
Image-based Real-time Hatching of Scene Traveling

Jiajun Bu Wen Yan Chun Chen Mingli Song
College of Computer Science

Zhejiang University
P.R.China 310027, Hangzhou

 bjj@zju.edu.cn yanwen@cad.zju.edu.cn {chenc,brooksong}@zju.edu.cn

ABSTRACT
Real-time rendering of a complete 3D scene with hatching strokes is an important direction in NPR field. In this
paper, a comprehensive solution is presented to render complicate scenes with pen-and-ink style in real time.
With the help of powerful programmable graphics hardware, our real-time system includes many features as
hatching, continuous tones, silhouettes, and shadows. We build our approach in image-space, while allowing for
the stroke directions and frame coherence.

In our method, various features of pen-and-ink drawings are derived from 3-D information through multi-pass
rendering. After synthesis, the desired shading tone is achieved by mapping preprocessed stroke textures to the
screen. As a tip for saving texture memory, we prepare a few stroke textures with only certain tones and
directions, and compose requisite stroke types in real time. Furthermore, we develop some forms of “indication”
to convey the impression of a texture without drawing every single stroke, which makes the result look more
natural and art-stylized.

Keywords
Non-photo realistic rendering, real-time hatching, texture indication, G-buffer

1. INTRODUCTION
Pen-and-ink drawing is an important form of pictorial
representation [Art77] and an effective way to
convey lighting, directions and texture properties. It
turns to be a key research branch in
non-photorealistic rendering which brings lots of
art-like styles. Several features of current GPU-the
programmable graphics hardware, can be used to
facilitate the art-like real-time rendering, such as
large texture capacity, screen texture, multipass
rendering, per-pixel process, etc. Currently, many
pen-and-ink systems aim to add more features to
their renderings while maintaining high frame rate.
Most of these systems prefer stroke textures that keep
series styles of stroke hatching rather than generating
every single stroke in real-time because it is too
time-consuming.

In order to generate the pen-and-ink drawing

automatically, two types of approaches have been
evolved: pen-and-ink drawing in object space and
that in image space. The former, called object-based
method, attaches stroke textures to polygonal
surfaces and render scenes in the traditional
rendering pipeline. The latter, called image-based
method, parses the scene to get information like tone,
silhouette and texture properties and project stroke
texture to screen space to achieve different features.

Both these two approaches have merits and
demerits. In object-based methods, frame-to-frame
coherence can be achieved easily by attaching the
stroke texture to scene objects. In this way, strokes
can always move with their corresponding objects,
and therefore temporal coherence is preserved.
However, such methods cannot simulate certain
expressive drawing styles conveniently, such as
allowing strokes to cross boundaries. Besides,
object-based methods require 3D geometry with
proper texture coordinates and consequently cannot
be applied to images or videos. Moreover, strokes in
the screen space are preferred to be independent of
the object scale and orientation, namely, uniformly
distributed, which is hard to achieve in object-based
approaches.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Conference proceedings ISBN 80-86943-03-8
WSCG’2006, January 30-February 3, 2006
Plzen, Czech Republic.

On the other hand, image-based methods
overcome many restrictions of object-based methods
while introducing some new challenges. They are
never fettered by the boundary problem. With Copyright UNION Agency – Science Press

image-based technique, strokes can cross polygon
edges naturally and be uniformly distributed.
However, image-based methods suffer from the
undesirable “shower door” effect, which seems that
strokes “stick” in screen space independent of object
movement. Another problem is that the image-based
methods are difficult to control stroke directions to
represent scene objects’ shapes as ideally as the
object-based methods do.

In this paper, we present a novel image-based
system that not only preserves the image-based
advantages but also adds control to stroke directions
as well as reducing “shower door” effect. Our system
applies multipass rendering and makes plenty use of
G-buffer to achieve desired drawing features. The
problem of “stroke direction” mentioned above is
tackled by introducing UV map, which stores the
pairs of principal directions of each pixel. UV map,
produced in rendering pass, is conveyed as a kind of
G-buffer for following step to adjust the stroke
direction. The direction angle in a certain range is
resolved into a same degree in order to avoid too
dense variation which usually causes strokes to be
severed. Also, by adoption of directions, the “shower
door” problem can be weakened because strokes
always changes with object’s shape and orientation
according to view transformation. Moreover, we
bring in the idea of indication to enhance the artistic
effect of hatching which can also fortify the tone
variation and outlines.

The remainder of this paper is organized as
follows. In Section 2, we review previous work. The
novel rendering algorithm is described in Section 3.
A discussion of the implementation and results
follows in Sections 4 and 5. The paper ends with a
short conclusion and an outlook on future work.

2. Previous Work
Our work aims to render 3D scenes in real time with
stroke textures to represent tone, silhouettes, shadows
and etc, while avoiding the monotony stroke
direction and spatial discontinuity. Related work
includes automatic generation of pen-and-ink
illustration and silhouettes from 3D scenes, real-time
hatching.

Off-line rendering:
Lots of previous work focused on generating
high-quality pen-and-ink drawing in an off-line
process. Some aimed to create still images of 3D
scenes [Deu00, Sai90, Win94, Win96, Sal97, Elb99,
Sou99a, Sou99b, Her00]. Saito and Takahashi [Sai90]
post-process the rendered framebuffer and overlay
image-space strokes. Winkenbach and Salesin
[Win94], and Salisbury et al. [Sal97] introduce
prioritized stroke textures, which can indicate both
texture and tone. Despite the great advance in

processing performance, the sheer stroke-drawing
hinder these methods from running in real-time.
Real-time Outlines:
Outlines can be generalized as silhouettes,
boundaries and creases. They are widely used in
various kinds of NPR drawings. Several previous
approaches tried to generate outlines in interactive
rate [Elb99, Goo99, Her99, Mar97, Nor00, Ras99,
Her00, Ras01]. These works can also be divided into
two ways: image-based and object-based. The
image-based methods often use rendered images as
input and are limited by images’ resolution. But they
are more efficient, easy to implement and sufficient
for most projects. The work of Gooch et al. [Goo99]
and Raskar [Ras99] can be a typically representation
of image-based approach. Object-based approaches
aim to produce more precise outlines which are more
suitable for additional processing. Hertzmann and
Zorin [Her00] create high-quality silhouettes based
on geometric duality. Raskar [Ras01] has developed
a hardware-support approach to generate outlines by
introducing new polygons with only polygonal
vertices as input.

Real-time hatching:
Durand et al. [Dur01] create hatched images from
photographs in real-time using hardware acceleration
to perform anti-aliased threshold. Markosian et al.
[Mar97] introduced a simple hatching style indicative
of a light source near the camera, by scattering a few
strokes on the surface near (or parallel to) silhouettes.
Elber [Elb99] shows how to render line art for
parametric surfaces in real time; he renders objects
by choosing a fixed density of strokes on the surface.
Lake et al. [Lak00] describe an interactive hatching
system with stroke coherence in image space.

Freudenberg [Fre01a] builds mipmap texture with
uniform lines while maintaining the frame-coherence
in blending. Praun et al. [Pra01] suggested tonal art
map (TAM) for real-time hatching. This algorithm
maintains frame-to-frame coherence using a “stroke
nesting property”, where strokes on a TAM image
appear in all the darker images of the same resolution
and in the higher resolution images of the same tone.
Praun et al. [Pra02] improved their work by
providing control of tone to avoid blending and
aliasing artifacts in original system. Fung [Fun03]
extends the TAM approach and enable generating
TAM images of arbitrary textures. Freudenberg’s
approach [Fre01b, Fre04] express different halftone
patterns with stroke textures and implement fast
halftone rendering with pixel shading hardware.

3. OUR NOVEL APPROACH
In our pen-and-ink drawing system, the basic features
are achieved, like desired tone, outlines and shadows.
In the meanwhile, we try to describe the shape of
scene objects by fine control of the stroke direction

and give the viewer some indications to avoid
monotony. The tone aims at simulating the light
shading and can be achieved by composition of TAM
(Tonal Art Map) [Pra01] which are generally texture
groups of continuous tone and resolution. Because
our process is image-based, we need only the finest
resolution of the TAM textures. With the aid of
G-buffer, 3-D scenes are rendered through several
passes to acquire different features. And the
indication is generated based on the tip that areas
around edges should be paid more ink than the broad
unanimous areas which are usually the center of a
large surface.

Tone Expression
The terms “value” and “tone” have the same meaning
when referred to the amount of visible light reflected
from a point to the viewer’s eyes. We can use
arbitrary lighting model to evaluate the tone at each
pixel. The desired tone can be achieved by
controlling the ratio of black ink and white paper and
we need construct a sequence of hatching images
with discrete tones. Abiding by the nesting principle
of TAM, our stroke texture series consists of 6 levels
of tone in single resolution, as illustrated in Figure 1.
This ensures that strokes in the image of lighter tone
will also appear in the image of darker tone and
therefore temporal coherence (continuity in tone) can
be maintained. Actually we only prepare three
textures of lighter tone and compose the remainder
hatching textures with preceding ones. This strategy
can lend economy to texture memory and flexibility
to direction control. Since automatic generation of
TAM textures is not the goal of this paper, we just
use the finest level of TAM textures from Praun’s
work [Pra01]. In final rendering process, each pixel
will be sampled with blend between two textures of
consecutive tones.

G-buffer Utility
G-buffer was put forward by Saito and Takahashi
[Sai90]. It is a conception that the 2D data structure
can be coded to store 3D information. In the
rendering process, certain 3D information can be
stored into a texture image, each pixel of which
should record relevant 3D surface’s certain kind of
value. The powerful pixel shader can do us a favor to
store desired 3D information in RGBA color
channels. G-buffer can include many kinds of 3D
properties, such as Z buffer, normal buffer, material
buffer, shadow buffer, and etc. The following buffers
are employed in our system:

 Z buffer: each pixel’s corresponding vertex’s
depth information. Need one float storage.

 Normal buffer: each pixel’s corresponding
vertex’s normal value. Need three-float storage.

 Shadow buffer: shadow map in the view from the
light point for each light. The depth value from
light point to nearest pixel. Need one float
storage.

 UV buffer: principal directions of each pixel
recorded as two rotation angle from x-axis or
their sine/cosine value. Need at least two-float
storage.

To produce these buffers, the rendering process go
through several passes and in some cases, two kinds
of buffers can be acquired in single pass.
Accordingly, two buffers can share one texture image
as storage in separate color components. The detail
of the rendering process will be mentioned in the
Section 4.

Using the G-buffer mentioned above, we can
easily generate various features for pen-and-ink
drawings. All these features are well developed for
many different methods both in image space and
object space. For the sake of real-time rendering, we
adopt the most effective approaches that can be
implemented easily. The following will briefly
review these classical methods.

Outline: For polygonal meshes, outlines at
silhouettes, ridges, valleys are the key edges for their
shape. The silhouette edges consist of edges that are
shared by both back-facing polygons and front-facing
polygons. A ridge is a crease edge whose dihedral
angle between adjacent polygons is less than a
threshold while a valley’s dihedral the angle is
greater than a threshold.

To generate the outline, normal and depth buffers
are transferred to a pixel shader which is a filter for
postprocessing. For this filter, all we need is to
sample pixels around our current pixel and make a
comparison between the calculated value and
threshold. When detecting silhouettes, it just needs to

Figure 1. Tonal Map Series. The nether 3 are
composed from upper 3 with different
rotation angle. Here are only the upright
directions.

check whether the z value of each sampler’s normal
is of the same sign. When detecting creases, we apply
Sobel filter as our convolution matrix to the samplers.
Let I(x, y) be a grayscale image. Edge images of I are
computed by discrete 2D convolution:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −−−
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−
−

=
121
000
121

,
101
202
101

yx SS

yyxx SyxIyxISyxIyxI ⊗=⊗=),(),(,),(),(
The optimistic estimation of gradient can be
measured as:

),(),(),(22 yxIyxIyxI yxmag +=

Actually, when implemented, even Ix+Iy will be
acceptable. And the edge can be detected by the
equation below:

⎪⎩

⎪
⎨
⎧

⎭
⎬
⎫

<
≥

=
TyxI
TyxI

yxEdge
mag

mag

),(
),(

0
1

),(

Shadow： The approach of shadow map [Seg92] is
very suitable for our G-buffer framework. It is a
two-pass algorithm. In the first pass, depth map or
shadow map can be rendered as mask in view of
light’s point and naturally stored in G-buffer. Each
pixel of the map records the depth of closest pixel to
the light. In the second pass, the scene will be
rendered from the eye’s point while each rasterized
fragment’s XYZ position is determined relative to the
light in order to match the frustum used to create the
shadow map. If fragment’s light position Z is greater
than the depth value at light position XY in the depth
map, this fragment is shadowed. Shadow map is
stored as a kind of G-buffer.

Indication
The idea of adding some indication is most inspired
by the work of Winkenbach who listed indication as
one of pen-and-ink drawing’s principles. In merits,
“Indication” lends economy to an illustration, and
also makes an illustration more impressive by
engaging the imagination of the viewer rather than
revealing everything. Winkenbach aimed to produce
static drawings, so he can employ lots of user
interaction and make excellent effect. But in
real-time implementation we can only introduce very
little indication by automatically composing
indication map. Our implementation involves two
measures.

The indication fields should be depicted with
fewer details, and therefore the basic principle is to
generate indication in the area far from outlines. Our
first measure borrows the idea “field” [Bei92] to

evaluate indication. In Winkenbach’s work, user
distributes some “detail segments” along silhouettes
on prepared image and calculates a field w1(x, y) for
each pixel according to these segments. In this
calculation, l indicates the nearest “detail segment”
labeled by user and a1, b1, c1 are used to adjust the
weight.

1))),,(((),(111
clyxdisbayxw −×+=

Without interactively placing “detail segments”,
we have to generate a rough field map for every
frame. An easy approach to achieve the fast
distributing requirement is to produce a “General
Field Map (GFM)”, and attach this GFM to each
plane as texture. GFM should be preprocessed
according to w1(x, y), simply with its edges indicating
l. The field maps will transform with the scene
objects and the indication map of each frame would
be composed by them. Figure 3 can illustrate the
main idea.

Figure 3: (a) General Field Map: produced
according to w1(x, y), and l indicates the edge
of the square map. (b) Composed Field map:
Indication appears in dark areas while the
lighter the more details to appear.

Without loss of generality, the square GFM can

apply to various polygons by adjusting their texture
coordinates. This method can work pretty well when
the scene is built up by planes connected edge by
edge. However, when it comes to curving surface and
the intersection of two surfaces, this method seems a
little helpless. The area of intersection can not be
totally weighted with detail by indication of GFM. In
implementation, we can avoid intersection of planes
by incising the big plane into small pieces at the
place of intersection. But it is not a generic approach
and lead to a heavy workload on modeling.

Our second measure deals with the indication by
silhouette. In normal depth map, at each pixel, we
uniformly sample nearby pixels around it with a
certain distance R. Then the difference between
central and nearby sampling pixels of normal and
depth map can be calculated and compared to a
threshold to detect whether the two pixels are
separated by silhouettes. And the field of the central
pixel can be weighted by:

2))),,(((),(222
cRyxNfieldbayxw −×+=

)()(λα β += nnfield

N(x, y, R) equals the number of the nearby pixels
apart from central pixel by silhouette, where R is the
radius of sampled pixel from center. And distance of
the current central pixel from silhouette can be
weighted by a field(n). This approach can
approximate field weight limited to the area of
distance R from silhouettes. The precision of field
can be enhanced by increasing the sampling pixel
number whereas could be very time consuming. Then
we have to weigh a tradeoff between precision and
running efficiency.

(a)

By integrating the above two measures, we can
cover most of the high-weight fields (detailed) and
approximate the indication area successfully. The
overall field weight can be evaluated by:

(c) (d)

),(),(),(21 yxwbyxwayxw ×+×=

Direction Control
In the ideal state, strokes are supposed to follow the
principal direction in each pixel. However, when
scaled or rotated, a polygonal plane will be distorted
and UV direction within different areas of the plane
can never be kept in parallel. This is not a great
problem in object-space because the stroke textures
could be attached to facets along UV direction and
these textures are being transformed with objects.
Nevertheless, strokes can be seriously compressed
and aliased when facets are nearly perpendicular to
the screen. Even TAM textures in object-based
methods can not perfectly settle this problem.

(e) (f)

In image-space, we only need to concentrate on the
UV direction problem as the strokes can be
uniformly distributed through the whole screen space
and they will not be distorted in size. In our
algorithm, UV direction has been designated in the
object space. When rasterized, in each pixel, UV
direction will be transformed to the angle deviated
from the X axis and be stored in G-buffer. Then in
texture mapping, each pixel’s coordinates should be
applied to rotation matrix according to the UV map.
In the UV coordinates’ transformation, serious
aliasing occurs as the stroke direction changes
continuously. To get local coherence, we set a
threshold T so that the direction can only change in
leap. This can be simply implemented as:

⎣ ⎦ TTangleabsanglesignangle ××= /)()(

The process is demonstrated in the Figure 4. To
show the direction transformation clearly, only one
tone has been used in the following illustration. And
the result image with direction and tone control is
shown in Figure 5

(b)

Figure 4: Stroke direction control. (a) UV
direction vectors attached to each plane
transform with coordinates transformation. (b)
Record UV rotation angle to G-buffer. (c)&(d)
adjust the texture coordinates to sample stroke
texture. Red lines indicate stroke textures
direction. Black lines indicate UV directions.
To be noticed, texture coordinates should be
rotated an inverse angle of UV direction. (e)
Stroke directions without the threshold
subsection. (f) Stroke directions with threshold
subsection.

Figure 5: Hatching with stroke direction:
This figure also includes tones and outlines.

4. IMPLEMENTATION
Our image-based hatching system takes advantage

of GPU hardware ability, and is able to render scenes
in a few passes to achieve multiple features in
real-time. Optionally, we could skip some of features
to pursuit high frame rate or to make one of them
more distinct. The choice lies on the user. Figure 6
illustrates the relation between G-buffer and features.
The composed images are illustrated in Figure 8.

Silhouette

Depth

Shadow

UV

Normal

 Indication

Direction

ToneTexture &Light

Shadow

Figure 8a

Figure 8b

Figure 8c

Figure 8d

The implementation is based on C++ and OpenGL.
The framework runs with a 1.2 GHz CPU and
Radeon 9550 graphics card which can provide us
Pixel Shader2.0 functionality. Many tools can be
used to record G-buffer attributes as texture images,
like “RenderTexture”, “PBuffer” and etc. We choose
hardware supported “Frame Buffer Object” which is
proved to be the fastest. To add all the mentioned
features, we need our scenes go through 6 passes. In
each pass, special shader is designed for desired
rendering purpose. The following framework
pipeline (in Figure 7) can illustrate the whole
process.

With the six passes, a comprehensive balance strategy
is considered in our approach. We try to compress two

or more shaders into one pass while avoiding the
overload in single shader or possible bottle neck. The

shadow buffer can be integrated into the
Outline&Indication buffer, each of which occupies one

color channel originally, so as to reduce sampling
computation in Pass 6. In Pass 2, RGBA channels can
not be shared with other buffer because they are fully

occupied by Normal&Depth buffer. In Pass 3, direction
buffer is stored as (cosU, sinU, cosV, sinV) in RGBA.

As for Pass 4, the edge-detection on textures is
performed since the textures themselves also have

complicate paintings and we would like their edges to
be accentuated. And tone value in Pass 4 needs only

one channel if the hatching image is in grey level
without color texture.

5. CONCLUSION and FUTURE WORK
In this paper, we present a system for image-based
hatching that can efficiently render 3-D scenes in
real-time by GPU. The power of GPU brings facility
to the implementation of our rendering algorithm and
makes it possible that lots of features can be
integrated into rendering in real-time. The main
contribution of this paper is that of simulating the
idea of indication in pen-and-ink paintings and stroke
direction controlling in image space. Both of them
can make the painting more natural, reveal objects’
shape and weaken the “shower door” effect to some
extent,.

Figure 6: Relation between G-buffer and
features

However, our approach of stroke direction control
may cause the stroke to be ruptured and lose spatial
coherence when directions vary sharply in small area.
Therefore, our future work aims to maintain the full
coherence while revealing the stroke direction. In
addition, our approach to generate indication is not so
effective in complicated scenes. The implementation
of the “field map” could be improved by using the
ability to write texture in pixel shader in up-to-date
GPU. Then many of samplings are not necessary
when approximating the indication field, which costs
lots of computation. Furthermore although the
“shower door” effect is reduced in our approach,
further effort is needed to eliminate it thoroughly.

Render Scene
Light

viewpoint

Pass 1

Shadow shader

N-D shader

Outline and
Indication Map

Shadow Map

UV shader

UV map

Nomal Depth Map

Eye
viewpoint

Pass 2

Sobel shader

Pass 3

Pass 4

L&T shader

Tone

Composite shader

 Pass 5

Pass 6

6. REFERENCES
[Art77] Arthur, L. Guptill. Rendering in Pen and Ink.

Watson-Guptill Publications, New York, 1977.
[Bei92] Beier, T. and Neely, S. Feature-based image

metamorphosis. Proceedings of SIGGRAPH ’92
In Computer Graphics 26, 2 (July 1992), 35–42. hatching

[Sai90] Saito, T. and Takahashi, T. Comprehensible
Rendering of 3D Shapes. Proceedings of
SIGGRAPH 90, pp. 197–206.

Figure 7: Multipass Rendering Pipeline. Blue
component indicates input data. Green ones
indicate rendering shaders and yellow ones
indicate G-buffer after each pass. [Win94] Winkenbach, G. and Salesin, D.H.

Computer-Generated Pen-and-Ink Illustration.
Proceedings of SIGGRAPH 94, Computer
Graphics, Annual Conference Series, pp. 91–100.

[Sal97] Salisbury, M.P., Wong, M.T., Hughes, J.F.,
and Salesin, D.H. Orientable Textures for
Image-Based Pen-and-Ink Illustration.
Proceedings of SIGGRAPH 97, pp. 401–406.

[Deu00] Deussen, O., and Strothotte, T.
Computer-Generated Pen-and-Ink Illustration of
Trees. Proceedings of SIGGRAPH 2000, 13–18.

[Elb99] Elber, G. Interactive Line Art Rendering of
Freeform Surfaces. Computer Graphics Forum 18,
3 (September 1999), pp. 1–12.

[Sou99a] Sousa, M.C., and Buchanan, J.W.
Observational Model of Blenders and Erasers in
Computer-Generated Pencil Rendering.
Proceedings of Graphics Interface’99, 157 – 166.

[Sou99b] Sousa, M.C., and Buchanan, J. W.
Computer-Generated Graphite Pencil Rendering
of 3D Polygonal Models. Computer Graphics
Forum 18, 3 (September1999), pp. 195–208.

[Win96] Winkenbach, G., and Salesin, D.H.
Rendering Parametric Surfaces in Pen and Ink.
Proceedings of SIGGRAPH 96, pp. 469–476.

[Her00] Hertzmann, A., and Zorin, D. Illustrating
Smooth Surfaces. Proceedings of SIGGRAPH
2000, Computer Graphics, Annual Conference
Series, pp. 517–526.

[Goo99] Gooch, B., Sloan, P.-P. J., Gooch, A.,
Shirley, P., and Riesenfeld, R. Interactive
Technical Illustration. 1999 ACM Symposium on
Interactive 3D Graphics, pp. 31–38.

[Mar97] Markosian, L., Kowalski, M.A., Trychin,
S.J., Bourdev, L.D., Goldstein, D., and Hughes,
J.F. Real-Time Nonphotorealistic Rendering.
Proceedings of SIGGRAPH 97, pp. 415–420.

[Nor00] Northrup, J.D., and Markosian, L. Artistic
Silhouettes: A Hybrid Approach. Proceedings of
NPAR 2000, pp. 31–38.

[Ras99] Raskar, R., and Cohen, M. Image Precision
Silhouette Edges. 1999 ACM Symposium on
Interactive 3D Graphics, pp. 135–140.

[Ras01] Raskar.R Hardware Support for
Non-photorealistic Rendering. 2001 Proceedings
of the ACM SIGGRAPH/EUROGRAPHICS
workshop on Graphics hardware, pp. 41-47

[Her99] Hertzmann, A. Introduction to 3D
Non-Photorealistic Rendering: Silhouettes and
Outlines. SIGGRAPH Course Notes. 1999.

[Lak00] Lake, A., Marshall, C., Harris, M., and
Blackstein, M. Stylized Rendering Techniques for
Scalable Real-Time 3d Animation. Proceedings
of NPAR2000, pp.13–20.

[Pra01] Praun, E., Hoppe, H., Webb, M., and
Finkelstein, A. Real-Time Hatching. Proceedings
of SIGGRAPH 2001, Computer Graphics,
Annual Conference Series, pp. 579-584.

[Pra02] Webb, M., Praun, E., Finkelstein. A., and
Hoppe, H. Fine Tone Control in Hardware
Hatching. Proceedings of NPAR 2002. pp. 53-58

[Fre01a] Freudenberg, B., Masuch, M. and Strothotte,
T. Walk-Through Illustrations: Frame-Coherent
Pen-and-Ink Style in a Game Engine. Proceedings
of Eurographics 2001, pp. 184-191.

[Fun03] Fung, J., Veryovka, O. Pen-and-ink textures
for real-time rendering. Proceedings of Graphics
Interface 2003. pp. 131-138

[Fre04] Freudenberg, B., Masuch, M. and
Strothotte, T. Real-Time Halftoning: Fast and
Simple Stylized Shading. Game Programming
Gems 4, Charles River Media, 2004.

[Fre01b] Freudenberg, B. Real-Time Stroke Textures.
SIGGRAPH 2001 Conference Abstracts and
Applications, pp. 252.

[Seg92] Mark Segal, Carl Korobkin, Rolf van
Widenfelt, Jim Foran, Paul Haeberli: Fast
shadows and lighting effects using texture
mapping. SIGGRAPH 1992, pp.249-252.

[Dur01] Durand, F., Ostromoukhov, V., Miller, M.,
Duranleau, F. and Dorsey, J. Decoupling Strokes
and High Level Attributes for Interactive
Traditional Drawing. Proceedings of
Eurographics Rendering Workshop 2001, pp.
71-82.

http://sunsite.informatik.rwth-aachen.de/dblp/db/indices/a-tree/k/Korobkin:Carl.html
http://sunsite.informatik.rwth-aachen.de/dblp/db/indices/a-tree/w/Widenfelt:Rolf_van.html
http://sunsite.informatik.rwth-aachen.de/dblp/db/indices/a-tree/w/Widenfelt:Rolf_van.html
http://sunsite.informatik.rwth-aachen.de/dblp/db/indices/a-tree/f/Foran:Jim.html
http://sunsite.informatik.rwth-aachen.de/dblp/db/indices/a-tree/h/Haeberli:Paul.html
http://sunsite.informatik.rwth-aachen.de/dblp/db/conf/siggraph/siggraph1992.html#SegalKWFH92

(a) (b)

(c) (d)

Figure 8: Different combination of features

	1. INTRODUCTION
	2. Previous Work
	3. OUR NOVEL APPROACH
	Tone Expression
	G-buffer Utility
	Indication
	Direction Control
	4. IMPLEMENTATION
	5. CONCLUSION and FUTURE WORK
	6. REFERENCES

