applications of our locally
controlled interpolatory 4-point scheme.
The first one is related to two desirable properties
of subdivision schemes, namely polynomial precision
and conics reproduction. These two terms usually re-
fer to the capability of exactly reproducing a specified
curve by applying the subdivision scheme to a set of
control points uniformly sampled on it. As far as we
know, existing interpolatory subdivision schemes are
able to reproduce neither polynomials nor conic sec-
tions starting from unevenly sampled points.
Exploiting Algorithm 1 we can show that our interpo-
latory scheme turns out to be exact for linear polyno-
mials even if the initial data are unevenly sampled on
them. Additionally, a visually precise fit to points un-
evenly sampled on any quadratic or cubic polynomial
and any arbitrary conic section, can be achieved too
(see Figure 3).



Figure 3: Representation of polynomials and conic
sections via the interpolatory subdivision curve
with local shape control (dashed lines: polylines;
solid lines: subdivision curves).

On the other hand, it can be easily verified that,
when we consider sample points uniformly spaced,
the proposed scheme is exact for cubic polynomials.
In fact, performing the computations described in
Algorithm 1, we get that the same tension parameter
vi,0 = 1 should be applied on the whole curve. This
value coincides with the global tension parameter
introduced in [Bec05a] to exactly reproduce cubic
polynomials. Analogous results can be found re-
peating the same computations when the initial data
are evenly sampled on a conic section [Bec05a].
Therefore, when starting from uniformly distributed
points, we can conclude that by applying Algorithm
1 we can work out the initial tension parameters that
allow the subdivision scheme in (3) to be exact for
cubic polynomials and to exactly reproduce all conic
sections.

Since in CAGD applications curves are frequently re-
presented in the piecewise cubic Bézier form, we want
to show now an additional application of our algorithm
which allows to obtain a very good representation of
a curveC in the piecewise cubic Bézier form. De-
noted byQ0 the sequence of control points defining
the piecewise cubic Bézier curveC, we select fromQ0

the subsequence consisting exactly of all the junction
points of the single Bézier segments. Next, to define
the initial polylineP0 for generating the interpolatory
subdivision curve, we add supplementary points wher-
ever two consecutive selected points (so far computed)
turn out to be too distant. According to our experi-
ments this strategy always ensures a visually precise
reconstruction.

4 APPLICATIONS
The proposed subdivision scheme was designed to
make our model a candidate of choice for many appli-
cations. An example consists in proposing this novel
class of interpolatory subdivision curves as an efficient
and economical representation of the outline curves
used to describe fonts as well as output images of tra-
cing algorithms [Sel03a]. In general, a vector outline
describes a digitalized image via a family of piecewise
cubic Bézier curves that may join eitherC0 orC1 con-
tinuously. Our subdivision scheme provides a mathe-
matical description of vector outlines that turns out to
be simpler and more efficient than the one currently
used in Postscript files and tracing algorithms. In fact,
although in vectorial outlines one switches frequently
between round shapes and flat shapes, by using only
one subdivision curve with local shape control, we
will be able to make a good job (see Figure 4).

Figure 4: Two piecewise cubic Bézier curves de-
scribing the outline of the character "@" - 73 cubic
segments (left); two single-piece interpolatory sub-
division curves - 75 points, 73 tension parameters
(right).

Remark5. Note that, due to the smoothness proper-
ties of the scheme, to make the job perfectly, and then
allowing the possibility of reproducing sharp corners
between flat regions and round ones, we need to ge-
nerate distinct subdivision curves and stitch them to-
gether in the corners (see Figure 5).

Now we point to a number of advantages that could
make this novel class of interpolatory subdivision
curves the standard representation of vectorial
outlines.
The primary advantage of interpolatory subdivision
curves with local shape control over piecewise cu-
bic Bézier curves has to do with the physical storage



Figure 5: Two piecewise cubic Bézier curves de-
scribing the outline of the character "d" - 24 cu-
bic segments (left); the corresponding piecewise in-
terpolatory subdivision curves - 9 single-piece sub-
division curves, 33 points, 24 tension parameters
(right).

of vector outlines in files. In fact, as the set of lo-
cal tension parameters act as handles to model the
contour that best fits the original image, exploiting a
small number of points per contour, we can obtain a
very compact numerical format for representing out-
line curves. Since the necessary information to repre-
sent the outline curve are 1 endpoint and 1 tension pa-
rameter per segment, we manage to remarkably com-
press the data to be stored in the file and optimize them
for speed and for handling contour images with large
character sets.
Another consistent advantage is that our technique
turns out to be also very convenient for computing the
points required for the rasterization of the final curve,
which consists in converting the outline to a pattern of
dots (whether it’s screen pixels or the dots of a laser,
inkjet or wire-pin printer) on the grid of the output de-
vice.
All these observations let us notice that indeed there
are several key improvements which may swing the
future in curve-subdivision’s favor. While subdivi-
sion surfaces have not been widely adopted by the
CAGD community [Gon01], maybe some day subdi-
vision curves could intelligently substitute the use of
piecewise cubic Bézier curves in describing Postscript
fonts as well as the output images of tracing algo-
rithms.
Exploiting the procedure described in Algorithm 1,
very good results have been obtained over a range of
outline images. We show here the reconstructions we
got by testing the algorithm on the data obtained from
the outline of a Type1, cmr10 Postscript font (Figures
4, 5), an hand-drawn sketch (Figure 6) and a detail of
a university logo (Figure 7). As it appears, if you com-
pare Figures 4, 5, 6, 7 (right) with the corresponding
outlines of piecewise cubic Bézier curves in Figures
4, 5, 6, 7 (left), you can hardly spot the differences
between them.

5 CONCLUSIONS AND FUTURE
WORK

Stimulated by the observation that a "good" local
interpolatory scheme does not seem to be presently
available, we have proposed a novel subdivision
scheme for interpolatory curves which, in contrast to
existing models, gives the possibility of generating
a big variety of good quality curves modifying the
tension parameters associated with the edges of the
initial polyline. To our knowledge, this is the first
interpolatory subdivision scheme, easy to implement
and computationally economical, that includes many
classical properties as well as several original features
considered vital or simply desirable in applications.
For example, the proposed scheme can generate a
limit curve that can be locally modified with the help
of shape control parameters. Namely, it is able to
produce a locally controlled interpolatory curve which
can incorporate a variety of shape effects like bumps
and flat edges, and can mix them in an unrestricted
way, always allowing a soft transition between them.
Additionally, instead of being altered by the user for
interactive design purposes, the tension parameters
can be automatically set in such a way the limit
curve generated can elegantly fit curves extremely
used in geometric modelling systems, such as conic
section arcs and piecewise cubic Bézier curves. As
an application, we have proposed our interpolatory
subdivision curves with local shape control as an
efficient and economical representation of the vector
outline of a scanned image or a letter-form shape.
This makes it possible to introduce subdivision
techniques in document description languages as
Postscript and encourages the CAGD community to
swing in curve-subdivision’s favor.

The authors are looking, as a future work, to extend
the curve subdivision scheme to surfaces. This could
be quite useful for various applications in different
fields of studies.
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