
Load Balancing on
Cluster-Based Multi Projector Display Systems

Marcus Roth
Fraunhofer IGD Darmstadt

Fraunhofer Str. 5
64283 Darmstadt, Germany
marcus.roth@igd.fhg.de

Patrick Riess
Fraunhofer IGD Darmstadt

Fraunhofer Str. 5
64283 Darmstadt, Germany
patrick.riess@igd.fhg.de

Dirk Reiners
Human-Computer Interaction

Iowa State University
Ames, IA 50011, US

dreiners@iastate.edu

ABSTRACT
Sort-first or image space parallel rendering has been the subject of a significant amount of research. Its limited
scalability is well known. Nevertheless, sort-first has noticeable advantages over other approaches: it has moderate
and predictable communication overhead, and it has no problems with multipass or transparent rendering. Especially
for multi-projector display systems, driven by a cluster of standard PCs with limited network bandwidth, it is the first
choice to achieve interactive frame rates. In this paper we present an approach to do load balancing for arbitrary multi
projector systems, based on a sort-first approach.

Keywords
multidisplay, cluster, sortfirst, realtime

1. INTRODUCTION
Many different multi projector display systems have
been developed in the past two decades, mainly de-
signed to overcome the restrictions of a single display.
Multi projector displays like tiled walls provide a higher
resolution, while systems like a Cave or a curved display
allow a larger field of view. Nowadays, most of these
systems are driven by a cluster of standard PCs. All of
these displays are based on a static sort-first rendering,
where each projector is responsible for a predefined part
of the display. On a tiled display each projector is re-
sponsible for a rectangular region of the wall, and in a
Cave a projector is assigned to one of the display walls.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Conference proceedings ISBN 80-86943-03-8 WSCG2006,
January 30-February 3, 2006 Plzen, Czech Republic.
Copyright UNION Agency Science Press

There are many different ways to construct a multi pro-
jector system, like having mono or stereo displays us-
ing active or passive stereo and with different amounts
of overlap between tiles for edge blending. This pa-
per describes how to configure a cluster based render-
ing system which can be used for arbitrary displays. As
each projector has a predefined responsibility, the ren-
dering performance is limited by the projector showing
the most complex content. In the majority of cases the
rendering load is not spread equally between the respec-
tive projections. As a result of this the performance can
be enhanced if a PC which is connected to a display with
low rendering load, absorbs a part of the load from a PC
with high rendering load. To achieve this, a dynamic
load balancing is necessary as load can change from
frame to frame. The performance can be further en-
hanced if the number of parallel rendering PCs is inde-
pendent of the number of projectors. This paper demon-
strates how to utilize all the rendering performance of a
cluster, where a subset of the PCs are connected to a pro-
jection system. Multi projector displays can be built in
large scale. For example the HEyeWall of the Fraunhofer
IGD in Darmstadt uses 48 projectors to build a stereo-
scopic tiled display with a resolution of 6144 x 3072
pixels. Currently there is no cluster network hardware

available to achieve a scene distribution (sort-last) par-
allel rendering on a display with 18 megapixels at inter-
active framerates. Additionally, current graphics cards
are not able to render a part of the scene at full screen
resolution, which is needed for direct sort-last render-
ing. As a consequence, the focus of this paper is on
image distribution (sort-first) parallel rendering for load
balancing on multi projector systems.

Load balancing can be split into two tasks: the estima-
tion and the actual balancing of the load. The estimation
needs to be both accurate and fast, which are contradic-
tory goals. This paper presents a new estimation func-
tion that can be calculated efficiently, but also takes dif-
ferent aspects of the rendering load into account. This
estimation function can be used to reduce the overlap
factor that is responsible for the limited scalability of
sort-first.

2. PREVIOUS WORK
A lot of work has been done for parallel rendering.
In many cases algorithms were proposed to be imple-
mented in hardware, but in the last few years an in-
creasing number of algorithms have been developed that
are optimized for cluster rendering. The classification
of parallel rendering algorithms in sort-first, sort-middle
and sort-last was proposed by Molnar et.al. [MCE94].
For software implementation only sort-first and sort-last
approaches are usable.

With sort-first the screen is split into regions that are ren-
dered in parallel, whereas sort-last splits the scene into
independent parts to be processed simultaneously. In a
cluster system with sort-first only the color of a pixel
has to be transferred over a network to compose a final
image. With sort-last the whole frame buffer with color
and depth information of each rendering node has to be
transferred for this purpose. Without the image compo-
sition step sort-last scales nearly linearly with the num-
ber of rendering nodes, as the rendering of scene parts
is completely independent of each other. Sort-first does
not scale very well because scene objects that are visi-
ble on more than one region have to be rendered multi-
ple times. The influence of the overlap factor has been
discussed in [MCE94].

To reduce the amount of data that needs to be trans-
fered and to utilize the bandwidth and processing power
of the cluster for sort-last a number of algorithms have
been developed. One of the most popular ones is bi-
nary swap [MPH94], allowing interactive rendering on
low resolution displays. Hybrid approaches have been
proposed to achieve the scalability of sort-last as well as

the low bandwidth requirement of sort-first [MRW99],
but unfortunately with the combined advantages also the
disadvantages are combined. Transparency and multi-
pass rendering cause problems, and depending on the
scene the amount of data that has to be transferred can
reach that of binary swap. In [MWP01] a sort-last ap-
proach specialized for tiled displays is proposed, but the
achieved framerates are less then one frame per second
on a 4x4 tiled display. Although network bandwidth has
been improved since the publication, it is not possible to
get interactive framerates with current standard network
hardware. As a result of this in most cases sort-first is
used to do parallel rendering on tiled displays.

Samanta et.al. presented several approaches in [SZF99]
to do load balancing on a tiled display based on sort-
first. The proposed KD-split algorithm is also the basis
for the balancing algorithm presented here. The projec-
tion area is recursively split into regions with equal load
and then the resulting regions are assigned to rendering
nodes. The approach presented here extends it to allow
splitting of non-planar projections, and adds the influ-
ence of geometry and rasterization to the cost estimation
function. Another problem with the original KD-split
is that the screen split is done completely independent
of the assignment of nodes to display regions. For this
reason regions may be larger than the frame buffer of a
single node, forcing them to be rendered sequentially in
smaller parts.

[Abr04] solves the load estimation problem based on old
frames’ measured time and motion vector estimation.
This enables a fast calculation independent of scene
complexity, at the cost of limited accuracy for hard to
predict motions like tracked head data. Even for scenes
as complex as the powerplant the load estimation pre-
sented here has not been a noticeable factor, alleviating
the need for less flexible and more complex load estima-
tion.

3. DISPLAY CONFIGURATION
There are a lot of possibilities to construct a display con-
sisting of a number of projectors and a number of PCs.
To be able to handle as many different kinds of displays
as possible the following situations must be handled:

• One PC can drive one or more projectors.
• Each projector can display a scene from an arbi-

trary view point.
• Each projector can display an arbitrary rectangular

region of a planar projection.
• A projection can be mono, active stereo, or passive

stereo.

• All situations can be combined.

One of the goals of the presented work is to support
as wide a variety of display configurations as possible.
Most systems are specialized for tiled displays, or non-
planar displays and might have options for active or pas-
sive stereo. But the wide variety of possible configura-
tions (e.g. tiled front wall with a single projector left
side and a two projector floor) creates a combinatorial
explosion of necessary specializations, especially when
combined with the desire to support sort-first load bal-
ancing.

Therefore this work uses a more general way of describ-
ing a complete display. The core component is a View-
port. A Viewport has an associated camera and scene,
and renders a single image. Each Window can contain
an arbitrary number of Viewports.

This can be used to drive any kind of projection systems
if we provide a convenient way to modify camera pa-
rameters. The core idea is to have one Camera, which
holds parameters like position, orientation and view an-
gle, which is shared by a number of Viewports to sim-
plify changing parameters. To get left and right eye ver-
sions, or to split it up into tiles, a Camera can be manip-
ulated using the Decorator pattern [Gam95]. Multiple
Decorators can be combined to create compound modi-
fications:

• Tile camera decorator: This decorator takes a
viewing matrix and modifies it in a way that only a
part of the viewing frustum is visible. For example
on a tiled display this decorator is used to project a
different part of an image with each projector.

• Stereo camera decorator: This decorator modi-
fies the viewing matrix for the left eye or the right
eye, depending on its settings.

• Projection camera decorator: This decorator
modifies the camera so that it shows the scene from
a viewpoint onto a viewing plane that is placed at
an arbitrary position. In a cave this decorator de-
scribes the cave walls whereupon the position of
the viewer comes from a tracking device.

With the decorators it is possible to modify camera pa-
rameters for all non active stereo displays. To be able
to support active stereo the viewport is extended. With
active stereo a PC has to render an image twice into dif-
ferent view buffers. To support this with Viewports, they
can be dedicated to the left or right eye buffer, and for
a complete stereo picture two Viewports are assigned
to the same area of the Window, just to different eyes.

Stereo parameters like eye separation are defined with
the camera decorators related to a Viewport.

This structure allows handling of all displays which are
composed of rectangular planar projection planes. To be
able to support non-planar displays, like spherical pro-
jections, an additional display correction step was added
that works on the frame buffer. After rendering is fin-
ished the frame buffer is copied into a texture (or on
current systems rendering is done directly into a Frame-
BufferObject (FBO)) and it is projected onto a distortion
geometry that can be defined for each projector. With
the combination of all techniques it is possible to con-
figure all displays that can be build out of standard pro-
jection systems.

Viewport

Display

Object BoundaryVisible Area

Tiled Display

Figure 1: Virtual window

To extend this to parallel, clustered rendering a single,
large virtual ClusterWindow is defined (see fig.1), which
is split in two independent, different ways. One split is
defined by an arbitrary number of Viewports. The sec-
ond split is a distribution among all the nodes in the clus-
ter associated with the window. These two splits are in-
dependent, i.e. one Viewport can be visible on many
cluster nodes, or a single cluster node can have multi-
ple Viewports. Each Viewport has a camera that defines
which part of the scene is visible. To calculate the load
for a single projector all viewports which are visible on
the assigned area need to be found. To select the exact
region that a cluster node is responsible for, a TileDec-
orator is added internally, which selects the parts of the
Viewports that are relevant. This modified viewport is
the basis for the load estimation. The load balancing as-
signs parts of one viewport from an overloaded PC to
another.

4. LOAD ESTIMATION
The load estimation must be accurate and fast. As men-

tioned above it is not possible to achieve both goals at
the same time as they are contrary. The best estimation
result can be reached if the scene is rendered, because
that definitely answers the question how long it takes to
render it, but the resulting performance is worse than
without balancing.

A common approach is to use rendering information
from previous renderings. This can be very accurate, but
has some disadvantages. With current hardware it is dif-
ficult to get exact rendering times because most of the
rendering is done asynchronously. Another disadvan-
tage is that rendering information from previous frames
is only accurate if the viewpoint does not change very
much. But this is a situation where low framerates are
mostly not a big problem. If the viewpoint changes very
fast, the performance values from previous frames are
not accurate, but especailly in this situation high framer-
ates are important. Based on these considerations inter-
frame information is not used in this paper, and a fast
load estimation based on the current camera settings is
designed instead.

The load balancing proposed in this work is based on the
scene graph system OpenSG, which is publicly available
at www.opensg.org. The leaves of the graph represent
geometric objects. In polygonal models those objects
contain a number of geometric primitives. If a fast load
estimation is desired, it is impossible to take each indi-
vidual graphics primitive into account. But as a com-
promise information of a geometric object in the scene
graph can be gathered, and used to build a load estima-
tion for the whole object. Three different cost factors are
extracted for the load estimation.

• Constant costs: These costs have to be calculated
for each graphics object in the scene graph which
is considered to be visible. Constant costs are inde-
pendent of the fact whether the complete object is
visible or just a part. They arise from the transfor-
mation of all vertices into the clipping coordinate
system and the clipping of the primitives. Espe-
cially for a sort-first approach it is very important
to take constant costs into account because they are
incurred on each screen tile on which an object is
visible. To estimate the number of transformed ver-
tices to number of transfered indices is used.

• Relative costs: These costs have to be calculated
for each visible primitive. As load estimation is
not performed for single primitives, the whole ge-
ometry object has to be taken into account and its
visible fraction calculated. This can be done by
projecting the bounding volume into screen space

and calculating the fraction that overlaps a view-
port. Similar to constant costs the relative costs are
related to the number of primitives in a geometric
object. In the load estimation function again the
number of indices is used as a fast indicator.

• Pixel costs: These kind of costs have to be cal-
culated for each visible pixel of a geometry. As
the number of visible pixels cannot be predicted
exactly, it is estimated by projecting the bounding
volume into screen space. The region overlapping
the viewport is used as an estimation for the num-
ber of visible pixels. These costs mainly depend on
material properties like textures and pixel shaders,
they are not related to the number of primitives.

Each kind of cost is multiplied by a constant factor (Cc,
Cr, Cp) that depends on the graphics hardware. For the
material properties colored, textured, and materials with
pixel shader are handled separately. For each of these
different factors their respective cost is measured using
an off-line program. This is a very rough approxima-
tion, but due to this simple approach it is possible to use
fixed factors without the need to do a per object material
analysis.

c(o) = i(o)

(

Cc +Cr
a(o)

r(o)

)

+Cpa(o) (1)

The cost estimation function calculates the cost c for an
object o. The function i(o) gives the number of indices
used by an object, a(o) is the number of visible pixels
of the projected bounding volume and r(o) is the size of
the projected bounding volume into screen space with-
out clipping. The cost estimation is very simple but it is
able to cover the core parts of the rendering pipeline.

In a cluster system the performance of load estimation
can be increased by doing it in parallel on all rendering
nodes. When the load estimation is finished for each vis-
ible graphics object of the scene graph for all displays,
the results are transferred over the network to a central
node that is responsible for the load balancing.

5. LOAD BALANCING
Before starting to develop a new load balancing algo-
rithm it is important to know the goal of the optimiza-
tion. One possible goal would be that each parallel ren-
dering node has the same rendering load. But especially
with a sort-first based rendering approach this could lead
to suboptimal rendering performance.

Fig. 2 shows a screen with two visible triangles. There
are two possible ways of splitting this screen into two

1

3

2

4
1 2

Figure 2: Possible screen subdivision with equal load

regions with equal load. On the left side both triangles
are visible on both regions. So in each one, two triangles
have to be processed. Summed over both regions, four
triangles have to be rendered. In contrast to this on the
right side only one triangle is visible on each region. So
during rendering, only two triangles have to be rendered.
This demonstrates that equal load is no guarantee for an
optimal screen subdivision. As a result of this an equal
load is not the goal in the first place, but instead search-
ing for a screen subdivision where the overall rendering
performance reaches a maximum. As the rendering per-
formance depends on the rendering time of the region
with the highest load, the screen subdivision where the
region with the highest load reaches a minimum is se-
lected.

In most approaches based on sort-first a region is sub-
divided along its longest side. This is often called the
median cut [Whe85; Mue95]. This split is attractive be-
cause it minimzies the length of a region border, which is
beneficial according to the Molnar/Eyles overlap func-
tion. In the described load estimation, this is already
taken into account by the use of constant costs. This
allows evaluating the benefits of cutting a region along
both axes in order to compare the resulting load of both
cuts, and selecting the one with the smaller maximum
load. In contrast to the median cut this approach can be
called the best cut.

Figure 3: Median cut compared to best cut

From the load estimation a list of all visible viewports
for each server as well as their sizes and positions are

calculated. This includes a list of all objects whose
bounding rectangles intersect a certain Viewport, and
their constant, relative, and pixel costs.

To balance the load, each server’s load is summed up.
The servers are sorted by their load, and a median load is
calculated. Load (i.e. a part of the screen) is reassigned
from the highst ot the lowest load server until one of
them reaches the median load. To avoid unnecessary
pixel transfers a threshold is used, which limits splits of
minimal effect. Only if the imbalance is greater than the
threshold a transfer from one server to the other occurs.
This procedure is repeated until each server in the table
has a nearly equal load.

This simple load balancing is the basis for the follow-
ing screen split algorithm. It is not generally possible
to reach an exact balance as each screen split raises the
overall costs according to the constant costs of the load
estimation function.

To find the optimal split location for one axis (x or y)
the objects that start or end at each pixel location on the
axis are listed, and for each object the relative and pixel
costs for each column resp. row are calculated. Using
this structure as a basis the best cut can be found using
the following algorithm:
c1 = 0

c2 = areaCost

r = 0

for cut = beginArea to endArea

foreach o in openingList[cut]

r += o.relative + o.pixel

c1 += o.fix

c1 += r

c2 -= r

foreach o in closingList[cut]

r -= o.relative + o.pixel

c2 -= o.fix

maxC = max(c1,c2)

if(c1 ge c2)

break

lastMaxC = maxC

lastC1 = c1

lastC2 = c2

if(lastMaxC lt maxC)

return (cut-1,lastC1,lastC2)

else

return (cut,c1,c2)

This is done for both x and y, and the best cut that can
be rendered in minimum time is chosen.

If a region is split into two areas, where one area falls
into the visible projection area of server one and the
other region is calculated by server two, then the re-
sult of server two has to be transferred over the network
to combine the correct image. Network transfer can be

minimized if the largest of both areas falls into the vis-
ible projection area of server one. To achieve this the
center of geometric complexity for each area is calcu-
lated. As complex geometry results in smaller areas due
to the load balancing, the least number of pixels have to
be transferred if the center of complexity is calculated
by the server which has to transfer its pixels.

The result of this procedure is a work list for all servers
that is transferred over the network. To minimize net-
work overhead this list is distributed using reliable mul-
ticast, which is provided by the OpenSG network layer.

6. RENDERING / PIXEL TRANSFER
After the work list is distributed, each server at first ren-
ders all screen areas which have to be sent over the net-
work. After rendering, they are stored in main memory.
In the next step the area that falls into the responsibility
of the server is rendered. Areas are not immediately sent
over the network because in an ideal situation all servers
take the same time to process all the work in the work
list. So it is best to let all servers do their work, and then
work on the data transfer because all servers are ready
to send and receive.

Pixel data is sent as 24 bit RGB color values without
compression. Some forms of image compression have
been evaluated, but most compression algorithms take
more processing time than is gained by the reduction-
ing transfer. A simple form of compression would be to
use 16 bit color values, but it would result in noticeable
quality loss, which was not deemed acceptable.

One problem with sort-first is that many rendering nodes
often have to send data to a single node. If all nodes have
the same network bandwidth, this could easily overload
the receiving capacity of the single node. If socket com-
munication over ethernet is used, an overload of a con-
nection can cause the protocol to do balancing opera-
tions to avoid thrashing. These operations can cause a
communication channel to be stalled for a large fraction
of a second, pushing the resulting network throughput
far below the optimum receiving capacity. To avoid net-
work overload a demand driven network transfer is used.
A receiving node requests a transmission from a send-
ing node at the point of time when it is ready to receive.
Multiple areas are being sent sequentially with the full
receiving bandwidth without causing network overload.
This can be optimized further if the request for one area
is sent shortly before the transmission of the last area
has finished. This optimization effectively avoids delays
between the transmission of multiple areas.

7. SINGLE-SCREEN DISPLAY RESULTS
The load balancing algorithm was tested with three
scenes which have different characteristics. The first
is the dragon model with 8 million polygons, which is
split into 1024 pieces in the scene graph. Rendering of
this model is completely bounded by its geometry, and
the faces are evenly distributed over the surface of the
dragon. The second model is the power plant, contain-
ing 13 million polygons. An interesting feature of this
model is that most of the geometry is located in a very
small area of the scene, which makes it very difficult
to get a good speedup with sort-first approaches. The
third model is a BMW 6 series with 4 million polygons,
where the coat is rendered with a complex pixel shader.
Rendering of this model is limited by the pixel fill rate.

Figure 4: Test models

For all three scenes an animation path that contains a
closeup and an overview camera position was defined.
In all tests this animation was used to produce perfor-
mance values. Images of the animation are shown in fig.
4.

As discussed above the main goal was to develop a load
balancing for multi projector display systems. To evalu-
ate the balancing results the results of parallel rendering
on a single display with a resolution of 1024 x 768 are
shown in fig. 5.

The framerate is calculated as the average of all anima-
tion images. With all scenes a significant speedup can
be noticed. Using four PCs a speedup of at least two
is reached. The speedup strongly depends on the ren-
dered scene, with the dragon model reaching the best
speedup. The reason for this is that this model is split
into 1024 equal sized non-overlapping objects. The
BMW 6 model is rendered unmodified. It contains very
large and very small geometry objects that are not evenly
distributed over the screen.

The cost estimation function contains fixed, relative and

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 2 4 6 8 10 12 14 16

Fr
am

es
/s

Nodes

Speedup

Stanford Dragon
BMW 6

Power Plant

Figure 5: Models displayed on a single screen display
with a resolution of 1024 x 768

pixel costs. Now the question is how these three factors
are affecting the balancing result. Thus the scenes are
rendered three times always using only one factor and
one time using them combined. The results can be seen
in fig. 6. They show that the deciding factor depends
on the type of the model, making the use of the full cost
function most effective.

 1

 2

 3

 4

 5

 6

 7

 2 4 6 8 10 12 14 16

sp
ee

du
p

Nodes

DRAGON speedup

full cost function
const costs

relative costs
pixel costs

 1

 1.5

 2

 2.5

 3

 3.5

 4

 2 4 6 8 10 12 14 16

sp
ee

du
p

Nodes

BMW6 speedup

full cost function
pixel costs

const costs
relative costs

Figure 6: Influence of the cost estimation function for
the BMW and Dragon model

8. MULTI-SCREEN DISPLAY RESULTS
As an example of multi-screen display system a tiled
display with 24 projectors and a resolution of 6144 x
3073 pixel was used. For each scene the rendering time
without load balancing is given. Generally the render-
ing on a tiled display is faster than rendering on a single
display, because each projector shows only a part of the

whole scene. The second case shows the same rendering
with load balancing. For this test only the 24 PCs, con-
nected to the display wall, are used for rendering. In a
third test 24 additional PCs in the same cluster are used
to check if further speedup is possible.

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100

Fr
am

es
/s

Frame

Stanford Dragon on a 6x4 tiled display

Tiled / balanced 48 nodes
Tiled / balanced

Tiled

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 0 20 40 60 80 100

Fr
am

es
/s

Frame

Powerplant on a 6x4 tiled display

Tiled / balanced 48 nodes
Tiled / balanced

Tiled

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 0 20 40 60 80 100

Fr
am

es
/s

Frame

BMW on a 6x4 tiled display

Tiled / balanced 48 nodes
Tiled / balanced

Tiled

Figure 7: Three scenes rendered on a 6 x 4 tiled dis-
play

Fig. 7 shows the frame rate for each frame of an ani-
mation with 100 frames. Using the new load balancing
algorithm it is possible to speed up the rendering on a
tiled display significantly. It is possible to get a further
speedup by using additional PCs.

In fig. 8 the time for load estimation, load balancing,
buffer I/O, and rendering is shown. To generate this im-
age the Dragon model was rendered on a 2 x 2 display
wall with four display PCs and 12 additional render PCs.
The time is given in percent of the whole frame time.

The frame time is mostly dominated by rendering. The
time for load estimation and load balancing is small

 0

 20

 40

 60

 80

 100
%

 o
f f

ra
m

e
tim

e

nodes

Dragon: 2x2 Wall, 16 nodes, 16 FPS

buffer IO
draw

balance
idle

estimate load

Figure 8: Dragon on a 2 x 2 Wall rendered with 16
PCs

compared to the whole frame time. The graph is not
showing any values for network communication, but
communication is part of the 100 percent frame time.
It is not possible to show the real network overhead as a
correct time value for each node. The reason for this is
that in a communication the time for sending and receiv-
ing always depends on two nodes. However, it is easy
to get a feeling on how network communication affects
the rendering performance. The gap between the node
with the most load and the 100 percent mark is mainly
caused by network transmissions.

The results show that load estimation and load balanc-
ing are very fast. The balancing results depend on the
scene. With the Dragon model, a similar rendering time
can be achieved for all nodes. Different rendering times
between the rendering nodes are a result of the simplifi-
cations that have been done during the load estimation.

9. CONCLUSION
A cluster based parallel rendering algorithm with sort-
first based load balancing for arbitrary multi display
projection systems has been presented. It uses a new
load estimation function that incorporates costs caused
by geometries overlapping more than one screen region.
This cost estimation function enables using a best cut
approach in contrast to median cut, which has been used
in most other approaches. The results show that the
reachable speedup strongly depends on the scene. But
even scenes with a very uneven complexity distribution
like the Power Plant can be rendered with a significant
speedup. All the presented algorithms are part of the
scene graph system OpenSG that is publicly available at
www.opensg.org.

10. ACKNOWLEDGEMENTS
The dragon model was obtained from the Stanford Scan-

ning Repository, thanks for providing it. The power
plant was obtained from the Walkthrough project of the
University of North Carolina, thanks to them and their
anonymous donor for the model. The BMW model was
provided by BMW, thanks for allowing us to use it in
this publication.

11. REFERENCES
[Abr04] Abraham, F., Celes, W., Cerqueira, R., and

Campos, J., A load-balancing strategy for sort-first
distributed rendering, Proceedings. 17th Brazilian
Symposium on Computer Graphics and Image Pro-
cessing, pp. 292–299, 2004

[Gam95] Gamma, E., Helm, R., Johnson, R., and Vlis-
sides, J., Design patterns: elements of reusable
object-oriented software, Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 1995

[MPH94] Ma, K.-L., Painter, J. S., Hansen, C. D.,
and Krogh, M. F., Parallel volume rendering using
binary-swap compositing, IEEE Computer Graph-
ics and Applications, 14, no. 4, pp. 59–68, 1994

[MRW99] Mckinley, P., Rao, R. T., and Wright, R. F.,
H-RMC: A Hybrid Reliable Multicast Protocol for
the Linux Kernel, Proceedings of IEEE SC99: High
Performance Networking and Computing, 1999

[MCE94] Molnar, S., Cox, M., Ellsworth, D., and
Fuchs, H., A Sorting Classification of Parallel Ren-
dering, IEEE Computer Graphics and Applications,
pp. 23–31, 1994

[MWP01] Moreland, K., Wylie, B., and Pavlakos, C.,
Sort-last parallel rendering for viewing extremely
large data sets on tile displays, IEEE 2001 Sympo-
sium on Parallel and Large-Data Visualization and
Graphics, pp. 85–154, 2001

[Mue95] Mueller, C., The Sort-First Architecture for
High-Performance Graphics, Symposium on Inter-
active 3D Graphics (Monterey, California, April 9-
12, 1995), pp. 75–84, 1995

[SZF99] Samanta, R., Zheng, J., Funkhouser, T., Li, K.,
Jaswinder, and Singh, P., Load balancing for multi-
projector rendering systems, 1999 SIGGRAPH /
Eurographics Workshop on Graphics Hardware, pp.
107–116, 1999

[Whe85] Whelan, D. S., A multiprocessor Architecture
for real-time computer animation, Ph.D. thesis, Cal-
ifornia institute for Technology, 1984

