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ABSTRACT 
Quadratic shading has been proposed as a technique giving better results than Gouraud shading, but which is 
substantially faster than Phong shading. Several techniques for fitting a second order surface to six points have 
been proposed. We show in this paper how an approximation of the mid-edge samples can be done in a very 
efficient way. An approximation of the mid-edge vectors are derived. Several advantages are apparent when these 
vectors are put into the original formulation. First of all it will only depend on the vertex vectors. Moreover, it 
will simplify the setup and no extra square roots are necessary for normalizing the mid-edge vectors. The setup 
will be about three times faster than previous approaches. This makes quadratic shading very fast for 
interpolation of both diffuse and specular light, which will make it suitable for near Phong quality software 
renderings. 
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1. INTRODUCTION 
Quadratic shading has been proposed as a technique 
giving better results than Gouraud shading [Gour71], 
but which is substantially faster than Phong shading 
[Phon75]. Quadratic interpolation could be setup by 
fitting a second order surface to six points. Both the 
diffuse and specular light must be computed at these 
points and the best quality is obtained if these are 
interpolated separately. Furthermore, the power in the 
specular computation must be computed per pixel. 
Besides this computation, quadratic shading, 
including both diffuse and specular light, can be 
performed using four additions per pixel instead of 
four additions and a reciprocal square root for Phong 
shading.  
The main drawback using quadratic shading has been 
the rather complex rasterization setup. This paper 
proposes a solution to this problem and the simplified 
setup presented in this paper will be about three times 

faster than previous setup approaches. Hence, 
quadratic shading will be suitable for software 
rendering and could therefore be implemented on 
hand held devices like cell phones etc. 

2. PREVIOUS WORK 
A 3D object represented by polygons will appear 
faceted when rendered, unless some kind of shading 
technique is used that interpolates intensities or 
colors over the polygons. Gouraud uses bilinear 
interpolation of the colors at the vertices. If the 
intensities are interpolated, then only one addition per 
pixel is necessary to achieve this type of shading. 
The intensity over the polygon in screen space can be 
considered as a plane in (x, y, 

�
)-space, where x and 

y are the screen coordinates, and 
�

 is the intensity. 
Phong uses bilinear interpolation of the normals at 
the edges, to obtain intermediate normals for each 
pixel. These normals are then used in the illumination 
computation. Duff [Duff79] shows how the 
computation can be implemented in an efficient way, 
requiring only three additions, one division and one 
square root per pixel for Phong shading. The intensity 
will form a smooth surface in (x, y, 

�
)-space. Phong 

shading produces better results than Gouraud. 
Nonetheless, Phong does not produce correct 
shading, in the sense that Phong shading is also an 
approximation of the ’real’ shading curve. This can 
easily be proved by the fact that the Phong intensity 
curve is not necessarily C1 continuous over polygon 
edges. 
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Therefore, an approximation of the intensity curve 
will suffice. Bishop and Weimer [Bish86] use a 
Taylor series expansion of Duff’s equation to obtain a 
second order bi-variate polynomial. It could be 
evaluated by only two additions per pixel along a 
scanline. This quadratic interpolation scheme will 
produce a second order polynomial surface in 
 (x, y, 

�
)-space.  

Kappel [Kapp95] uses a surface fitting technique 
based on Powell-Sabin [Powe77] quadratic 
interpolation using the Cendes-Wong [Cend87] 
formulae. The purpose of that approach is to 
eliminate Mach bands by generating a C1 continuous 
surface over the polygon. This is possible by 
subdividing the triangle into smaller triangles. Kirk et 
al. [Kirk92] solves this problem by fitting a surface to 
a triangle, where the intensity of the vertices of 
adjacent triangles are the same, and the first 
derivative of the intensity at the edges tend toward 
being continuous. 
 

Quadratic shading 
Kirk and Voorhies [Kirk90] adopt another approach 
to quadratic shading which is somewhat different 
from previous approaches. They show that quadratic 
interpolation could be setup by fitting a second order 
surface to six points, yielding a polynomial with six 
unknown coefficients, which must be determined. 
The sample points are the vertices and edge mid 
points of a triangle, as shown in Fig 1.  
We will throughout this paper assume that a parallel 
light source is used, as well as a constant view vector. 
However, it will be discussed how a point light 
source can be used and what complications it will 
give for the algorithm. A parallel light source is often 
used when speed is crucial, as it usually is for 
software renderings on hand held devices. The light 
vector must be interpolated over the polygon using 
Phong shading when point light sources are used. 
However, for quadratic shading it is possible to use 
the light source vectors at the six sample points 
instead. Furthermore, the view vector should be 
interpolated over the polygon for Phong shading. 
However, a simplification often made when speed is 
crucial is to use a constant view vector, i.e. the viewer 

is assumed to be at infinity. With a distant light 
source the six samples are computed as 
 

 
 
A second order polynomial is constructed using these 
six samples and the coordinates of the six point. Such 
a quadratic shading function is defined by 
 

 
Kirk and Voorhies do not show how these 
coefficients are computed, neither do Saxe et al. 
[Saxe96] who use this type of quadratic interpolation 
in Pixel-Planes 5 to display radiosity illuminated 
models [Fuch89].  
Seiler [Seil98] proposes a simple and fast way to 
setup the coefficients for this type of quadratic 
shading. How the computation can be done is also 
shown by Abbas et al. [Abba01a, Abba01b] but they 
do not try to make the computation as efficient as 
Seiler does. Both methods do not cover special cases 
which will lead to division by zero. This problem 
however, is solved by Lee and Jen [Lee01] who have 
simplified Seiler’s approach. In [Hast01] it is shown 
how these methods can be simplified further in order 
to make the computation of the coefficients as 
efficient as possible.  
 

 
 
In general the coefficients can be obtained by setting 
up a system of equations using equation (7) and the 
relative coordinates of the sample points. Relative 
coordinates are preferable since it will yield a system 
which is easier to solve, as it will contain more 
zeroes. The relative coordinates are obtained by 



shifting the triangle so that the top vertex has 
coordinate (0,0). The middle vertex will have 
coordinate (x1, y1), and the bottom most vertex will 
be (x2, y2), as shown to the right in figure 2. This 
implies that the vertices have to be sorted in the y 
direction. Note that, these operations are done in 
screen space and it is here presumed that the top left 
corner is coordinate (0,0). The system of equations is 
 

 
 
And the problem is to solve this equation 
 

 
where 

 
 

2.1.1 Alternative derivation 
An alternative and ultimately slightly faster approach 
is to use an ortho-normalized triangle with p0 = (0,0), 
p1 =(1,0) and p2 = (0,1), as shown to the left in figure 
2. It has been obtained by first sorting the vertices, 
and then shifting them as shown in the same figure to 
the right. The coefficients for a bi-variate polynomial 
over this triangle is first computed by setting up the 
following system of equations  
 

 
where 
 

 
 
And 
 

 
 
The solution for c = M−1Φ is 
 

 
where 
 

 
 
It is shown in [Hast03a] and [Hast02b] how the setup 
variables needed for incrementally stepping along the 
edges as well as along the scanlines, can be computed 
directly using equation 17 instead of using equation 
7. This approach is actually slightly faster. It was also 
shown in [Hast02a] how this could be used for bump 
mapping. The reason why the ortho-normalized 
triangle is used is that the coordinates for the vertices 
are (0,0), (1,0) and (0,1) and this yields a much more 
simple matrix inverse to solve, i.e the inverse of 
equation (15). The three different solutions discussed 
in [Hast01] and originally developed by Lee & Jen 
[Lee01], Seiler [Seil98] and Abbas et al. [Abba01a, 
Abba01b] are actually three approaches for solving 
this inverse. The inverse of this new matrix 
formulation becomes much more straight-forward to 
solve. Next a transformation is needed from the 
actual triangle (the triangle to the right in figure 2) 
into the so called ortho-normalized triangle. For any 
point (x, y) on the actual triangle, a corresponding 
point (u, v) on the normalized triangle can be 
obtained by the following transformation 
 

 
where 
 

 
and 
 

 
Finally equations (18) and (19) are put into equation 
(17) and the terms are rearranged so that we obtain 
the coefficients for (7). This is done by extracting the 
terms multiplied by x2, x and so forth. The 
coefficients are 



 
The time needed for computing these coefficients as 
well as the computation time for computing them 
using the previously explained approaches will be 
shown later in this paper. 
 

3. APPROXIMATION OF MID-EDGE 
VECTORS 
One of the drawbacks with the quadratic setup is the 
computation and normalization of the mid-edge 
vectors that are needed in order to compute the 
intensities I12, I13 and I23 as equations (4) through (6) 
show. We will now show that these computations can 
be avoided and the setup will end up being even 
simpler but also faster. Our working name for this 
approach has been X-shading and we will therefore 
refer to it as that in the subsequent sections. An 
approximation based on one step of the Newton-
Raphson method was used by Wynn [Wynn01] for 
normalization of an interpolated normal 
 

 

We shall derive an equation for computing the 
approximation of a normalized vector that is halfway 
in between two vectors. The vector in between is 
computed as 
 

 
Use equation (23) to normalize equation (24), by 
letting N =N1/2, in the following way 
 

 
 
Expand the equation and note that the normals are 
normalized and therefore N1 ·N1 = 1 and N2 ·N2 = 1. 
Hence 

 
And after rearranging the terms 
 

 

Accuracy of the proposed approximation 
This approximation of the mid-edge vectors works 
quite well for normals with an angle that are less than 
45° as shown in figure 3 where the vector norm of the 
mid-edge vector is computed for different angles. The 
norm is very close to one for angles less than 45°. 
Then the norm starts to decrease rather rapidly, as 
shown in the figure, but it should be noted that the 
scale goes from 0.88 to 1.0. Hence, the 
approximation is still not so bad for angles over 45°. 

 
 
The approximation will always do better than a linear 
approximation, which assures that the quadratic 
approach will always be better than Gouraud shading. 
However, the quality of the highlight will be affected 
for larger angles. It could be argued though, that such 
large angles means that the polygons should be 
subdivided further. 
 

4. FASTER QUADRATIC SETUP 
In the next step we use this approximation for 
computing the mid-edge vectors and then these are 
substituted into equations (16). 
The intensities are computed as 
 

 
Hence 

 
Similarly 
 

 
Use equations (29) through (31) and substitute them 
into equations (16). After simplification, the solution 
for X-shading now becomes 
 



 
It should be mentioned that if a point light source was 
used instead of a parallel light source, then we for an 
example would obtain 
 

 
where L12 is the light source vector in the direction to 
the point light source at the sample point in question. 
This will make the setup a bit more complicated. 
Nonetheless, the normalization of the mid-edge 
vector is still avoided. 
Note that this solution only depends on the vertex 
normals and the reason for this is of course that the 
approximation of the mid-edge vectors only depends 
on the vertex normals. The effect of this is that the 
extra normalization of the mid-edge vectors, which 
are shown in (4) through (6), disappears. Hence, a 
substantial amount of computation time is saved by 
using the proposed method, especially on systems 
where there is no hardware for computing divisions 
and square roots. 
 

 

 
 
Table 1 shows the timing for the computation of the 
coefficients for equation (7). The earlier mentioned 
methods proposed by Lee and Jen, Siler and Abbas et 
al, and the fast version proposed by Hast et al. in 
[Hast02b, Hast03a] and the method proposed in this 
paper for one hundred million computations. 
The new method is about three times faster than 
previous methods. It should be mentioned that the 
approximation of the mid-edge vectors could be used 
for all the other previously mentioned approaches as 
well. However, we chose to use it for the fastest 
approach in this paper. Another important thing to 
mention is that the dot products in equations (32) 
could be precomputed and stored since the angle 
between the vertex normals are invariant to affine 
transformations such as translation and rotation. In 
fact (N1·N2 −1)/2 and so forth could be precomputed 
and stored. This will make the proposed approach 
even faster. 

 

5. HIGH QUALITY HIGHLIGHTS 
Both the diffuse and specular light can be 
interpolated using the proposed X-shading approach. 
When near Phong quality highlights are required for 
large polygons, it is necessary to do one interpolation 
for each type of light. The diffuse light is generally 
computed as 



where N is the normal and L is the vector in the 
direction to the light source. We omit the color of the 
surface and the color of the light source for 
simplicity. The intensities computed for each vertex 
using this equation can be interpolated by the 
proposed approach. Likewise, the specular intensity 
can be interpolated separately by computing the 
specular intensity for each vertex by 
 

 
where H is the halfway vector introduced by Blinn 
[Blin77]. Note, that this is not the full specular 
computation. For each pixel it is necessary to 
compute (Is)

s where s is the so called shininess. A 
faster technique is proposed in [Hast03b] for 
computing the specular light, which will be very well 
suited for software rendering. The fact that two 
different interpolations are used does not make the 
whole setup twice as large. Several intermediate 
variables needed in the first setup for the diffuse light 
can be reused for the second setup for the specular 
light. Anyhow, it will be faster than a true Phong 
interpolation, which will need two bilinear 
interpolations, one bi-quadratic interpolation, as well 
as one division and one square root per pixel, in order 
to compute the diffuse and specular light. Figure 4 
shows the back of the famous Venus de Milo statue 
that has been shaded by Phong shading using a 
polygon setup approach. This image can be compared 
to the same object in figure 5 shaded by the proposed 
X-shading approach. The difference is hardly 
noticeable.  
A torus with only 288 triangles where every two 
adjacent triangles constitute a planar surface, was 
shaded in figure 6 and 7. The maximum angle 
between two normals are as high as 41.4° and 
obviously it should have been subdivided further 
since the contour is not looking good. Anyway, the 
shading and especially the highlights are 
indistinguishable from each other. The conclusion is 
that X-shading, even though an approximation is used 
for the mid-edge vectors, still will produce 
satisfactory results. Moreover, it is much faster than 
Phong shading and even faster than previous 
quadratic shading approaches. This will make X-
shading attractive for software rendering. Especially 
since several divisions and all the square roots 
needed for computing the coefficients in the bi-
variate quadratic equation have been removed from 
the setup. 

 

6. CONCLUSIONS 
The proposed setup approach for quadratic shading is 
about three times faster than previous approaches. 
The approximation is accurate enough for normals 
where the angle is less than 45°, and will still do 
better than Gouraud shading for larger angles. Since 
the angles are usually smaller than that, otherwise the 
contour of the object will look far from smooth, the 
proposed method will produce near Phong quality 
highlights without any square roots and only one 



division needed for computing the coefficients in the 
bi-variate quadratic equation. This can be compared 
with the other approaches that need at least three 
more divisions and square roots as implied by 
equations (4) through (6). Thus, the proposed 
approach is very well suited for software rendering 
where speed is crucial. 
Today, graphics hardware makes Phong shading 
useful for 3D applications like games and real-time 
visualizations. However, it is still out of reach for 
many types of hand held devices. It is reasonable to 
presume that such devices will include more and 
more applications using graphics. Any graphics card 
on such a device will be much simpler than the card 
used for gaming on a home computer since graphics 
cards are big energy consumers and energy is crucial 
for these types of devices. Even though some 
attempts to construct energy saving graphics cards 
have been done [Kame03], it is reasonable to 
presume that software rendering will be used for 3D 
graphics on many of these devices for a long time 
ahead. 
As future work we are planning to investigate how X-
shading would compare to Gouraud shading on hand 
held devices such as those on a cell phone. The small 
display area versus the limited processing power 
leads to some interesting trade-offs. 
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