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ABSTRACT
A range restricted C* interpolation local scheme to scattered data is derived. Each macro triangle of the
triangulated domain is split into three mini triangles and the interpolating surface on each mini triangle is a cubic
Bézier triangle. Sufficient conditions derived for the non-negativity of these cubic Bézier triangles are expressed
as lower bounds to the Bézier ordinates. The non-negativity preserving interpolation scheme extends to the
construction of a range restricted interpolating surface with lower or upper constraints which are polynomial
surfaces of degree up to three. The scheme isillustrated with graphical examples.
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1. INTRODUCTION

The construction of a surface in computer aided
geometric design usually involves generating a set of
surface patches which are smoothly connected
together with certain degree of continuity. Besides,
one is often interested in preserving some properties
inherent in the data such as positivity, monotonity
and convexity as displayed by its piecewise linear
interpolant. For example, in scientific visuaization
when physical quantities like densities and rainfall
are reconstructed graphically the non-negativity of
their values should be preserved for otherwise
negative values are not physically meaningful.

The preservation of non-negativity refers to that the
generated interpolating surface will be non-negative
if the given data are non-negative. Non-negativity
preserving interpolation or more generaly range
restricted interpolation has been considered, for
example in [Goo9la, Ong92a, Opf88a, Sch88a,
Wev88] for the univariate cases and in [Bro95a,
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Cha0la, Mul94a, Mul94b] for the bivariate cases.

[Cha01a] describes a local scheme for scattered data
range restricted C* interpolation. The interpolating
surface is piecewise a convex combination of three
cubic Bézier patches. As the coefficients of the
convex combination involve rational functions, thus
the interpolant is piecewise a rationa patch.
Sufficient conditions for the non-negativity of a cubic
Bézier triangle are derived and these conditions
prescribe lower bounds to the Bézier ordinates. Non-
negativity is achieved by modifying if necessary the
first order partial derivatives at the data sites and
some Bézier ordinates.

Given scattered data points (X, i, z) with
z,>0, 1=1,2---, N, (%, y;) #(x;,y;) fori=]j.
In this paper we have constructed a C' non-negativity
preserving piecewise cubic polynomia surface
z=F(x,y) with F(x,y;)=27,i=12--,N, and
then extended the scheme to construct a range
restricted C' interpolant subject to polynomial
constraint surface of degree up to three. An approach
similar to [Cha014] is adopted, but the interpolant has
a smpler and different structure, being piecewise a
cubic polynomial Bézier triangle instead of a rational
function of degree seven. This is achieved by
subdividing each triangle, referred as a macro
triangle, in the triangulated domain into three mini
triangles as in the Clough-Tocher split [Clo65a] and
constructing a Bézier triangle on each mini triangle.
This subdivision of a macro triangle into three mini



triangles is driven by the fact that it is generally not
possible to solve the scattered data C' interpolation
problem with cubic polynomias defined over the
triangulated data. We describe in Section 2 the
conditions for C* continuity between two adjacent
Bézier triangles. In Section 3, we derive sufficient
conditions on the Bézier ordinates to ensure the non-
negativity for a composite C! triangular patch
consisting of three adjacent cubic Bézier triangles on
the three mini triangles of a macro triangle. In
Section 4 a local C!' non-negativity preserving
scattered data interpolation scheme applying these
sufficient non-negativity conditions is derived.
Section 5 extends the results to range restricted
interpolation which considers polynomial surfaces up
to degree three as lower bound or upper bound.
Lastly, two numerica examples are presented

graphically.

2. C' CONTINUITY BETWEEN
ADJACENT CUBIC BEZIER

TRIANGLES
Let T be the triangle on the x-y plane with vertices
V1, V,, V3 and barycentric coordinates u, v and w such
that any point V on the triangle can be expressed as

V =uV, +VV, + WV;,

u+v+w=1, u,v,w=>0.

A cubic Bézier triangle Son T is defined as

|
Su,v,w)= Y qjkiu‘viwk
ivjk=s 11 jTK!
i j k>0

u+v+w=1, u,v,w=0,

with b, denoting Bézier ordinatesof S Note that
Sinterpolates the Bézier ordinates bz 0, Do 30, Do 3 at
the vertices Vi, V,, V3 of T respectively since the
barycentric coordinates of these vertices are (1,0,0),
(0,1,0) and (0,0,1). Ordinate b;;, (except byq1) is
referred as a boundary Bézier ordinate and by is
referred as the inner Bézier ordinate of the cubic
Bézier triangle S The boundary Bézier ordinates are
determined by the first order partia derivatives at the
vertices along the corresponding boundary. For
example,

Dus0 = SV + 552 0.

dS
Je, V1),
where 0S/d e; are the directional derivatives aong
the respective edges of the triangle (see Figures 1 and
2). Consider two adjacent cubic Bézier triangles with

bz,o,l = S(V;) —%

the same boundary curve along the common edge of
the domain triangles. We shal recal two sets of
conditions for C' continuity along the common
boundary of the two adjacent patches for the later
reference.

V3 = W2
Bo.03 = Co3,0

bioo Ci20
br01, Do1p Cons NC210
V1 by by 11 Ci11

b21.0 By 21 = Co12 C201
by2o Cio2

Bo30 = Co03
VZ = W3

Figure 1. Two adjacent Bézier triangular patches

Cz00 Wy

The first to be noted are the necessary and sufficient
conditions described in [Far96a]. Let AV, V;,

AWWMW; be two adjacent triangles on the x-y

plane with V, = W5 and V3 = W,. Suppose that the
cubic Bézier triangles on these two triangles have
Bézier ordinates b, dan ¢« respectively (see Figure
1). These two cubic Bézier triangles have the same
boundary curve along the common boundary V,Vs,
thus bgos = Cozo Do12 = Co21, bo21 = Coa2 and
Doso = Coos Then the neccesary and sufficient
conditions for C* continuity between the two patches
are

Cro2 = abizg + Bboso+ ybozs (2.1
Cr11 = byys + Bboza+ ¥bo12 (2.2
Ci20 =abigo + Bboa1s+ ybops (2.3)

where W= aVy + fVo+ yV3, o, f and y are
constants which sum to 1. Conditions (2.1) and (2.3)
will be automatically fulfilled when the Bézier
triangles have common first order partial derivatives
a V, and V; If we associate the Bézier ordinates
bi,j,k with (Xi,j,kv yi,j,k) for 0<i, j, k <3 where

(Xi,j,kvyi,j,k):%(ivi +]V; +kVy)

S0 as to obtain Bi,j,k with Bi,j,k = (Xi,j,k! ik bi,j,k) and
the points C;; are similarly defined, then the three
conditions above have a geometrical interpretation,
i.e. the four points in each set, {Ci02 Bi20, Boszo
Boz21}: {Cii1n Biin Boz2a Boizt, {Cizo Bioa
Bo.12, Boo3}, are coplanar.

\Y

Figure 2. Notation on thetriangle



The second set of sufficient conditionsis quoted from
[Goo91b] to determine the inner Bézier ordinates
b;1; and ¢y 15 SO asto attain C' continuity aong
the common boundary. This is achieved by fixing the
normal derivative to vary linearly along the common
boundary. Consider the edge g; of the triangle from
vertex Vi to V;. Letn, betheinward normal to the
edge e; (see Figure 2). The normal derivative
dP/dn;, on ey being linear yields

Br11=[ 0120+ bro2 +hi(2bg12— 0021~ bop3) +

(I-hy) (2boz1—boszo —bos2) 1 /2 (24)

where h; = —(e,- 63) /|3 [?. Ordinate cy1, of

the adjacent Bézier triangle T is determined similarly.
In our scheme, each macro triangle in the triangulated
domain is subdivided into three mini triangles at an
interior point G of T (see Figure 3). G is chosen as
the centroid of T as this yields a more even
subdivision of T into three triangles but otherwise G
can be chosen arbitrarily. C' continuity aong the
common boundary of two adjacent macro triangles is
obtained by using the second set of conditions while
C' continuity along the common boundary between
two adjacent mini triangles which are in the same
macro triangle is achieved by using the first set of
conditions.

Suppose that each cubic Bézier triangle on the three
mini triangles which are in the macro triangle T have
Bézier ordinates{a;,.}, {bij«} ad{c,u},0<i,j, Kk
<3,i+j+ k=3, respectively as shown in the Figure
3. The three cubic Bézier patches are required to
meet with C' continuity and their normal derivatives
vary linearly along the three edges of the macro
triangle T. By C° continuity between these three cubic
Bézier trianglesalong GV, i =1, 2, 3, we have

A030=Co03 A20=Cio2 210= C201
A003=Doz0, Dioo=a02 Do10= 01,
Doos=Cozo  Ci20=D102  C210= 2o,

8300 = D300= C300-
Denote the sets

My ={a210= C201, P210=8201, C21,0= D204},
M, ={as11, 111, Cra4},

M ={Cro2=a120, 31,02= D120, P102= C120},
M, ={a021,8012 P21, Po12 Co21, Co12},

Mg ={a030 = Co03 8003= D030, Doo3= Cozo}-

As noted earlier, the Bézier ordinates and the first
order partial derivatives a the vertices V; will
determine the boundary Bézier ordinates in M.
From this, the elements in M; are determined by C*
continuity (with the geometrical interpretation) as

a102= (Dop1+ @912+ Bogo) / 3
D102 = (Co21 + o212+ Coz0) /3 (2.5)
Ci02 = (8o21 + Cop2+ @g30) / 3.
If we now fix the choice of the three inner Bézier
ordinates in M,, then by C' continuity the remaining
four Bézier ordinates will be determined, namely
a01 = (Ay02+ b1t ay11) /3
D201 = (D02 + Craat b111) /3 (2.6)

Co01=(Cro2+ @11t C111) / 3

8300 = (A201 + D21t Co01) / 3. 2.7)

3. SUFFICIENT CONDITIONS FOR
THE NON-NEGATIVITY OF THE
CUBIC BEZIER PATCHES

Suppose that the Bézier ordinates at the three vertices

of atriangle T are positive, i.e. m> /¢, V me Ms, for

some £ > 0. We shall derive sufficient conditions to
ensure that the three cubic Bézier patches defined on
the mini triangles of T interpolating the given positive
data values are non-negative while C* continuity is
maintained along the common edges (see Figure 3).
These sufficient non-negativity conditions prescribe
lower bounds for Bézier ordinates. Let us first
observe conditions for the non-negativity of a cubic
Bézier curve described in following theorem quoted
from [Goo914)].

Theorem 1
Let r(x) = A(1x)°>+3B (1-x)?x+3C(1—-x) ¥ +
DX, 0<x<1,

where Aand D are positive, and at least one of B

or C, is negative. Then r(x) <0for somexe (0, 1)

[ resp. r(x) = 0 for only one point in (0, 1) ] if and

only if 3B°C?+ 6 ABCD — 4(AC® + B°D) - A’D?>0
[resp.=0]. (3.2)

With r(x), 0 <x<1, asin Theorem 1 where A, D > 0,
denote

® = 3B°C? + 6 ABCD — 4(AC? + B°D) — A’D2
If B=—A/3and C=-D/3, then

® = 4AD (A-D)2/27 >0.
Thusinthiscase, ® =0 ifandonlyif A=D; and
@ >0 if and only if A=D. (3.2
Also note that if A=D=/>0 and
B=C=-//3a where a>1, thenwehave

f(a-1) >0
4a

r(x)> ,  Vxe]l0,1]. (3.3

In view of Theorem 1 and (3.2), we fix the lower
bounds of the boundary Bézier ordinatesof T as



my, = —//3a, witha>1 Vm,eM,. (34)

8210 = C201

Q1 i C
312 G -

a-2,(0,1 = bé,l,o B, 01 = C210

%02= bl,Z,O bi1a bl,O,; = C’_LLZ\,\O

Ve /. A Vs
Q03=bz0 Do21 by12 Bo.03 = Co30

Figure 3. Bézier ordinates of the mini triangles

By (2.5), we obtain
1( =0 -0y _ 4, 2
>2e it = La- 2y vmeMm,.
e 3( 3a 3aj 373a) VM My

If in addition, the lower bound of the inner Bézier
ordinatesisalsofixedas —//3a, i.e,

m,>-//3a, Ym,eM,, (3.5)
then from (2.6), Vm e M,

m12z£ﬁ(1_3)+—_f+—_fj _la 8y
313 3a° 3a 3a 9 3a

The Bézier ordinates dzo0 = b3'0,0 = Cz00 a the
centroid G is the value of the interpolating surface at
G, s0 bzpo= 0 isnecessary to ensure non-negativity
of the triangluar Bézier patches. Moreover, it is
aso necessary that my > 0, Vm e M,, otherwise
negative values of m; would lead to negative partial
derivatives at G along the corresponding edges and
the corresponding Bézier patches will not be non-
negetive. By (2.7) ,

1 / 8
b == (aggy+bgi+c >—(1-—).
3,0,0 3 ( 2,0,1 2,0,1 2,0,1 ) 9 ( 3a)

For bsgp =0, itisrequired to have
a=8/3.

So if VmeM,uUM,, m > —-//3a > -£/8 with
a = 8/3, weobtain as described above

me>0/4, VmyeM,,
gZO, Vge Mlu{ b3,0,0}-

Now consider the triangular Bézier patch

3

S(U,V,W): z bi‘j‘kmuvjwk

i+j+k=3

G (1,0,0)

/I.(l_tv tV, tW)

Va p O,v,w) Vs
Figure 4. Notation on the mini triangle

on the mini triangle GV, V,. Let P(0, v, w), where
v+w=1, denote a point along the edgeV,V,
opposite the vertex G. With t as the parameter which
varies between 0 to 1 from vertex G to the point P,
the barycentric coordinates for a point on the line
segment GP can be written as (1-t, tv, tw), 0<t<1
(see Figure 4). Then the curve on the cubic Bézier
triangular patch Saong the line segment GP is given
by

SL-t, t(1- w), tw) = A(W) B3 (t) + B(w)BZ (1)
+C(w) B3(t) + D(w) B3(t) (3.6)

where  A(W) = bsgo, B(W) = (1-W) by1o + Whygy,
Cw) = (1—W)2b1,2,0 + 2(1-w)whbyy 1 + V\/2b1,0,2 and
D(w) = (1—W)3b0,3,0 + 3(1—W)2Wb0,2,1 + 3(1—W)W2b0,1,2
+Whoos, and the Bernstein  polynomial
B3(t)=3! (1-t)* t' / (3-i)li!. As Vte[0,1],
B3(t) =0, soif A(w), B(w), C(w) and D(w) are non-
negative, then S(1-t,t(1—w),tw) >0.

Taking a>8/3, then from the above discussion
b3'0,0 >0, b2,1,0 >0, b2,0,1 >0, thus A(W) >0 and
. b4 /

B(W) >0. Since bl,l,l > —g and b1,2,0, b1,0,2 > %,
so C(w) > 0. Notethat by (3.3), D(w) > 0. Thusthe
curve §(1-t, t(1-w), tw) > 0, te [0,1] . The triangular
patch Su, v, w) is made up of these univariate cubic
Bézier curves adong GP where PeV,V;, <o the
patch u, v, w) will be non-negative.

With the same argument, the Bézier triangles with
Bezier ordinates { &,y and {c;,;.} on the other two
mini triangles are also non-negative. The result of
the above discussion is summarized as below.

Proposition 1

Let T be a triangle on the plane which is split into
three mini triangles at its centroid. Let the triangular
cubic Bézier patches defined on each of these mini
triangles respectively have Bézier ordinates {a,jq},
{bivjvk} and{Ci,j,k},OS i,j, k< 3, i +j +k=3.
Suppose the three Bézier triangles form a C'
triangular paich Q onT. If Vme Mg, m=/

where ¢ >0 and Vme M,UM,, m> —//3a,
with a > 8/3, then Q(xy) =0, V(x,y)eT.



4. CONSTRUCTION OF THE C* NON-
NEGATIVITY PRESERVING
INTERPOLATING SURFACE

Given data points (X, Y;,z) with z >0,
1=22,---,N, (x,y;)=(x;,y;) for i#j. We
describe the construction of a C' non-negativity
preserving function F(x,y) with F(x,y;) =1z,
i=12,---, N. The construction process consists of
the three usual steps for scattered data interpol ation.

(i) The domain £ of the function F is the convex
hull  of {V,=(x,y):i=1---,N}. Points

Vi, i=1---,N are used as the vertices of the

triangulation of the domain 2. The Delaunay
triangulation the method [Fan92a] is used to
triangulate the domain Q..

(i) Estimation of first order partial derivatives, i.e.,
Fx and Fy at each V;(x;,y;) for surface F, is
obtained by using the method in [Goo944d).

(iii) For every macro triangle in the domain, a
triangular patch will be generated.

Here we will concentrate on the third step. We shall
discuss how to construct on each macro triangle a
non-negative C* triangular patch. Each macro triangle
is subdivided into three mini triangles at its centroid
and a cubic Bézier triangle is constructed on a mini
triangle. The determination of the Bézier ordinates of
these three Bézier triangles, {& ;«}, {b;«} and

{ci,jk}, isdescribed asfollows.

The first order partial derivatives F, and F, at each
vertex V;(x;, y;) in the triangulated domain (2 are

estimated by the method in [Goo944]. For each patch
Q on a macro triangle, the partial derivatives at its
vertex V; in the direction along the edge &; from V;
to V; isgiven by

R vy=x ) vy (y —v) v
2, V) =(x; —x) x M)+, - ¥) % (V)
From the given data, the ordinates at the vertices of
each macro triangle are determined. For example, on
the macro triangle T (see Figure 3),

8030 =Coo3 =FM)=12.

From the estimated derivatives at each vertex, the
boundary Bézier ordinates in M, are determined.
However these ordinates determined need not ensure
that the resulting patch is non-negative. To ensure
this, we need to impose conditions on these
boundary Bézier ordinates, i.e., werequire

m,>—(/8, VYm,eM,,

with L=min{F V), F(V,), F(V3)} as in
Proposition 1. To achieve it, the first order partial
derivatives a V; is modified if necessary. The
modification of the derivatives F, and F, at avertex
V; is performed by scaling each of them with a
positive factor o <1by taking into consideration all
the triangular patches on the macro triangles sharing
that vertex. We proceed asfollows:

Let O be a vertex in our triangulated domain and let
i, i=1---,k, be the macro triangles in the
triangulation which have O as a vertex. Consider the
triangle 7 (see Figure 5) and lower bound -/, /8

where ¢, =min{F(O), F(A), F(B)}.

Figure 5. Trianglesin the triangulation with
common vertex O.

Denote the partia derivatives at O along OA and OB
by oF/dey,y and dF /deyg respectively. The

scaling factors  og, and oo ae defined as

follows.

If F(0)+%aiz >0, 18 then ao=1
A

otherwise o, is determined by the equation

F(O)+0{OA%%=—£,,1/8. Smilaly ~ if
A

10F _ : .
F(O)+ 396, 2—(, 18 then agg =1, otherwise
Oog is defined by the equation

F(O)+aOB:—1gaa?li:—f,,1/ 8. Then we define
B

o, =min{apa,00g}. By using the same method,

o, =23,k ae found. For al the Bézier

ordinates adjacent to O to fulfill the non-negativity
conditions, we choose oq = min{oc,,1 Oy, O

o J
If oo <1, then the first partia derivatives at O are
scaled by the factor ¢, and the Bézier ordinates
adjacent to O are determined accordingly. The above
processis repeated at all the vertices V; in the domain
Q. Thus all Bézier ordinates along the edges of the

macro triangles can be determined as described
above. By the C' continuity property, ordinates in M



will be determined by using the relations in (2.5) (see
Figure 3).

Next the inner Bézier ordinates in M, are determined
by using (2.4). Proposition 1 imposes alower bound
on these inner Bézier ordinates. Here since the
boundary Bézier ordinates of the macro triangle are
already fixed, we could use their actual values to
relax the bound on the inner Bézier ordinates
suggested in Proposition 1. Observe that to ensure
that C(w) in (3.6) is non-negative, we require that

bis 2—min{b,,,, by,}. (4.1)
Similarly, we require

Ay 2-min{a;,q, ag,}

Cry1 Z—MiN{Cyy0, Cioo}- (4.2

Moreover, since ayo1 , bro1 and c,o, have to non-
negative, we require by (2.6) that

a102+ D111t a1 20
D102+ Criat D111 20 4.3
Cro2+ay11+Cr1120

To fulfill (4.1), (4.2) and (4.3), it sufficesto have

a1 2 -4 min{ay,0, a9}
b1y =—2min{by 50, by}, (4.4)
Cr11 2—3Min{C 50, Cipo}-

Note that these lower bounds in (4.4) are less than or
equal to -/ /8 where /=min{ay,3,0503,Co03} -

If the initial values of a;,,, bj;; and c;;; do not

satisfy (4.4), then they are increased to the
corresponding bound. This will suffice to ensure the
control ordinates A(w), B(w), C(w), D(w) of the

cubic Bézier curve in (3.6) are non-negative and thus
the Bézier triangle concerned is non-negative.
Finaly a,1, Dy01, Cpo1 @d aggo are obtained

via (2.6) and (2.7). When an inner Bézier ordinate
has been modified, the C' continuity aong the
boundary of the macro triangle is maintained by
modifying the corresponding inner Bézier ordinate of
the adjacent macro triangle according to (2.2) and
recomputing the Bézier ordinates which are
dependent on the modified inner Bézier ordinate.
This adjustment to maintain C' continuity will not
upset the non-negativity property because of (2.2)
and the lower bound in (3.4).

The triangular patch on a macro triangle, consisting
of three Bézier triangles with its Bézier ordinates
{ai jxb, b}, {cij} respectively, thus generated

is non-negative and is C* along the common boundary
curve with the adjacent patch.

Denote the triangular patch formed by this way on the
macro triangle T as Qr. Then the interpolating
surface F which is C! and preserves non-negativity
can be defined on the triangulated domain as
F |+=Q for every macro triangle T in the domain.

5. RANGE RESTRICTED
INTERPOLATION
So far we have only discussed the construction of the
C! interpolating surface which is constrained to lie
above the plane z=0. Now we would like to extend
our scheme to include a larger set of constraint
surfaces besides the plane z=0. The constraint
surfaces to be considered are of the form z= D(X, y)
where D(X,y) is a constant, linear, quadratic or
cubic polynomial, i.e.,
D(x, y) = ax3+bx2?y+cxy? +dy3
+ex? + fxy+gy? + hx+iy+ |

where a,b,c,d, e f,g,hi and j are real numbers.
These surfaces are considered because they can be
expressed as a cubic Bézier triangle on each mini
triangle of the domain.

Given the data points (x,,V.,z), i=1--,N,
(%, ¥i) #(X;,y;) for i# j, which lie on one side
of the given constraint surface z= D(X,y) we would
like to generate a C'interpolating surface z = F(x, y)
that lies on the same side of the constraint surface as
the data points. This problem can be reduced to the
problem of non-negativity preserving interpolation
which we have considered in Section 4. Suppose that
the data points lie above the constraint surface. As
before, the partial derivatives F, and Fy a (X, ;)
are estimated by using the method in [Goo94a].

Let H(x,y)=F(x,¥)-D(x,¥). A new set of data
points (%, i,z ), i=12--,N, isobtained from
the original data set and the constraint function
D(x,y) by defining zi* =z —D(x,y;). With this,
the problem of constructing a C' interpolating surface

z=F(x,y) subject to the constraint surface
z=D(x,y) is transformed to the problem of
constructing a non-negative C* interpolating surface
z=H(xy) with H(x,y;) =z, and initia
derivatives H (X0 Yi) = Fy (X, ¥i) = Dy (X, ¥i)

and Hy (x,y)=Fy(%,Yyi)—Dy(X,Y;).Byusng
the scheme in Section 4, the function H(x,y) which

is made up of non-negative cubic Bézier triangles
with each of its domain on a mini triangle can be
generated. Then F can be obtaned as



F(x,y)=H(Xy)+D(xy). As a result, the C'
interpolating surface F is piecewise a cubic Bézier
triangle and it lies on one side of the constraint
z=D(xy).

Suppose the data points lie below the constraint
surface z= D(x,y). By using the same construction
as above with H(x, y)=D(x, ¥)-F(x,y), we can
generate a C' interpolating surface z= F(x, y) which
also lies below the constraint surface.

6. GRAPHICAL EXAMPLES

To illustrate our scheme, we use the following two
test functions:-
f (Xv y) = Sn XCOSy! (Xv y) € [_31 3]X[_3! 3] y

2(y—x),
1,

g(xy) = 0.5003(47:\/(x—1.5)2 +(y—0.5)2)+0.5,

(x—1.5)?+(y-0.5?<1/16
0, elsewhere on [0, 2] x[0,1]

The first example consists of 25 data points
obtained from the function f. These data are
bounded below by the constraint surface
z=-0.55x2 -1.35x—0.2xy— 0.2y -1.35. The

triangulation of the domain is given in Figure 6(a). As
a comparison, we show in Figure 6(b) the C'
interpolating surface generated without applying the
non-negativity conditions. Indeed it crosses the
constraint surface. After the non-negativity conditions
are imposed, the interpolating surface does not cross
the constraint surface anymore as shown in Figure
6(c).

The second example consists of 36 data points
obtained from the function g (quoted from [Lan86a])
which are bounded above by the plane z=1.001and
bounded below by the plane z=-1.001. The
triangulation of the domain is given in Figure 7(a)
and the unconstrained interpolating surface is shown
in Figure 7(b). It oscillates at a number of places and
crosses the upper and lower bounding planes. When
the upper and lower constraints are imposed, the
range restricted interpolating surface in Figure 7(c)
does not oscillate unnecessarily and it stays between
the two bounding planes.
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Figure 7(a). Triangulated domain of g

Figure 6(a). Triangulated domain of f
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Figure 6(b). The unconstrained interpolating surface

Figure 7(c). The constrained interpolating
surface to data from g (without displaying

both constraint planes)

Figure 6(c). The constrained interpolating surface
to datafromf (with the constraint surface)



