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ABSTRACT 

This paper describes a method for suppressing spatial conflicts in cartographic generalization of isobathymetric 
lines. These lines are modeled by parametric curves. For that purpose, we review our preliminary works on the 
detection of intersections and examine the current methods used for line displacement. We focus on geometrical 
methods and on a cable network based method and propose a new strategy. Our algorithm first determines a 
geometrical solution and then refines it by applying a mechanical deformation. 
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1. INTRODUCTION 
This paper deals with the problem of cartographic 
generalization of isocontour lines in a maritime 
context (i.e. isobathymetric lines). Cartographic 
generalization includes the whole processing 
encountered when the scale of a chart is changed into 
a smaller scale. A chart can be defined as an 
abstracted model representing geometric reality. The 
smaller the scale, the more schematic the 
representation. Thus, the goal of generalization is to 
produce charts which are as close as possible to 
reality while respecting their legibility and the 
application constraints (see Figure 1). This can be 
obtained by applying cartographic generalization 
operators such as selection/elimination, aggregation, 
structuring, compression (or filtering), smoothing, 
exaggeration, caricaturing, enlargement and 
displacement [Rua93]. 

The interest of using continuous curves such as B-
spline curves for modeling isobathymetric lines as 

well as for processing some generalization operators 
has been proved in [Sau03]. Spatial conflicts or 
intersections can be encountered during the 
computation of the initial parametric curves (e.g., due 
to a bad parameterization) or during the application 
of some generalization operators (e.g., a smoothing 
process). They have to be detected and located before 
suppression by local or global displacements. This 
paper focuses on the problem of suppressing spatial 
conflicts. 

Maritime charts should legally ensure navigation 
safety of users (and sailors). Consequently, line 
displacement is characterized by strong constraints. 
Extending the usual constraint classification proposed 
by Beard [Bea91], we identify: 

− The graphic constraint of legibility: The 
final chart should not include either real line 
intersections (i.e., transversal intersections, 
overlaps, tangencies) or visual line 
intersections (when curve segments are too 
close with respect of an accuracy criterion 

visε  linked to the working scale) 

− The application constraint of safety: The 
displacement of an isobathymetric line ought 
to be done towards deeper areas to preserve 
the safety of navigation. More precisely, one 
can displace a 4m (under the sea level) 
isobathymetric line to a deeper area (e.g., a 
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5m area) on a chart, because a sailor will 
evaluate the danger at 4m whereas the real 
danger is at 5m. A displacement of a 4m 
isobathymetric line towards a less deep area 
(e.g., a 3m area) on a chart is not allowed, 
because a sailor will evaluate the danger at 
4m whereas the real danger is at 3m. 

The remainder of the paper proceeds as follows: next 
section describes more precisely previous works on 
the detection of spatial conflicts in a large set of B-
spline curves. Neighborhood information as well as 
closeness information will be deduced. Section 3 
presents geometrical and mechanical approaches for 
curve displacement and discusses on their interests. 
In section 4, a technique adapted for cartographic 
generalization is proposed. A deformation strategy 
based on both geometrical and mechanical methods 
which satisfies the whole constraints (i.e., safety and 
legibility) is applied. Some results obtained on real 
cases are presented.  

 

 
Figure 1. An example of isobathymetric lines 

before (above) and after generalization.  

 

2. PREVIOUS WORKS ON THE 
LOCATION OF INTERSECTIONS 
Let us first introduce the following notations. The B-

spline curves of the charts are denoted by if  with 

Ni ≤≤0  and are of order k (in this paper, k=4). A 

curve if  has 1+im  control points i
jQ  with 

imj ≤≤0 . Its knots are denoted by kmj
j

i
j

i

t +=
=0)( . The 

first and last knots have multiplicity k (clamped knot 
vector). 

In [Gui03], a hierarchical decomposition is proposed 
that splits both the space and its curves in order to 
detect potential spatial conflicts. Then, a refinement 
technique to confirm or reject the intersection is 
applied.  

The interest in our approach is twofold. Firstly, 
limiting the calculus to point coordinates comparison 
reduces the number of computations. The method can 
thus be applied to large set of curves. Secondly, all 
kinds of intersections (i.e., transversal intersections, 
overlapping and also visual intersections) are 
detected with the same process. Thus, the method can 
be used for complex problems such as cartographic 
generalization.  

Hierarchical decomposition 
 The principle is based on two simultaneous 
processes. 

The first process enables us to define areas where 
there are potential intersections according to the 
legibility constraint. The choice of a uniform 
partitioning like a quadtree depends on the two main 
objectives of reducing the computing time and the 
memory space. 

The initial chart being identified as the root (i.e., 
initial cell) of the quadtree structure, each cell is split 
(or not) according to the following criterion: if the 
cell contains no more than one curve segment, no 
intersection can occur and the segmentation process 
stops. Otherwise, there is (a) potential intersection(s) 
and the cell is split. The segmentation process can 
also stop if: 

− A cell minimal size cellε  ( )viscell εε >  is 

reached according to the fact that the smaller 
the cell, the more precise the location; 

− The curve segments are defined with k 
control points (i.e., the order of the curves). 
A straightforward decomposition is no more 
possible. Splitting the curve corresponds to a 
Bézier curve subdivision and is avoided. 

Figure 2 displays the result obtained by the 
application of the space partitioning method on 
Figure 1 chart. 



 
Figure 2. Segmentation of the initial chart (Figure 

1) using a quadtree. 

The second process splits the different curves if  

according to the spatial segmentation. The aim is to 
link each cell to the smallest parametric intervals 

],[ i
last

i
first tt  (that defines the parts of the curves if ) 

intersecting it. To reach this goal, a method based on 
a removal of parametric intervals [Dan92] is applied. 
The interest in this method is that no point on the 
curve is computed and no new knot is inserted, which 
reduces the computing times. 

At the end of this hierarchical decomposition process, 
a quadtree is defined where each cell contains a list 
(empty or not) of B-spline curve segments. 

There are potential intersections when there are at 
least two curve segments in the same cell. The 
refinement method described in the next section 
allows us to confirm the intersection. 

Refinement technique 
The aim of this section is to validate the intersections 
between different curves in a same cell. The approach 
is geometrical: the curve segments are bounded by 
thin envelopes which are compared. 

A subdivision scheme [Lut00] is applied on each 
curve segment. This defines a tight linear envelope 
(Figure 3) with points )( jf ς  and )( jl ς , where: 

− jς  are the Greville abscissae (i.e. 

ς j =
t j +1 + ...+ t j +k−1

k −1
); 

− )(ςl  is the piecewise linear interpolant of 

the control points at Greville abscissae (i.e. 

jj Ql =)(ς ). 

On a parametric interval ],[ 1+jj ςς , Lutterkort and 

Peters prove that the bandwith of this envelope is 
bounded by: 

f − l ≤ k

24
max

j− k−1

2
+1≤ i≤ j + k−1

2
−1

Qi−1 − 2Qi + Qi+1 2
 ( 1 ) 

 
Figure 3. Tight envelope of a B-spline curve. 
Above: control polygon. Bottom: envelope 

One can previously apply the following subdivision 
scheme to the initial control points to have a thinner 
envelope: 
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The number of iterations needed to have a predefined 
bandwidth bandε  is given by: 
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=  ( 3 ) 

We assume that two curve segments intersect if the 
minimal distance between their envelopes (i.e., the 
minimal translational distance (MTD) of the 
Minkowski difference between the two envelopes) is 
less than the legibility distance visε . When different 

intersections involving the same curves are detected 
on neighboring cells, one merges the corresponding 
parametric intervals of each segment in order to 
identify a single conflict. 

In [Gui03], some results are presented and analyzed 
with different quadtree depths (i.e., visε ) and 

different approximation errors (i.e., bandε ). 

We now focus in the following on the problem of 
correction with displacement techniques. 



3. RELATED WORKS ON 
DISPLACEMENT ALGORITHMS 
Geometric Methods 
Displacement algorithms are of two kinds. The first 
of them are based on geometrical criteria. Most of 

them process with polygonal curves. Let 0
iP  and iP , 

0 ≤ i ≤ n, be the sets of points before and after 
correction and  

 0
iii PPP −=∆  ( 4 ) 

be the corresponding displacements. The aim of 

geometric methods is to determine accurate iP∆  that 

solve the conflicts. These displacements are 
expressed according to the application constraints.  

As an example, Nickerson [Nic88] introduced a 
classification of conflicts and their corresponding 
displacements. But the algorithm is restricted to the 
vicinity of a conflict and cannot manage 
displacements if more than two lines are in conflict.  

A global method taking into account the neighboring 
curves is presented by Harrie [Har99]. In this paper, 
constraints are applied to the points defining the 
lines. Each constraint is expressed as a linear 
equation: 

 constant
0

=∆∑
=

n

i
ii Pc  ( 5 ) 

The weights ic are used to set the significance of 
constraints. If necessary, non linear constraints are 
formulated via Taylor developments. For example, if 
a line cannot be shifted, the constraint for each point 

jP of the line is: 

0=∆ jP . 

If this line can only be translated, we will set: 

01=∆−∆ +jj PP . 

Once all the constraints have been identified, they are 
expressed as a linear system with as many equations 
as constraints. The unknowns of the system are the 

iP∆ . As we may have more equations than 

unknowns, the system can be over-determined so a 
compromising solution is found by using a least 
square method for minimizing the error. That means 
that some constraints (having the lowest weights) may 
not be satisfied.  

The main problem with global geometrical methods 
as in [Har99] is to anticipate the results. The behavior 
of the method is not natural. Therefore, a second kind 
of methods has been developed based on physical 
models. 

Energy Minimization Methods 
The principle is that a model is at its equilibrium state 
if its energy is minimal or if the sum of all the forces 
applied on it vanishes. The energy of a system is 
shared into internal and external energies. The first 
part represents the inner energy of an object and 
tends to preserve its shape. The second part is the 
energy brought by other objects or constraints which 
penalizes the system and tends to deform it. Active 
contours and cable networks pertain to this category 
of methods. In this paper, we focus on cable 
networks. 

3.1.1 Cable networks 
A physical model is presented by Léon in [Léo95]. 
The principle is to consider a cable network and to 
deform it by changing mechanical parameters such as 
the tension in the cable or by applying external forces 
to the nodes of the network. For B-spline 
deformation, Léon suggests using the analogy of the 
standard representation of a control polygon (for 
curve) or control polyhedron (for surface) with a 
cable network. The deformation is obtained through 
modifications applied to control points. Such a 
mechanical deformation has been applied to the 
definition of some line generalization operators 
[Sau98]. 

Each segment of the control polyhedron is a cable 
under tension where nodes can be either fixed or free. 
The equilibrium shape is reached when all the forces 
at each free node sum up to zero. 

Let iP  be the nodes of the network and ib  be the 

branches joining the points iP  and 1+iP . If ext
iF  is 

the load applied to a node iP and int
iF  the internal 

force in the bar ib , ext
iF  equilibrates the sum of all 

the forces that meet at iP : 

∑=
k

kx
ext

ix FF int  

∑=
k

ky
ext

iy FF int  

The internal forces int
iF  of each branch ib  can be 

replaced by a force density defined by 
i

i
i

d

F
q

int

=  

with id  the length of the branch. The equivalent 

matrix which is built from the force densities is 
written as Q : 



 ==

otherwise0
 if  jiqQ iij . 



The connectivity of the network is expressed by the 
branch-node matrix C defined by the equation 






−=

otherwise0
1already  is endother  and

point at  ends bar  if  1
point at  ends bar  if1

ji
ji

Cij . 

This matrix is divided into two others fC  and lC  by 

grouping the columns among fixed points and free 
points. Equilibrium equations can also be written as a 
linear system established under the following matrix 

form with l
t
ll QCCD =  and f

t
lf QCCD = : 

 






−=
−=

ff
ext
yll

ff
ext
xll

yDFyD

xDFxD
 ( 6 ) 

where ff yx  ,  are the coordinates of the fixed points 

and are considered as input data while ll yx  ,  are the 

coordinates of the moving points and the unknowns 
of the system. The advantages of the force density 
method are straightforward: the computation of the 
point coordinates results from the solution of a linear 
system and as the densities are positive, the solution 
found is unique and always exists. 

Energy minimization methods have a better behavior 
than geometric methods because they are defined 
with apprehensive values. The interest of cable 
network is that it needs only the resolution of a linear 
system to compute node position according to the 
forces. 

4. CORRECTION OF 
INTERSECTIONS 
Correcting an intersection between two 
isobathymetric lines can be obtained by combining a 
geometrical and a mechanical methods. The 
geometrical approach yields a valid solution solving 
all the spatial conflicts. However, the displacement 
may be too important. A mechanical method is then 
applied to slightly modify the curve in order to get 
closer to the initial one. 

The security constraint (see section �1) requires 
moving only the deepest line along a vector u 
indicating the direction of deeper areas (Figure 4). 

In the following, we search the minimal 
displacements on the subdivided polygon to solve the 
conflicts. These displacements are applied to the 
original control points. 

Computation of Minimal Displacements 
We assume that the technique described in section �2 
has located a conflict in adjacent cells between 
different curve segments. Determining the minimal 
displacement is realized by using the tight envelopes 

of the curve segments in conflict computed in section 
�2. 

Let 0l  and 1l  be the two closed polygonal lines 

defining the tight envelopes of the two curve 

segments 0s  and 1s , with 1s  the curve segment to 

be deformed. The points of 0l  and 1l  are 0
iP  and 

1
jP .  

d<εvis

l0

l1

d<εvis

u

 
Figure 4. An example of conflicting curves.  

There is a conflict between 0l  and 1l  if the distance 

between two segments 1
jP 1

1+jP  and 0
1

0
+ii PP  is smaller 

than the legibility distance visε . Removing the 

conflict (Figure 4) can be obtained by translating 
1
jP 1

1+jP  of a vector 1
jP∆  which corresponds to the 

minimal translational distance (see section �2).  

Thus, to a list of conflicting segments 1
jP 1

1+jP  

corresponds a list of minimal displacements 1
jP∆ . 

Two strategies can be considered. The conflict can be 

corrected either by shifting the points of 1l  or by 

shifting the initial control points iQ  of 1s . We 

remind the reader that the envelope 1l  is defined by 

points of the curve )(1
js ς  and points )( jl ς  

corresponding to control points obtained by 
subdividing the initial control polygon where ζ j  are 

the Greville abscissae. For each point 1
jP , there exists 

ζ j  such that Pj
1 = s1 (ζ j )  or Pj

1 = l(ζ j ) : to a list of 

conflicting segments corresponds a list of abscissae 
ζ j min ≤ ζ j ≤ ζ j max . 

Regarding the first case, the displacements 1
jP∆  are 

applied to the segments 1
jP 1

1+jP . Once the 

subdivided polygon is modified, the displacement 
must be transmitted to the initial control polygon for 
preserving a homogeneous curve representation. This 



stage is necessary as the curves are expressed and 
stored with their initial control points. That means 
that one has to go back up the subdivision scheme. 
However, this operation does not generally yield a 
valid solution when the points )( jl ς  are displaced. 

Therefore, the conflict is corrected by shifting the 
control points of the initial curve corresponding to 
the parametric interval in conflict (see section �2).  

The following section aims at defining a geometrical 
deformation that ensures the removal of all the 
conflicts.  

Geometrical method 
Let us first assume a conflict on segment 1

jP 1
1+jP  of 

1l with t i ≤ ζ j < ζ j +1 < t i+1 . We want to determine a 

iQ∆  which corrects the conflict by shifting control 

points Qi−k+1, ..., Qi  of ∆Qi .  

The conflict is corrected if the segment is shifted of 

iQ∆ = 1
jP∆ . The conflict is also corrected if the 

segment is shifted in another direction v where 

0.1 >∆ vPj . In that case, the displacement must be: 

∆Pj
1

cos(∆Pj
1,v)

. 

Let us now assume that we have different segments in 
conflict all corresponding to the same parametric 

interval [ti ,ti+1] . The direction of iQ∆ must be 

chosen so that the displacement along iQ∆ is 

minimal and solves all the conflicts on this interval. 
That means that (Figure 5): 

];[,,
),cos(

maxmin 111

1

+∈∀
∆∆

∆
=∆ iijp

jp

j

jpi tt
PP

P
Q ζζ  ( 7 ) 

with iQ∆  directed along the 1pP∆  which minimizes 

equation 7. 

 
Figure 5. Computation of the minimal 

displacement vector on an interval: both vectors 
correct  the conflicts but iQ∆  is chosen as the 

smaller one. 

 

We are now considering the general case. We assume 
that a list of conflicting segments 1

minjP , ..., 1
maxjP  of 

1l  has been identified. The curve segment defined by 

the smaller parametric interval [ timin
, t imax

] , where 

timin
≤ ζ jmin

< ζ jmax
< timax

, has to be deformed. The 

control points related to this interval are Qimin−k+1, ..., 

Qimax −1. A first solution is to compute, using a 

generalization of the process described above, a 
unique ∆Q  to be applied to the whole control points. 
This approach yields unfortunately too large 
displacements : the larger the number of concerned 
control points the poorer the result. In the second 
solution, we compute a minimal displacement for 
each control point.  

A control point Qi is linked with k intervals 

( [ ti , t i+1],…,[ ti+k−1, ti+k ]). k displacements to be 

applied on Qi must be computed, as described above. 

Then, a minimal vector ∆ ˜ Q i  is once again computed 
with these displacements. It ensures that all the 
conflicts involving Qi are solved.  

As a verification, one can remark that each 
displacement ∆ ˜ Q i−k+1 ,…, ∆ ˜ Q i  takes into consideration 

interval [ ti , t i+1] ensuring a global displacement in 
agreement with the minimal required displacement 
for this interval. 

An example of conflict correction is given in Figure 
6. The corrected solution is called ˜ s 1

(0). Its control 

points are points ˜ Q i
(0) .  

 

 

Figure 6. Above: 0s  (dashed line) and 1s  (solid 

line). Bottom: 0s  and ˜ s 1
(0)after displacement. 



Nevertheless, when angle α in Figure 5 is obtuse, the 
displacements can be too important. For example, in 
Figure 7, the conflicting segments are marked by two 
circles. The correction obtained with the geometrical 
method is shown in Figure 8. This is also due to the 
fact that the curve is defined with a few number of 
control points (16 control points). Our aim is to build 

a curve s1  closer to its initial location. For that 
purpose, we introduce in the next section, a 
mechanical method.  

 
Figure 7. Conflicts between two curves 

 
Figure 8. An example of too large displacement 

(initial line: dashed line, corrected line: solid line) 

Mechanical method 
A mechanical method is applied in order to refine the 
solution. One difficulty of mechanical methods is to 
determine the different forces for obtaining the 
required displacement. The first interest of computing 
a geometrical solution before applying a mechanical 
method is that it allows us to compute the external 

forces deforming the curve from s1  to ˜ s 1
(0)for 

initializing an iterative refinement. Moreover, the 
control points whose positions are very close between 

s1  and ˜ s 1
(0)can be considered as fixed, entailing an 

important reduction of the complexity. 

From formula 6, one can compute the external forces 
ext

iF which bring the initial control points iQ  of 1s  

to their new positions ˜ Q i
( 0) . The solution of the cable 

network is unique so, by applying forces ext
iF−  to 

˜ Q i
( 0) , one goes back to the original control points iQ . 

If forces ext
icF−  are applied with c a constant smaller 

than 1, a curve located between 1s  and the modified 

curve )0(
1

~s  is obtained. The goal is to find the greater 

forces that can be applied to )0(
1

~s  respecting the 

legibility constraints. In our approach, the network is 
homogeneous, i.e., the internal force densities are 
fixed. Only the external forces can be modified.  

The process is iterative and is initialized with the 

geometrical solution )0(
1

~s  having all its control points 

set free. At iteration n, forces )(next
icF−  are 

computed for deforming the curve )(
1

~ ns  to obtain a 

better solution )1(
1

~ +ns .  

A criterion based on the subdivision scheme 
introduced in section �2 enables us to accept (no 

conflict with 0s ) or reject the solution. By applying a 

dichotomy to parameter c, we search an interval 

],[ maxmin cc  such as  

− minc  yields a valid solution; 

− maxc  yields a non valid solution. 

The dichotomy is applied until either a given width 

for interval ],[ maxmin cc  or a number of iterations is 

reached. The new curve )1(
1

~ +ns  is obtained by 

applying forces )(
min

next
iFc−  to )(

1
~ ns . The control 

points related to the conflicting curve segments 

regarding maxc , are set fixed in )1(
1

~ +ns . By fixing 

new control points, the external forces which 
equilibrate the network must be recalculated.  

The algorithm is repeated until all the control points 
are fixed. At this point, the curve cannot be modified 
anymore. An example of mechanical modification is 
shown in Figure 9. 

  
Figure 9. Correction of a conflict. Left: conflicting 

curves. Right: geometric (dashed line) and 
mechanical (solid line) solutions 

The case of Figure 8 can be corrected with this 
method and yields to the solution given in Figure 10.  



 
Figure 10. Mechanical solution of the curve of 

Figure 8 ( 0s : dashed line, 1s : dotted line, 

corrected line: solid line).  

5. FURTHER WORKS 
A method for the correction of visual and real 
intersections between B-spline curves has been 
introduced. This method is applied to the correction 
of conflicts in cartographic generalization. First of 
all, the location algorithm has been presented. Then, 
different methods for the shape modification of lines 
are detailed. One can use either geometrical or 
mechanical model to calculate the displacements. Our 
method utilizes both of them. 

Firstly, the conflict is corrected geometrically by 
displacing control points of the deepest curve. A 
valid solution is received but it may be locally too far 
from the initial curve. Secondly, a mechanical 
method is used. The method consists in applying 
forces on the control points in order to slightly 
modify the curve. The process is iterative and is 
repeated as long as the curve can be pushed without 
creating a conflict. 

The method gives satisfying results on real cases but 
some improvements may be done. Particularly, the 
tuning of external forces is still an open problem and 
some finest criteria may be found, to preserve the 
shape or to minimize the displacement. The definition 
of new external forces directions as well as different 
internal forces constrained by deformation energies is 
the subject of our future works. 

Other deformation models such as active contours 
must be studied. They have been used for the 
generalization of roads defined with polygonal lines 
in [Bur97, Bad01] and for the approximation of 
curves with B-splines in [Pot02]. 

Finally, we will focus on conflicts involving more 
than two curves. One solution can be to define a 
displacement area in which the curve must be shifted.  
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