
Collision Avoidance and Surface Flow for Particle
Systems Using Distance/Normal Grid

Tommi Ilmonen Tapio Takala Juha Laitinen
Helsinki Univ. of Technology Helsinki Univ. of Technology Helsinki Univ. of Technology

Telecommunications Software Telecommunications Software Telecommunications Software
and Multimedia Laboratory and Multimedia Laboratory and Multimedia Laboratory

Tommi.Ilmonen@hut.fi tta@cs.hut.fi Juha.Laitinen@tml.hut.fi

ABSTRACT

Fire, explosions, and other special effects are often created with particle systems. In real-time applications the
particle systems must be very fast to compute since otherwise the application cannot maintain reasonable frame
rate. One part of this challenge is the collision detection between particles and the objects in the scene. We present
a new approach to collision detection and surface flow effects for particle systems. In pre-processing phase we
rasterize a 3D model into a distance/normal grid. The grid can be used for collision avoidance, to create surface
drag and to simulate fluid flow around non-deforming objects. This method is not physically accurate, but it
provides visually plausible results. The primary benefit of this method is that it is efficient and its performance is
independent of the complexity of the model. This methods works well in real-time, in some cases surpassing the
rendering speed of modern graphics hardware by order of a magnitude.

Keywords
Particle animation

1 INTRODUCTION

Particle systems are widely used in both off-line and
interactive graphics to simulate fluid phenomena such
as fire, explosions, smoke and clouds [Bur00a]. To be
fully credible such effects need to interact with their
environment.
To handle the collision of a particle with a surface one
needs to use either 4D collision detection (taking into
account the velocity of the particle) or surround the
particle with some geometry (sphere or cube for ex-
ample) that is used for collision detection. In both
cases we must check collision of the particle against
all surface primitives – a slow operation if the object
is complex.

If accurate collision detection is infeasible then one
needs to turn to methods that trade accuracy for speed.
The traditional approach to collision avoidance has
been to identify intersecting objects and then apply
collision resolution rules to achieve intersection-free
state. Our approach to this problem is to create a com-
bined distance/normal (DN) grid that is used to affect
the particles as they fly close to the object. This grid
can be used not only for collision avoidance, but also
for other fluid effects such as drag and surface flow.
many of the artifacts are not visible in the particle ani-
mations – the large number of particles and their over-
all fuzziness hides the imperfections of the physics
simulations.
We developed this technique for an interactive
particle-system installation where we needed high-
performance collision detection. We were also inter-
ested in simulating fluid dynamics with the system,
since many particle effects represent fluid systems. We
concluded that any traditional collision detection sys-
tem would be too slow for our purposes and a more
efficient method was needed. We did not need a phys-
ically accurate system but one that is visually convinc-
ing. We could leverage the specific features of our in-
stallation since the scene was composed of rigid, non-
deforming objects. These constraints led us to develop
this method.

This paper is organized as follows: First we review
existing collision detection systems. Then we intro-
duce the distance/normal (DN) grid and the creation
of such grids. After that we go through the effects that
one can create with the distance/normal grid – colli-
sion avoidance, drag and surface flow. Finally we give
some ideas for further development of the method.

2 BACKGROUND

Collision detection is one of the most fundamental
problems in computer graphics and much research has
been done to create optimal collision detection sys-
tems (for a comprehensive survey of techniques,see
Hadap et al [Had04a]). While most of the systems
handle various kinds of 3D objects there are are also
collision detection systems that are specialized to par-
ticle systems.
Sims has described the general components of parti-
cle systems and also collision detection with spheres
and planes [Sim90a]. Karabassi has built a system that
performs exact 4D collision detection between parti-
cles and solid objects and collision avoidance between
particles[Kar99a]. Like many others, her system uses
spherical repulsive force fields to keep particles from
hitting each other.
Distance fields are frequently used in robotics for col-
lision avoidance. For example Greenspan[Gre96a] and
Jung[Jun96a] have used voxel-based method for colli-
sion avoidance in robotics. These methods work by
storing the distance of a surface from a voxel to the
closest surface. In run-time the system checks how far
the closest objects are and if there is a risk of collision
the systems typically revert to ordinary intersection-
based collision detection.
Steele has developed a system that does collision de-
tection, avoidance and response with the aid of a vec-
tor field[Ste98a]. This method is similar in principle
to our approach, but since Steele’s system relies on a
few simple geometrical field shapes it cannot be used
with more complex objects.
Vector fields have been used since the seventies to vi-
sualize fluid flow. In these cases the flow field is first
calculated with some physical modeling system and
then quantisized into a voxel grid. While the data
structures in this approach are almost identical to the
distance/normal grid the way the grid is calculated, in-
terpreted and used is different. In the classical vector-
grid approach the grid alone determines the path of the
particles while we use more complex rules to get col-
lision avoidance and surface flow that are not prede-
fined. Figures 6 and 7 demonstrate how we can create
variable effects with one grid – a feature that the older
grid-based methods do not support. With our approach

it is possible to merge other forces (variable wind, ex-
plosions, gravity) with the grid.

3 DISTANCE/NORMAL GRID

The most common way to avoid collisions is to de-
tect and resolve them as they happen. Another method
is to use repulsive gradient fields that prevent colli-
sions from happening in the first place. In past, force
fields have been used to avoid collision between sim-
ple objects like spheres and it has not been possi-
ble to create force fields around objects of arbitrary
shape. The novelty of our approach lies in the idea
of using a distance/normal grid to represent objects
of arbitrary shape and a collection of algorithms that
can be used for collision avoidance, drag, and surface
flow. Compared to previous approaches our system
performs faster by taking advantage of both distance
and normal information that is stored in the grid. This
method works if one of two the colliding objects is
a particle – if both were complex objects we would
eventually come up with yet another spatial-division
collision detection system for rigid bodies.
In the grid each voxel contains a three-dimensional
unit-length vector (N) that indicates the normal of the
object and a distance value (l) that tells how far is the
closest surface from the center of the voxel. At run-
time we can get the distance and normal in any point
by looking up the voxel that contains the particle. The
computational complexity of the method is O(1) – its
run-time performance is not affected by the complex-
ity or shape of the object.
On the general level we first rasterize the object to a
3D grid. Then we thicken the surfaces of the object to
cover more voxels and create a DN-grid. The resulting
grid is stored to a file. The grid is read from the file
in run-time and used with the collision avoidance and
surface flow algorithms to make the particle system
react to its environment.

3.1 Grid Construction

A critical step in this method is the creation of the DN
grid. There are many ways to surround an object with
a voxel grid. The basic requirements of the grid are
that the normal vectors close to the object should be
perpendicular to the surface and the normal vectors
should change smoothly outside the surface and follow
its overall shape. The grid should be dense enough to
capture all relevant details of the object.
We have used two methods to create such grids from
polygonal models. The first method is based on first
rasterizing the object into the grid and storing surface
normal at each voxel. When more than one polygon

0 5 10 15 20 25 30 35

0

5

10

15

20

25

30

(a) Initial distance/normal grid.

0 5 10 15 20 25 30 35

0

5

10

15

20

25

30

(b) Distance/normal grid after one
round of blurring (blur kernel with lin-
ear attenuation and radius of 3).

0 5 10 15 20 25 30 35

0

5

10

15

20

25

30

(c) Distance/normal grid after three
rounds of blurring.

Figure 1: Distance/normal grid around an object (from the same model as in figure 3, with grid resolution of
30x30x30). Each arrow represents the direction of the normal vector N at that point and color indicates distance
from the surface (darker is closer).

hits the voxel the surface normal is approximated as
the average of all normals. We then perform 3D blur
on the vectors in the whole grid (exactly analogous to
blurring a picture with three color components). We
have used small (radius from 2 to 4 voxels) convolu-
tion kernels with linear attenuation. The vector grid
can be blurred multiple times to smear the direction of
the vectors and to spread the field around the object.
After each blur round the normals in the voxels that
are exactly on the edge of the the objects are returned
to their initial value. This step is done to guarantee
that the normals are perpendicular to the surface near
the object. After the normal vectors have been blurred
we normalize them to unit length. At this stage we
also set the distance values to indicate distance from
the surface. If the voxel is inside the object, then we
use negative distance value.
Figure 1 shows a slice of a DN grid that we have cre-
ated with this method. The arrows show the direction
of the field at each voxel and the darkness of the voxel
indicates the distance from closest surface. As can be
seen this method creates a smooth vector field that fol-
lows the shape of the object. By using high-resolution
grids we can create DN fields that capture the details
of the object but are smooth further away from the ob-
ject.
This method works usually well but fails to work prop-
erly if the object is too thin. In such cases the grid must
be extremely dense since the back and front faces of
an object must be rasterized to different cells. If the
object has near-zero thickness (for example piece of
paper) then this method does not work at all – the DN
field field will only work towards one direction.
This problem can be addressed with a different method
to for calculating the DN grid. With the second
method we first rasterize the object into a grid but in

each voxel we only store a potential value to indicate
that the voxel is occupied. Then we proceed to thicken
the potential field by blurring the values (as in previ-
ous case). Finally we turn the potential field to a force
grid by calculating the normal (gradient) at each voxel
with difference method.
The motion of the objects needs to be taken into ac-
count when transforming the particle location and ve-
locity from world coordinates to the local object coor-
dinates. Each independently moving object must have
a specific DN grid that moves with it.
The objects can also be rotated and translated freely
without disturbing the shape of the grid. One can also
scale the object uniformly, and the thickness of the DN
field will be reduced accordingly. Objects cannot be
sheared since shearing changes the angles between the
normal vectors and the surface.
When retrieving the value of the DN field in the loca-
tion of the particle, one can either use the value of the
closest voxel to represent both the normal and distance
to the closest surface or interpolate these values from
the voxels surrounding the particle. We have not no-
ticed any visible difference between these two meth-
ods and due to performance reasons we only use the
nearest neighbor.
Even though the complexity and shape of a 3D ob-
ject has no impact on the performance of the system
there are objects that do not fit well into this scheme.
Objects with very thin extrusions (for example a pen-
cil) can be problematic since the fact that particles are
bounced outside the object becomes more visible. A
more difficult class of objects are the ones that have
multiple thin extrusions that are close to each other
(for example trees). In these cases the fields of neigh-
boring extrusions will be merged and this may result

in a field that prevents particles from penetrating the
volume of the object even though the object is sparse
and the volume could be penetrated.
At run-time the grid is used to represent the object
and appropriate rules are used to create bounces, drag
and surface flow. The simulation is carried out in dis-
crete time intervals and the rules are applied at each
time step. If the grid is too thin then a particle may
pass through it without being affected by the field. In
practice this implies that the maximum velocity of the
particles and the update interval of the physics engine
needs to be known when the field is being calculated.
While this is an obvious limitation it is not a severe
problem since in most cases the creator of the 3D ap-
plication knows the magnitude of velocities that the
particles will have and can adjust the thickness of the
field accordingly.

F

Surface of the object

N

DN field

V��

Figure 2: Particles are repelled away from the surface
with the spring method. Vector N is the surface nor-
mal, V indicates how far the particle travels during one
frame and F is the force that is applied to the particle.

3.2 Collision Grid Compression

The grids that we generate are often fairly large. This
has a negative effect on performance since it increases
the time to load a grid from a disk and easily fills the
CPU cache memory. To counter this problem we de-
veloped a tree-based compression method.
This method is used as a post-process after the grid
has been created. We analyze the grid to find ar-
eas where the normal vectors have either not been set
or point to similar direction. In these areas the grid
nodes are erased and instead a single vector is used
to represent all vectors in that node. We also turn the
distance/normal -information into a plane equation to
avoid problems related to increased cell size. In prac-
tice the grid is dense only in areas where the object
surface has high curvature.

We have used a two-level tree with tunable division pa-
rameters. Increasing the number of levels causes more
indirection when accessing tree nodes, but may also
reduce memory consumption.

3.3 Collision Avoidance With Spring
Method

There are two methods that are useful for avoiding col-
lisions – the spring method and the impact method.
The spring method is illustrated in Figure 2. This
method works by using the force field as a spring – the
deeper the particle passes into the field the more force
is applied on it. As a result the particle is thrown back
from the surface. The major drawback of this method
is that the trajectory of the particle lacks the abrupt
change that is caused by impact to a surface. Instead
the path of the object is a paraboloid near the surface.
Physically this can be understood as an elastic surface
that yields as the particle hits it. Problematic artifacts
are that a fast particle may fail to bounce from the sur-
face or it may dive temporarily beneath the surface.
The exit velocity of the particle is correct if the system
is updated with very high processing rate. In practice
this is seldom the case, but luckily minor variations in
the bounce trajectories make the physics simulations
more credible if anything.

3.4 Collision Avoidance With Impact
Method

Another method to bounce the particles from a sur-
face is with impact method. With this method we first
check if a particle is inside the DN field. If it is, then
we use the surface normal and apply direct bounce (or
impact) to the particle. This method can be tuned to
take into account the velocity of the particle: If the
particle is flying with great velocity towards the sur-
face it is bounced as soon as it enters the field. Thus
slow particles are bounced close to the surface and fast
particles closer or farther away depending on how they
to move in the grid as illustrated in Figure 4. The ve-
locity vector V is adjusted to become W after collision
with the implied surface.
The impact method is generally superior to the spring
method since it causes the physically valid abrupt
change in particle velocity and slow particles are
bounced close to the surface. In practice one seldom
notices that the particles are reflected above or be-
low the surface – the eye does not realize the inexact
bounce point of the fast particles and the slow parti-
cles are reflected close to the surface as they should.
Another factor that helps is that particles are typically
rendered as textured billboards, lines or 3D polyhe-
dra. Thus the particle should not bounce at exactly at

(a) Particles collide from a bouncy
surface (β = 0.7).

(b) Particles collide with a non-
bouncy slippery surface (β = 0).

(c) Particles collide with a non-bouncy
surface with high drag (β = 0, δ = 2,
θ = 1).

Figure 3: The effect of different bounce and drag properties (60x60x60 grid).

N W
W

Fast particle Slow particle

}L VV

Figure 4: Particles are bounced with the impact
method. Fast particles are bounced as soon as they
enter the field and slower particles are reflected close
to the surface. Vector W is the velocity after collision
and L is collision threshold.

the surface, but rather above it to take into account the
non-zero size of the particle.

3.5 Drag

When two solid objects (or an object and a fluid) inter-
act they usually exert drag. It is easy to do drag calcu-
lations with the DN grid. If the particle is closer than a
given threshold to the surface then we consider that it
is in contact with the surface and drag force is applied
on the particle. This method can be combined with the
bounce methods since they do not disturb each other.
Figure 3 shows combination of using the above impact
method for collision resolution and surface drag.

3.6 Surface Flow

Often particles are used to represent fluid effects. In
these cases one should use flow equations to determine
fluid flow around the objects.

F

N
V

Figure 5: Distance/normal field is used to simulate sur-
face flow by attract a particle to a tangential path.

The DN field is useful for implementing surface flow
around objects. By surface flow we mean flow close to
the object. In this case we apply a force that turns the
particle to a trajectory that is tangential to the surface
(Figure 5). The force vector F should be perpendicular
to the velocity vector of the particle. Figures 6 and 7
show the effecs created with this approach.
We have found it is often good to have different coef-
ficients for incoming and outgoing particles (ρin and
ρout). These parameters can be varied to get different
kinds of flows around the object. The following code
example corresponds to figure 5 and is also used in
figures 6 – 8.

γ = N · V
E = (V × N) × V
En = E / |E|
if (γ < 0)
F = ρinEn

else
F = ρoutEn

fi

(a) Particle stream coming to the side of
the sphere.

(b) Particle stream falls on top of the
sphere.

Figure 6: Particles flow around a sphere (45x45x45 grid). Identical grid is used in both cases.

(a) Strong incoming tangetial force (ρin

= 12) and weak outgoing tangential
force (ρout = 3).

(b) Weak incoming tangetial force (ρin

= 3), strong outgoing tangential force
(ρout = 6) and reduced flow distance.
To the left of the shaft one sees turbu-
lence that is caused by excessive tan-
gential grab force.

(c) Weak incoming tangetial force (ρin

= 3) and negative outgoing tangential
force (ρout = -3).

Figure 7: Particles coming from right flow around a shaft (40x40x40 grid). Identical grid is used all cases.

Figure 8 shows the collision avoidance, and surface
flow effects together. Collision avoidance is used to
keep particles from penetrating the objects and the
ground and surface flow is applied to make the par-
ticles flow around buildings in a perceptually credible
way. This example shows how the DN field can mimic
the results of physical systems with high credibility
and great performance. In past such effects have been
created by evaluating simplified versions of Navier-
Stokes -equation which is by several orders of mag-
nitude slower.
This method cannot be used to approximate general
fluid-behavior since this method does not address im-
portant flow features such as turbulence, edge vortices
or colliding fluid streams.

3.7 Performance

The operation of grid-based collision avoidance sys-
tem is very fast. At run-time we only need to map the

location of each particle to corresponding voxel in the
grid, retrieve the normal- and distance values from the
grid and apply the necessary rules. All of these are fast
constant-time operations.
The primary issue for real-time applications is the
memory footprint. A 50x50x50 grid that contains four
32-bit floating point numbers per cell takes 2 Mb of
memory. A normal PC loads such a grid in 1-3 sec-
onds from the hard disk. If the application must read
grids at run-time from a file the few seconds needed to
read one grid can be a problem. The grid size also ex-
ceeds the cache sizes in most CPUs, resulting in access
to the slower main memory of the computer.
Figure 8 is the heaviest simulation in this paper with
about 800 particles. Besides the DN field that repre-
sents the buildings it has a force generator that pushes
particles away from the center of the explosion, grav-
ity and air drag generators. In this system the graphics
hardware sets the limits on the performance. An ordi-
nary 1,5 GHz desktop PC can run the dynamics simu-

Figure 8: An explosion between objects – each row shows the explosion from one viewing angle at three times
(60x60x60 grid, 800 particles). Note how the gas particles flow around the corners of the objects.

Collision System FPS FPS loss Memory usage
None 1800 0 None

Compressed plane grid 1250 550 670kB
Normal grid 950 850 3.7MB

AABB collision detection 450 1350 Not known

Table 1: Performace of different systems in the scene of figure 9.

lation 800 times per second, but the graphics hardware
(NVidia GeForce FX 5700) limits the frame rate to
50-80 Hz due to intensive fill-requirements (1024x768
window size, no anti-aliasing).
We have also tested the grid approach against classi-
cal collision-detection systems. In this benchmark we
used a freely available AABB-based collision library
“Opcode”, that claims to be a high-performance tool
for the task [Ter03a]. We used the ray-triangle inter-
section test in Opcode. The particle system was a min-
imal test system that contained simple particles (no
color or texture changes) and simple dynamics (only
gravity and one collision object). The system was ran
without rendering to minimize the effect of rendering
on the performance. A snapshot of the scene is in fig-

ure 9. The scene was designed to be a difficult case
for the collision detection systems — all particles are
close to the object and bounding-box -based early-out
methods do not work. The test results are in table 1.
As expected the vector grid approach is clearly faster
than the classical approach. Surprisingly the com-
pressed vector grid was faster than the normal grid.
This may be due to its more simple internal logic (it
lacked drag and surface flow calculus) and/or better
cache hit ratio.
The grid construction of a 50x50x50 takes a minute or
two depending on the parameters (blur radius, unm-
ber of iterations etc.). We have not experimented with
optimization or benchamarking of this code since this
work is always done in pre-processing phase.

3.8 Implementation

We have implemented the DN field with C++ to a par-
ticle engine that already had support for visualization,
displaying 3D objects etc. It took 2600 lines of code
to add all the features that have been described in this
paper. Most of the code is needed to rasterize the
3D object into the grid and to calculate the grid – the
collision, drag and surface flow implementations take
about 100 lines of code.

Figure 9: The test scene used in performance compar-
isons (12 000 triangles).

4 FURTHER DEVELOPMENT

In section 3.1 we presented two methods to generate
the DN grid. One could come up with new methods
by applying theories that simulate electric fields etc.
At the moment there is a trend to move computations
from the CPU to the graphics hardware. The DN grid
method might fit to this approach – the field can be
stored as a 3D RGBA texture to the graphics hardware.
The equations that govern the behavior of particles are
very simple, implying that they can be implemented
in the graphics hardware. While it is probable that
graphics hardware could be used to run the collision
detection the possible performance benefits remain to
be seen.

5 CONCLUSIONS

The DN grid method can be used in a number of ways
to create perceptually valid physics simulations for
particle systems. This approach relies on and lever-
ages the features of particle systems. We have shown
that the DN field is useful for creating solid-body dy-
namics (i.e. bounces) and fluid-effects (surface flow
and drag) with a single data structure. It is especially
suited to situations where several particles are moving
in a complex static scene and computational efficiency
is an issue. It is not a 4D collision detection system
but by using the range information we can create ef-
fects beyond pure 3D collision detection.

ACKNOWLEDGEMENTS

This work has been funded by the Academy of Fin-
land.

References

[Bur00a] John van der Burg. Building an advanced
particle system. Game Developer, March
2000.

[Had04a] Sunil Hadap, Dave Eberle, Pascal Volino,
Ming C. Lin, Stephane Redon and Christer
Ericson. Collision detection and proximity
queries GRAPH ’04: Proceedings of the
conference on SIGGRAPH 2004 course
notes, ACM Press, 2004.

[Gre96a] Michael Greenspan and Nestor Burtnyk.
Obstacle count independent real-time col-
lision avoidance. In Proceedings of
the 1996 IEEE International Conference
on Robotics and Automation, volume 2,
pages 1073–1080. IEEE, 1996.

[Jun96a] Derek Jung and Kamal Gupta. Octree-
based hierarchical distance maps for col-
lision detection. In Proceedings of the
1996 IEEE International Conference on
Robotics and Automation, pages 454–459.
IEEE, 1996.

[Kar99a] Karabassi Evaggelia-Aggeliki, Papaioan-
nou Georgios, Theoharis Theoharis, and
Alexander Boehm. Intersection test for
collision detection in particle systems.
Journal of Graphics Tools, 4(1):25–37,
1999.

[Sim90a] Karl Sims. Particle animation and render-
ing using data parallel computation. In
Computer Graphics (Proceedings of ACM
SIGGRAPH 90), pages 405–413. ACM
Press, 1990.

[Ste98a] Kevin L. Steele and Parris K. Egbert.
A unified framework for collision de-
tection, avoidance, and response. In
WSCG’98 Conference Proceedings, vol-
ume III, pages 517–524, 1998.

[Ter03a] Pierre Terdiman. Document
named Opcode.html located in
http://www.codercorner.com/Opcode.htm.
Referenced 2.1.2006, Last updated 2003.

