
Fast Near Phong-Quality Software Shading

Tony Barrera
Barrera Kristiansen AB

Uppsala,Sweden

tony.barrera@spray.se

Anders Hast
Creative Media Lab

University of Gävle, Sweden

aht@hig.se

Ewert Bengtsson
Centre For Image Analysis

Uppsala University, Sweden

ewert@cb.uu.se

ABSTRACT
Quadratic shading has been proposed as a technique giving better results than Gouraud shading, but which is
substantially faster than Phong shading. Several techniques for fitting a second order surface to six points have
been proposed. We show in this paper how an approximation of the mid-edge samples can be done in a very
efficient way. An approximation of the mid-edge vectors are derived. Several advantages are apparent when these
vectors are put into the original formulation. First of all it will only depend on the vertex vectors. Moreover, it
will simplify the setup and no extra square roots are necessary for normalizing the mid-edge vectors. The setup
will be about three times faster than previous approaches. This makes quadratic shading very fast for
interpolation of both diffuse and specular light, which will make it suitable for near Phong quality software
renderings.

Keywords
Quadratic shading, Phong shading.

1. INTRODUCTION
Quadratic shading has been proposed as a technique
giving better results than Gouraud shading [Gour71],
but which is substantially faster than Phong shading
[Phon75]. Quadratic interpolation could be setup by
fitting a second order surface to six points. Both the
diffuse and specular light must be computed at these
points and the best quality is obtained if these are
interpolated separately. Furthermore, the power in the
specular computation must be computed per pixel.
Besides this computation, quadratic shading,
including both diffuse and specular light, can be
performed using four additions per pixel instead of
four additions and a reciprocal square root for Phong
shading.
The main drawback using quadratic shading has been
the rather complex rasterization setup. This paper
proposes a solution to this problem and the simplified
setup presented in this paper will be about three times

faster than previous setup approaches. Hence,
quadratic shading will be suitable for software
rendering and could therefore be implemented on
hand held devices like cell phones etc.

2. PREVIOUS WORK
A 3D object represented by polygons will appear
faceted when rendered, unless some kind of shading
technique is used that interpolates intensities or
colors over the polygons. Gouraud uses bilinear
interpolation of the colors at the vertices. If the
intensities are interpolated, then only one addition per
pixel is necessary to achieve this type of shading.
The intensity over the polygon in screen space can be
considered as a plane in (x, y,

�
)-space, where x and

y are the screen coordinates, and
�

 is the intensity.
Phong uses bilinear interpolation of the normals at
the edges, to obtain intermediate normals for each
pixel. These normals are then used in the illumination
computation. Duff [Duff79] shows how the
computation can be implemented in an efficient way,
requiring only three additions, one division and one
square root per pixel for Phong shading. The intensity
will form a smooth surface in (x, y,

�
)-space. Phong

shading produces better results than Gouraud.
Nonetheless, Phong does not produce correct
shading, in the sense that Phong shading is also an
approximation of the ’real’ shading curve. This can
easily be proved by the fact that the Phong intensity
curve is not necessarily C1 continuous over polygon
edges.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Conference proceedings ISBN 80-86943-03-8
WSCG’2006, January 30-February 3, 2006
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

Therefore, an approximation of the intensity curve
will suffice. Bishop and Weimer [Bish86] use a
Taylor series expansion of Duff’s equation to obtain a
second order bi-variate polynomial. It could be
evaluated by only two additions per pixel along a
scanline. This quadratic interpolation scheme will
produce a second order polynomial surface in
 (x, y,

�
)-space.

Kappel [Kapp95] uses a surface fitting technique
based on Powell-Sabin [Powe77] quadratic
interpolation using the Cendes-Wong [Cend87]
formulae. The purpose of that approach is to
eliminate Mach bands by generating a C1 continuous
surface over the polygon. This is possible by
subdividing the triangle into smaller triangles. Kirk et
al. [Kirk92] solves this problem by fitting a surface to
a triangle, where the intensity of the vertices of
adjacent triangles are the same, and the first
derivative of the intensity at the edges tend toward
being continuous.

Quadratic shading
Kirk and Voorhies [Kirk90] adopt another approach
to quadratic shading which is somewhat different
from previous approaches. They show that quadratic
interpolation could be setup by fitting a second order
surface to six points, yielding a polynomial with six
unknown coefficients, which must be determined.
The sample points are the vertices and edge mid
points of a triangle, as shown in Fig 1.
We will throughout this paper assume that a parallel
light source is used, as well as a constant view vector.
However, it will be discussed how a point light
source can be used and what complications it will
give for the algorithm. A parallel light source is often
used when speed is crucial, as it usually is for
software renderings on hand held devices. The light
vector must be interpolated over the polygon using
Phong shading when point light sources are used.
However, for quadratic shading it is possible to use
the light source vectors at the six sample points
instead. Furthermore, the view vector should be
interpolated over the polygon for Phong shading.
However, a simplification often made when speed is
crucial is to use a constant view vector, i.e. the viewer

is assumed to be at infinity. With a distant light
source the six samples are computed as

A second order polynomial is constructed using these
six samples and the coordinates of the six point. Such
a quadratic shading function is defined by

Kirk and Voorhies do not show how these
coefficients are computed, neither do Saxe et al.
[Saxe96] who use this type of quadratic interpolation
in Pixel-Planes 5 to display radiosity illuminated
models [Fuch89].
Seiler [Seil98] proposes a simple and fast way to
setup the coefficients for this type of quadratic
shading. How the computation can be done is also
shown by Abbas et al. [Abba01a, Abba01b] but they
do not try to make the computation as efficient as
Seiler does. Both methods do not cover special cases
which will lead to division by zero. This problem
however, is solved by Lee and Jen [Lee01] who have
simplified Seiler’s approach. In [Hast01] it is shown
how these methods can be simplified further in order
to make the computation of the coefficients as
efficient as possible.

In general the coefficients can be obtained by setting
up a system of equations using equation (7) and the
relative coordinates of the sample points. Relative
coordinates are preferable since it will yield a system
which is easier to solve, as it will contain more
zeroes. The relative coordinates are obtained by

shifting the triangle so that the top vertex has
coordinate (0,0). The middle vertex will have
coordinate (x1, y1), and the bottom most vertex will
be (x2, y2), as shown to the right in figure 2. This
implies that the vertices have to be sorted in the y
direction. Note that, these operations are done in
screen space and it is here presumed that the top left
corner is coordinate (0,0). The system of equations is

And the problem is to solve this equation

where

2.1.1 Alternative derivation
An alternative and ultimately slightly faster approach
is to use an ortho-normalized triangle with p0 = (0,0),
p1 =(1,0) and p2 = (0,1), as shown to the left in figure
2. It has been obtained by first sorting the vertices,
and then shifting them as shown in the same figure to
the right. The coefficients for a bi-variate polynomial
over this triangle is first computed by setting up the
following system of equations

where

And

The solution for c = M−1Φ is

where

It is shown in [Hast03a] and [Hast02b] how the setup
variables needed for incrementally stepping along the
edges as well as along the scanlines, can be computed
directly using equation 17 instead of using equation
7. This approach is actually slightly faster. It was also
shown in [Hast02a] how this could be used for bump
mapping. The reason why the ortho-normalized
triangle is used is that the coordinates for the vertices
are (0,0), (1,0) and (0,1) and this yields a much more
simple matrix inverse to solve, i.e the inverse of
equation (15). The three different solutions discussed
in [Hast01] and originally developed by Lee & Jen
[Lee01], Seiler [Seil98] and Abbas et al. [Abba01a,
Abba01b] are actually three approaches for solving
this inverse. The inverse of this new matrix
formulation becomes much more straight-forward to
solve. Next a transformation is needed from the
actual triangle (the triangle to the right in figure 2)
into the so called ortho-normalized triangle. For any
point (x, y) on the actual triangle, a corresponding
point (u, v) on the normalized triangle can be
obtained by the following transformation

where

and

Finally equations (18) and (19) are put into equation
(17) and the terms are rearranged so that we obtain
the coefficients for (7). This is done by extracting the
terms multiplied by x2, x and so forth. The
coefficients are

The time needed for computing these coefficients as
well as the computation time for computing them
using the previously explained approaches will be
shown later in this paper.

3. APPROXIMATION OF MID-EDGE
VECTORS
One of the drawbacks with the quadratic setup is the
computation and normalization of the mid-edge
vectors that are needed in order to compute the
intensities I12, I13 and I23 as equations (4) through (6)
show. We will now show that these computations can
be avoided and the setup will end up being even
simpler but also faster. Our working name for this
approach has been X-shading and we will therefore
refer to it as that in the subsequent sections. An
approximation based on one step of the Newton-
Raphson method was used by Wynn [Wynn01] for
normalization of an interpolated normal

We shall derive an equation for computing the
approximation of a normalized vector that is halfway
in between two vectors. The vector in between is
computed as

Use equation (23) to normalize equation (24), by
letting N =N1/2, in the following way

Expand the equation and note that the normals are
normalized and therefore N1 ·N1 = 1 and N2 ·N2 = 1.
Hence

And after rearranging the terms

Accuracy of the proposed approximation
This approximation of the mid-edge vectors works
quite well for normals with an angle that are less than
45° as shown in figure 3 where the vector norm of the
mid-edge vector is computed for different angles. The
norm is very close to one for angles less than 45°.
Then the norm starts to decrease rather rapidly, as
shown in the figure, but it should be noted that the
scale goes from 0.88 to 1.0. Hence, the
approximation is still not so bad for angles over 45°.

The approximation will always do better than a linear
approximation, which assures that the quadratic
approach will always be better than Gouraud shading.
However, the quality of the highlight will be affected
for larger angles. It could be argued though, that such
large angles means that the polygons should be
subdivided further.

4. FASTER QUADRATIC SETUP
In the next step we use this approximation for
computing the mid-edge vectors and then these are
substituted into equations (16).
The intensities are computed as

Hence

Similarly

Use equations (29) through (31) and substitute them
into equations (16). After simplification, the solution
for X-shading now becomes

It should be mentioned that if a point light source was
used instead of a parallel light source, then we for an
example would obtain

where L12 is the light source vector in the direction to
the point light source at the sample point in question.
This will make the setup a bit more complicated.
Nonetheless, the normalization of the mid-edge
vector is still avoided.
Note that this solution only depends on the vertex
normals and the reason for this is of course that the
approximation of the mid-edge vectors only depends
on the vertex normals. The effect of this is that the
extra normalization of the mid-edge vectors, which
are shown in (4) through (6), disappears. Hence, a
substantial amount of computation time is saved by
using the proposed method, especially on systems
where there is no hardware for computing divisions
and square roots.

Table 1 shows the timing for the computation of the
coefficients for equation (7). The earlier mentioned
methods proposed by Lee and Jen, Siler and Abbas et
al, and the fast version proposed by Hast et al. in
[Hast02b, Hast03a] and the method proposed in this
paper for one hundred million computations.
The new method is about three times faster than
previous methods. It should be mentioned that the
approximation of the mid-edge vectors could be used
for all the other previously mentioned approaches as
well. However, we chose to use it for the fastest
approach in this paper. Another important thing to
mention is that the dot products in equations (32)
could be precomputed and stored since the angle
between the vertex normals are invariant to affine
transformations such as translation and rotation. In
fact (N1·N2 −1)/2 and so forth could be precomputed
and stored. This will make the proposed approach
even faster.

5. HIGH QUALITY HIGHLIGHTS
Both the diffuse and specular light can be
interpolated using the proposed X-shading approach.
When near Phong quality highlights are required for
large polygons, it is necessary to do one interpolation
for each type of light. The diffuse light is generally
computed as

where N is the normal and L is the vector in the
direction to the light source. We omit the color of the
surface and the color of the light source for
simplicity. The intensities computed for each vertex
using this equation can be interpolated by the
proposed approach. Likewise, the specular intensity
can be interpolated separately by computing the
specular intensity for each vertex by

where H is the halfway vector introduced by Blinn
[Blin77]. Note, that this is not the full specular
computation. For each pixel it is necessary to
compute (Is)

s where s is the so called shininess. A
faster technique is proposed in [Hast03b] for
computing the specular light, which will be very well
suited for software rendering. The fact that two
different interpolations are used does not make the
whole setup twice as large. Several intermediate
variables needed in the first setup for the diffuse light
can be reused for the second setup for the specular
light. Anyhow, it will be faster than a true Phong
interpolation, which will need two bilinear
interpolations, one bi-quadratic interpolation, as well
as one division and one square root per pixel, in order
to compute the diffuse and specular light. Figure 4
shows the back of the famous Venus de Milo statue
that has been shaded by Phong shading using a
polygon setup approach. This image can be compared
to the same object in figure 5 shaded by the proposed
X-shading approach. The difference is hardly
noticeable.
A torus with only 288 triangles where every two
adjacent triangles constitute a planar surface, was
shaded in figure 6 and 7. The maximum angle
between two normals are as high as 41.4° and
obviously it should have been subdivided further
since the contour is not looking good. Anyway, the
shading and especially the highlights are
indistinguishable from each other. The conclusion is
that X-shading, even though an approximation is used
for the mid-edge vectors, still will produce
satisfactory results. Moreover, it is much faster than
Phong shading and even faster than previous
quadratic shading approaches. This will make X-
shading attractive for software rendering. Especially
since several divisions and all the square roots
needed for computing the coefficients in the bi-
variate quadratic equation have been removed from
the setup.

6. CONCLUSIONS
The proposed setup approach for quadratic shading is
about three times faster than previous approaches.
The approximation is accurate enough for normals
where the angle is less than 45°, and will still do
better than Gouraud shading for larger angles. Since
the angles are usually smaller than that, otherwise the
contour of the object will look far from smooth, the
proposed method will produce near Phong quality
highlights without any square roots and only one

division needed for computing the coefficients in the
bi-variate quadratic equation. This can be compared
with the other approaches that need at least three
more divisions and square roots as implied by
equations (4) through (6). Thus, the proposed
approach is very well suited for software rendering
where speed is crucial.
Today, graphics hardware makes Phong shading
useful for 3D applications like games and real-time
visualizations. However, it is still out of reach for
many types of hand held devices. It is reasonable to
presume that such devices will include more and
more applications using graphics. Any graphics card
on such a device will be much simpler than the card
used for gaming on a home computer since graphics
cards are big energy consumers and energy is crucial
for these types of devices. Even though some
attempts to construct energy saving graphics cards
have been done [Kame03], it is reasonable to
presume that software rendering will be used for 3D
graphics on many of these devices for a long time
ahead.
As future work we are planning to investigate how X-
shading would compare to Gouraud shading on hand
held devices such as those on a cell phone. The small
display area versus the limited processing power
leads to some interesting trade-offs.

7. REFERENCES
[Abba01a] A. M. Abbas, L. Szirmay-Kalos, G.

Szijarto, T. Horvath, T. Foris Quadratic
Interpolation in Hardware Rendering, Spring
Conference of Computer Graphics, 2001.

[Abba01b] A. M. Abbas, L. Szirmay-Kalos, T.
Horvath, T. Foris Quadratic Shading and its
Hardware Implementation, Machine Graphics
and Vision, Vol. 9, No. 4, pp. 825-804, 2001.

[Bish86] G. Bishop, D. M. Weimer, Fast Phong
Shading Computer Graphics, vol. 20, No 4, pp.
103-106, 1986.

[Blin77] J. F. Blinn, Models of Light Reflection for
Computer Synthesized Pictures, In Proceedings
SIGGRAPH, pp. 192-198. 1977.

[Cend87] Z. J. Cendes, S. H. Wong, C1 Quadratic
Interpolation over Arbitrary point sets, Computer
Graphics & Applications, Vol. 7, No. 11, pp. 8-
16, 1987.

[Duff79] T. Duff, Smoothly Shaded Renderings of
Polyhedral Objects on Raster Displays ACM,
Computer Graphics, Vol. 13, pp. 270-275, 1979.

[Fuch89] H. Fuchs, J. Poulton, J. Eyles, T. Greer, J.
Goldfeather, D. Ellsworth, S. Molnar, G. Turk, L.
Israel, A Heterogeneous Multiprocessor Graphics
System Using Processor-Enhanced Memories
Computer Graphics (Proc. of SIGGRAPH ’89),
Vol. 23, No. 3, pp 79- 88.

[Gour71] H. Gouraud, Continuous Shading of
Curved Surfaces, IEEE transactions on computers
vol. c-20, No 6, June 1971.

[Hast01] A. Hast, T. Barrera, E. Bengtsson, Faster
Computer Graphics - by Reformulation and
Simplification of Mathematical Formulas and
Algorithms, IMAGINE2001/F.E.S.T, 2001.

[Hast02a] A. Hast, T. Barrera, E. Bengtsson,
Improved Bump Mapping by using Quadratic
Vector Interpolation, Eurographics02, short
paper/Poster 2002.

[Hast02b] Anders Hast, Licentiate Thesis: Improved
Fundamental Algorithms for fast Computer
Graphics, 2002.

[Hast03a] A. Hast, T. Barrera, E. Bengtsson Fast
Setup for Bilinear and Biquadratic Interpolation
over Triangles, Graphics Programming Methods,
Charles River Media, pp. 299-314, 2003.

 [Hast03b] A. Hast, T. Barrera, E. Bengtsson, Fast
Specular Highlights by modifying the Phong-
Blinn Model, A. Hast,T. Barrera, E. Bengtsson,
Siggraph, Sketches and applications 2003.

[Kapp95] M. R. Kappel, Shading: Fitting a Smooth
Intensity Surface Computer-Aided Design, Vol.
27, No. 8, pp. 595-603, 1995.

[Kame03] M. Kameyama, Y. Kato, H. Fujimoto, H.
Negishi, Y.Kodama, Y. Inoue, H. Kawa, 3D
Graphics LSI Core for Mobile Phone Z3D,
Eurographics/siggraph Graphics Hardware 2003.

[Kirk90] D. Kirk, D. Voorhies, The Rendering
Architecture of the DN10000VS Computer
Graphics vol. 24, pp. 299-307, August 1990.

 [Kirk92] D. Kirk, O. Lathrop, D. Voorhies,
Quadratic Interpolation for Shaded Image
Generation Patent Nr: US5109481, 1992.

 [Lee01] Y. C. Lee, C. W. Jen, Improved Quadratic
NormalVector Interpolation for Realistic Shading
The Visual Computer, 17, pp. 337-352, 2001.

 [Phon75] B. T. Phong, Illumination for Computer
Generated Pictures Communications of the ACM,
Vol. 18, No 6, June 1975.

[Powe77] M. J. D. Powell, M. A. Sabin, Piecewise
Quadratic Approximations on Triangles ACM
Trans. Math. Software Vol. 3, pp 316-325, Dec.
1977.

[Saxe96] E. Saxe, A. A. Lastra, M. Hughes, Higher-
Order color Interpolation for Real-Time
Radiosity Displa,y UNCCH Dep. of Computer
Science Technical Report TR96-023, 1996.

[Seil98] L. Seiler, Quadratic Interpolation for Near-
Phong Quality Shading Proceedings of
SIGGRAPH 98: conference abstracts and
applications, Page 268, 1998.

[Wynn01] C. Wynn, Implementing Bump-Mapping
using Register Combiners, Newton-Raphson fast
combiner normalization technique.
http://developer.nvidia.com, 2001.

