
Image-based Real-time Hatching of Scene Traveling 
 

Jiajun Bu  Wen Yan  Chun Chen Mingli Song 
College of Computer Science 

Zhejiang University 
P.R.China 310027, Hangzhou

  bjj@zju.edu.cn yanwen@cad.zju.edu.cn {chenc,brooksong}@zju.edu.cn 
 

ABSTRACT 
Real-time rendering of a complete 3D scene with hatching strokes is an important direction in NPR field. In this 
paper, a comprehensive solution is presented to render complicate scenes with pen-and-ink style in real time. 
With the help of powerful programmable graphics hardware, our real-time system includes many features as 
hatching, continuous tones, silhouettes, and shadows. We build our approach in image-space, while allowing for 
the stroke directions and frame coherence. 

In our method, various features of pen-and-ink drawings are derived from 3-D information through multi-pass 
rendering. After synthesis, the desired shading tone is achieved by mapping preprocessed stroke textures to the 
screen. As a tip for saving texture memory, we prepare a few stroke textures with only certain tones and 
directions, and compose requisite stroke types in real time. Furthermore, we develop some forms of “indication” 
to convey the impression of a texture without drawing every single stroke, which makes the result look more 
natural and art-stylized. 
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1. INTRODUCTION 
Pen-and-ink drawing is an important form of pictorial 
representation [Art77] and an effective way to 
convey lighting, directions and texture properties. It 
turns to be a key research branch in 
non-photorealistic rendering which brings lots of 
art-like styles. Several features of current GPU-the 
programmable graphics hardware, can be used to 
facilitate the art-like real-time rendering, such as 
large texture capacity, screen texture, multipass 
rendering, per-pixel process, etc. Currently, many 
pen-and-ink systems aim to add more features to 
their renderings while maintaining high frame rate. 
Most of these systems prefer stroke textures that keep 
series styles of stroke hatching rather than generating 
every single stroke in real-time because it is too 
time-consuming.  

In order to generate the pen-and-ink drawing 

automatically, two types of approaches have been 
evolved: pen-and-ink drawing in object space and 
that in image space. The former, called object-based 
method, attaches stroke textures to polygonal 
surfaces and render scenes in the traditional 
rendering pipeline. The latter, called image-based 
method, parses the scene to get information like tone, 
silhouette and texture properties and project stroke 
texture to screen space to achieve different features.  

Both these two approaches have merits and 
demerits. In object-based methods, frame-to-frame 
coherence can be achieved easily by attaching the 
stroke texture to scene objects. In this way, strokes 
can always move with their corresponding objects, 
and therefore temporal coherence is preserved. 
However, such methods cannot simulate certain 
expressive drawing styles conveniently, such as 
allowing strokes to cross boundaries. Besides, 
object-based methods require 3D geometry with 
proper texture coordinates and consequently cannot 
be applied to images or videos. Moreover, strokes in 
the screen space are preferred to be independent of 
the object scale and orientation, namely, uniformly 
distributed, which is hard to achieve in object-based 
approaches. 
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On the other hand, image-based methods 
overcome many restrictions of object-based methods 
while introducing some new challenges. They are 
never fettered by the boundary problem. With Copyright UNION Agency – Science Press 



image-based technique, strokes can cross polygon 
edges naturally and be uniformly distributed. 
However, image-based methods suffer from the 
undesirable “shower door” effect, which seems that 
strokes “stick” in screen space independent of object 
movement. Another problem is that the image-based 
methods are difficult to control stroke directions to 
represent scene objects’ shapes as ideally as the 
object-based methods do.  

In this paper, we present a novel image-based 
system that not only preserves the image-based 
advantages but also adds control to stroke directions 
as well as reducing “shower door” effect. Our system 
applies multipass rendering and makes plenty use of 
G-buffer to achieve desired drawing features. The 
problem of “stroke direction” mentioned above is 
tackled by introducing UV map, which stores the 
pairs of principal directions of each pixel. UV map, 
produced in rendering pass, is conveyed as a kind of 
G-buffer for following step to adjust the stroke 
direction. The direction angle in a certain range is 
resolved into a same degree in order to avoid too 
dense variation which usually causes strokes to be 
severed. Also, by adoption of directions, the “shower 
door” problem can be weakened because strokes 
always changes with object’s shape and orientation 
according to view transformation. Moreover, we 
bring in the idea of indication to enhance the artistic 
effect of hatching which can also fortify the tone 
variation and outlines. 

The remainder of this paper is organized as 
follows. In Section 2, we review previous work. The 
novel rendering algorithm is described in Section 3. 
A discussion of the implementation and results 
follows in Sections 4 and 5. The paper ends with a 
short conclusion and an outlook on future work. 

2. Previous Work 
Our work aims to render 3D scenes in real time with 
stroke textures to represent tone, silhouettes, shadows 
and etc, while avoiding the monotony stroke 
direction and spatial discontinuity. Related work 
includes automatic generation of pen-and-ink 
illustration and silhouettes from 3D scenes, real-time 
hatching. 

Off-line rendering: 
Lots of previous work focused on generating 
high-quality pen-and-ink drawing in an off-line 
process. Some aimed to create still images of 3D 
scenes [Deu00, Sai90, Win94, Win96, Sal97, Elb99, 
Sou99a, Sou99b, Her00]. Saito and Takahashi [Sai90] 
post-process the rendered framebuffer and overlay 
image-space strokes. Winkenbach and Salesin 
[Win94], and Salisbury et al. [Sal97] introduce 
prioritized stroke textures, which can indicate both 
texture and tone. Despite the great advance in 

processing performance, the sheer stroke-drawing 
hinder these methods from running in real-time. 
Real-time Outlines: 
Outlines can be generalized as silhouettes, 
boundaries and creases. They are widely used in 
various kinds of NPR drawings. Several previous 
approaches tried to generate outlines in interactive 
rate [Elb99, Goo99, Her99, Mar97, Nor00, Ras99, 
Her00, Ras01]. These works can also be divided into 
two ways: image-based and object-based. The 
image-based methods often use rendered images as 
input and are limited by images’ resolution. But they 
are more efficient, easy to implement and sufficient 
for most projects. The work of Gooch et al. [Goo99] 
and Raskar [Ras99] can be a typically representation 
of image-based approach. Object-based approaches 
aim to produce more precise outlines which are more 
suitable for additional processing. Hertzmann and 
Zorin [Her00] create high-quality silhouettes based 
on geometric duality. Raskar [Ras01] has developed 
a hardware-support approach to generate outlines by 
introducing new polygons with only polygonal 
vertices as input. 

Real-time hatching: 
Durand et al. [Dur01] create hatched images from 
photographs in real-time using hardware acceleration 
to perform anti-aliased threshold. Markosian et al. 
[Mar97] introduced a simple hatching style indicative 
of a light source near the camera, by scattering a few 
strokes on the surface near (or parallel to) silhouettes. 
Elber [Elb99] shows how to render line art for 
parametric surfaces in real time; he renders objects 
by choosing a fixed density of strokes on the surface. 
Lake et al. [Lak00] describe an interactive hatching 
system with stroke coherence in image space. 

Freudenberg [Fre01a] builds mipmap texture with 
uniform lines while maintaining the frame-coherence 
in blending. Praun et al. [Pra01] suggested tonal art 
map (TAM) for real-time hatching. This algorithm 
maintains frame-to-frame coherence using a “stroke 
nesting property”, where strokes on a TAM image 
appear in all the darker images of the same resolution 
and in the higher resolution images of the same tone. 
Praun et al. [Pra02] improved their work by 
providing control of tone to avoid blending and 
aliasing artifacts in original system. Fung [Fun03] 
extends the TAM approach and enable generating 
TAM images of arbitrary textures. Freudenberg’s 
approach [Fre01b, Fre04] express different halftone 
patterns with stroke textures and implement fast 
halftone rendering with pixel shading hardware. 

3. OUR NOVEL APPROACH 
In our pen-and-ink drawing system, the basic features 
are achieved, like desired tone, outlines and shadows. 
In the meanwhile, we try to describe the shape of 
scene objects by fine control of the stroke direction 



and give the viewer some indications to avoid 
monotony. The tone aims at simulating the light 
shading and can be achieved by composition of TAM 
(Tonal Art Map) [Pra01] which are generally texture 
groups of continuous tone and resolution. Because 
our process is image-based, we need only the finest 
resolution of the TAM textures. With the aid of 
G-buffer, 3-D scenes are rendered through several 
passes to acquire different features. And the 
indication is generated based on the tip that areas 
around edges should be paid more ink than the broad 
unanimous areas which are usually the center of a 
large surface. 

Tone Expression 
The terms “value” and “tone” have the same meaning 
when referred to the amount of visible light reflected 
from a point to the viewer’s eyes. We can use 
arbitrary lighting model to evaluate the tone at each 
pixel. The desired tone can be achieved by 
controlling the ratio of black ink and white paper and 
we need construct a sequence of hatching images 
with discrete tones. Abiding by the nesting principle 
of TAM, our stroke texture series consists of 6 levels 
of tone in single resolution, as illustrated in Figure 1. 
This ensures that strokes in the image of lighter tone 
will also appear in the image of darker tone and 
therefore temporal coherence (continuity in tone) can 
be maintained. Actually we only prepare three 
textures of lighter tone and compose the remainder 
hatching textures with preceding ones. This strategy 
can lend economy to texture memory and flexibility 
to direction control. Since automatic generation of 
TAM textures is not the goal of this paper, we just 
use the finest level of TAM textures from Praun’s 
work [Pra01]. In final rendering process, each pixel 
will be sampled with blend between two textures of 
consecutive tones. 

 

 

 

G-buffer Utility 
G-buffer was put forward by Saito and Takahashi 
[Sai90]. It is a conception that the 2D data structure 
can be coded to store 3D information. In the 
rendering process, certain 3D information can be 
stored into a texture image, each pixel of which 
should record relevant 3D surface’s certain kind of 
value. The powerful pixel shader can do us a favor to 
store desired 3D information in RGBA color 
channels. G-buffer can include many kinds of 3D 
properties, such as Z buffer, normal buffer, material 
buffer, shadow buffer, and etc. The following buffers 
are employed in our system: 

 Z buffer: each pixel’s corresponding vertex’s 
depth information. Need one float storage. 

 Normal buffer: each pixel’s corresponding 
vertex’s normal value. Need three-float storage. 

 Shadow buffer: shadow map in the view from the 
light point for each light. The depth value from 
light point to nearest pixel. Need one float 
storage. 

 UV buffer: principal directions of each pixel 
recorded as two rotation angle from x-axis or 
their sine/cosine value. Need at least two-float 
storage. 

To produce these buffers, the rendering process go 
through several passes and in some cases, two kinds 
of buffers can be acquired in single pass. 
Accordingly, two buffers can share one texture image 
as storage in separate color components.  The detail 
of the rendering process will be mentioned in the 
Section 4. 

Using the G-buffer mentioned above, we can 
easily generate various features for pen-and-ink 
drawings. All these features are well developed for 
many different methods both in image space and 
object space. For the sake of real-time rendering, we 
adopt the most effective approaches that can be 
implemented easily. The following will briefly 
review these classical methods. 

Outline: For polygonal meshes, outlines at 
silhouettes, ridges, valleys are the key edges for their 
shape. The silhouette edges consist of edges that are 
shared by both back-facing polygons and front-facing 
polygons. A ridge is a crease edge whose dihedral 
angle between adjacent polygons is less than a 
threshold while a valley’s dihedral the angle is 
greater than a threshold. 

To generate the outline, normal and depth buffers 
are transferred to a pixel shader which is a filter for 
postprocessing. For this filter, all we need is to 
sample pixels around our current pixel and make a 
comparison between the calculated value and 
threshold. When detecting silhouettes, it just needs to 

Figure 1. Tonal Map Series. The nether 3 are 
composed from upper 3 with different 
rotation angle. Here are only the upright 
directions. 



check whether the z value of each sampler’s normal 
is of the same sign. When detecting creases, we apply 
Sobel filter as our convolution matrix to the samplers. 
Let I(x, y) be a grayscale image. Edge images of I are 
computed by discrete 2D convolution:  
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The optimistic estimation of gradient can be 
measured as: 
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Actually, when implemented, even Ix+Iy will be 
acceptable. And the edge can be detected by the 
equation below: 
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Shadow： The approach of shadow map [Seg92] is 
very suitable for our G-buffer framework. It is a 
two-pass algorithm. In the first pass, depth map or 
shadow map can be rendered as mask in view of 
light’s point and naturally stored in G-buffer. Each 
pixel of the map records the depth of closest pixel to 
the light. In the second pass, the scene will be 
rendered from the eye’s point while each rasterized 
fragment’s XYZ position is determined relative to the 
light in order to match the frustum used to create the 
shadow map. If fragment’s light position Z is greater 
than the depth value at light position XY in the depth 
map, this fragment is shadowed. Shadow map is 
stored as a kind of G-buffer. 

Indication 
The idea of adding some indication is most inspired 
by the work of Winkenbach who listed indication as 
one of pen-and-ink drawing’s principles. In merits, 
“Indication” lends economy to an illustration, and 
also makes an illustration more impressive by 
engaging the imagination of the viewer rather than 
revealing everything. Winkenbach aimed to produce 
static drawings, so he can employ lots of user 
interaction and make excellent effect. But in 
real-time implementation we can only introduce very 
little indication by automatically composing 
indication map. Our implementation involves two 
measures. 

The indication fields should be depicted with 
fewer details, and therefore the basic principle is to 
generate indication in the area far from outlines. Our 
first measure borrows the idea “field” [Bei92] to 

evaluate indication. In Winkenbach’s work, user 
distributes some “detail segments” along silhouettes 
on prepared image and calculates a field w1(x, y) for 
each pixel according to these segments. In this 
calculation, l indicates the nearest “detail segment” 
labeled by user and a1, b1, c1 are used to adjust the 
weight. 
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Without interactively placing “detail segments”, 
we have to generate a rough field map for every 
frame. An easy approach to achieve the fast 
distributing requirement is to produce a “General 
Field Map (GFM)”, and attach this GFM to each 
plane as texture. GFM should be preprocessed 
according to w1(x, y), simply with its edges indicating 
l. The field maps will transform with the scene 
objects and the indication map of each frame would 
be composed by them. Figure 3 can illustrate the 
main idea. 

Figure 3: (a) General Field Map: produced 
according to w1(x, y), and l indicates the edge 
of the square map. (b) Composed Field map: 
Indication appears in dark areas while the 
lighter the more details to appear. 

  
Without loss of generality, the square GFM can 

apply to various polygons by adjusting their texture 
coordinates. This method can work pretty well when 
the scene is built up by planes connected edge by 
edge. However, when it comes to curving surface and 
the intersection of two surfaces, this method seems a 
little helpless. The area of intersection can not be 
totally weighted with detail by indication of GFM. In 
implementation, we can avoid intersection of planes 
by incising the big plane into small pieces at the 
place of intersection. But it is not a generic approach 
and lead to a heavy workload on modeling. 

Our second measure deals with the indication by 
silhouette. In normal depth map, at each pixel, we 
uniformly sample nearby pixels around it with a 
certain distance R. Then the difference between 
central and nearby sampling pixels of normal and 
depth map can be calculated and compared to a 
threshold to detect whether the two pixels are 
separated by silhouettes. And the field of the central 
pixel can be weighted by: 
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N(x, y, R) equals the number of the nearby pixels 
apart from central pixel by silhouette, where R is the 
radius of sampled pixel from center. And distance of 
the current central pixel from silhouette can be 
weighted by a field(n). This approach can 
approximate field weight limited to the area of 
distance R from silhouettes. The precision of field 
can be enhanced by increasing the sampling pixel 
number whereas could be very time consuming. Then 
we have to weigh a tradeoff between precision and 
running efficiency. 

(a) 

By integrating the above two measures, we can 
cover most of the high-weight fields (detailed) and 
approximate the indication area successfully. The 
overall field weight can be evaluated by: 

(c) (d) 
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Direction Control 
In the ideal state, strokes are supposed to follow the 
principal direction in each pixel. However, when 
scaled or rotated, a polygonal plane will be distorted 
and UV direction within different areas of the plane 
can never be kept in parallel. This is not a great 
problem in object-space because the stroke textures 
could be attached to facets along UV direction and 
these textures are being transformed with objects. 
Nevertheless, strokes can be seriously compressed 
and aliased when facets are nearly perpendicular to 
the screen. Even TAM textures in object-based 
methods can not perfectly settle this problem. 

(e) (f) 

In image-space, we only need to concentrate on the 
UV direction problem as the strokes can be 
uniformly distributed through the whole screen space 
and they will not be distorted in size. In our 
algorithm, UV direction has been designated in the 
object space. When rasterized, in each pixel, UV 
direction will be transformed to the angle deviated 
from the X axis and be stored in G-buffer. Then in 
texture mapping, each pixel’s coordinates should be 
applied to rotation matrix according to the UV map. 
In the UV coordinates’ transformation, serious 
aliasing occurs as the stroke direction changes 
continuously. To get local coherence, we set a 
threshold T so that the direction can only change in 
leap. This can be simply implemented as: 
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The process is demonstrated in the Figure 4. To 
show the direction transformation clearly, only one 
tone has been used in the following illustration. And 
the result image with direction and tone control is 
shown in Figure 5 

 

(b) 

Figure 4: Stroke direction control. (a) UV 
direction vectors attached to each plane 
transform with coordinates transformation. (b) 
Record UV rotation angle to G-buffer. (c)&(d) 
adjust the texture coordinates to sample stroke 
texture. Red lines indicate stroke textures 
direction. Black lines indicate UV directions. 
To be noticed, texture coordinates should be 
rotated an inverse angle of UV direction. (e) 
Stroke directions without the threshold 
subsection. (f) Stroke directions with threshold 
subsection. 

Figure 5: Hatching with stroke direction: 
This figure also includes tones and outlines. 

 

 

 

 

 

 

 

 

 

 

 

 



4. IMPLEMENTATION 
Our image-based hatching system takes advantage 

of GPU hardware ability, and is able to render scenes 
in a few passes to achieve multiple features in 
real-time. Optionally, we could skip some of features 
to pursuit high frame rate or to make one of them 
more distinct. The choice lies on the user. Figure 6 
illustrates the relation between G-buffer and features. 
The composed images are illustrated in Figure 8. 
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The implementation is based on C++ and OpenGL. 
The framework runs with a 1.2 GHz CPU and 
Radeon 9550 graphics card which can provide us 
Pixel Shader2.0 functionality. Many tools can be 
used to record G-buffer attributes as texture images, 
like “RenderTexture”, “PBuffer” and etc. We choose 
hardware supported “Frame Buffer Object” which is 
proved to be the fastest. To add all the mentioned 
features, we need our scenes go through 6 passes. In 
each pass, special shader is designed for desired 
rendering purpose. The following framework 
pipeline (in Figure 7) can illustrate the whole 
process. 

With the six passes, a comprehensive balance strategy 
is considered in our approach. We try to compress two 

or more shaders into one pass while avoiding the 
overload in single shader or possible bottle neck. The 

shadow buffer can be integrated into the 
Outline&Indication buffer, each of which occupies one 

color channel originally, so as to reduce sampling 
computation in Pass 6. In Pass 2, RGBA channels can 
not be shared with other buffer because they are fully 

occupied by Normal&Depth buffer. In Pass 3, direction 
buffer is stored as (cosU, sinU, cosV, sinV) in RGBA. 

As for Pass 4, the edge-detection on textures is 
performed since the textures themselves also have 

complicate paintings and we would like their edges to 
be accentuated. And tone value in Pass 4 needs only 

one channel if the hatching image is in grey level 
without color texture. 

5. CONCLUSION and FUTURE WORK 
In this paper, we present a system for image-based 
hatching that can efficiently render 3-D scenes in 
real-time by GPU. The power of GPU brings facility 
to the implementation of our rendering algorithm and 
makes it possible that lots of features can be 
integrated into rendering in real-time. The main 
contribution of this paper is that of simulating the 
idea of indication in pen-and-ink paintings and stroke 
direction controlling in image space. Both of them 
can make the painting more natural, reveal objects’ 
shape and weaken the “shower door” effect to some 
extent,. 

Figure 6: Relation between G-buffer and 
features 

However, our approach of stroke direction control 
may cause the stroke to be ruptured and lose spatial 
coherence when directions vary sharply in small area. 
Therefore, our future work aims to maintain the full 
coherence while revealing the stroke direction. In 
addition, our approach to generate indication is not so 
effective in complicated scenes. The implementation 
of the “field map” could be improved by using the 
ability to write texture in pixel shader in up-to-date 
GPU. Then many of samplings are not necessary 
when approximating the indication field, which costs 
lots of computation. Furthermore although the 
“shower door” effect is reduced in our approach, 
further effort is needed to eliminate it thoroughly.  
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Figure 8: Different combination of features 
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