
MIMIC — A Language for Specifying Facial Animations

Thomas Fuchs, Jörg Haber, Hans-Peter Seidel

Max-Planck-Institut für Informatik
Stuhlsatzenhausweg 85

66123 Saarbrücken, Germany
{tfuchs,haberj,hpseidel}@mpi-sb.mpg.de

ABSTRACT

This paper introduces a versatile language for specifying facial animations. The language Mimic
can be used together with any facial animation system that employs animation parameters varying
over time to control the animation. In addition to the automatic alignment of individual actions,
the user can fine-tune the temporal alignment of actions relatively to each other. A set of pre-
defined functions can be used to control oscillatory behavior of actions. Temporal constraints are
resolved automatically by the Mimic compiler. We describe the grammar of Mimic, give some
hints on the implementation of the Mimic compiler, and show some examples of animation code
together with snapshots from the resulting animation.

Keywords: facial animation, script language, time-dependent animation parameters

1 INTRODUCTION

For interpersonal communication and social inter-
action, the human face is the most important part
to convey emotions and psychological states. In
the past decades, many efforts have been made
to develop a variety of facial modeling and ani-
mation techniques. Today, facial animations are
used in computer games, movies, advertising, and
education. Almost every computer game pub-
lished in the last few years features animated
characters, many of them representing humans.
More and more movies include virtual human ac-
tors to show sequences a real human would not
be able to perform, and many commercials make
use of animated humans to disseminate their mes-
sages. Educational software frequently includes
virtual teachers to demonstrate tasks or to help
the user through the program.

The quality of facial animations in several recent
movies is very high. It is sometimes hard to tell

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

WSCG SHORT Communication papers proceedings
WSCG’2004, February 2–6, 2004, Plzen, Czech Republic.
Copyright UNION Agency — Science Press

virtual sequences from real ones. To achieve this
level of quality, however, a huge amount of man-
ual interaction is typically required to create the
animations. Most of the research in facial mod-
eling and animation has striven to enhance the
visual quality of models and animations. Unfor-
tunately, the problem of how to establish optimal
control functionality for the creation of facial ani-
mations has obtained comparatively little interest
in research.

In this paper, we present an abstract and thus
versatile language for specifying facial anima-
tions. The language Mimic does not depend
on any particular animation system. Mimic
can be used together with any animation sys-
tem that employs animation parameters varying
over time to control the animation. Such anima-
tion parameters are, for instance, the MPEG-4
FAP’s [ISO00], the action units (AU) from the
FACS system [EF78], or (pseudo-)muscle contrac-
tion values. The language Mimic allows actions
to take place sequentially and/or in parallel. Ad-
ditional directives to control the temporal align-
ment of actions relatively to each other are avail-
able as well as a set of pre-defined functions that
are used to control oscillatory behavior of actions.
All temporal constraints are resolved automati-
cally by the Mimic compiler. The resulting ac-
tions are discretized in time, taking into account
the temporal variance of each animation param-



eter. Finally, the values of animation parameters
that are influenced by several simultaneous ac-
tions are blended in one of several different ways,
which can be specified by the user. For each ani-
mation parameter, a sequence of time/value pairs
is generated, which can be read from the user’s
preferred animation system.

2 PREVIOUS WORK

During the last three decades, many different
approaches to facial animation haven been pro-
posed. The book by Parke and Waters [PW96]
provides a comprehensive though not very recent
overview of the topic. In general, the techniques
proposed can be classified into parametric
models [Par74, Par82, Wat87, MTPT88],
physics-based approaches [PB81, TW90,
LTW93, LTW95, KHS01], expression-blending
methods [PHL+98, BV99, NN01, LSZ01],
and performance-based techniques [Wil90,
GGW+98].

To generate an animation, both parametric mod-
els and physics-based approaches require some
(in fact, usually many) parameters to be speci-
fied and modified over time. These parameters
are, for instance, the Facial Animation Parame-
ters (FAPs) from the MPEG-4 standard [ISO00]
or (pseudo-)muscle contraction values as used
in physics-based approaches [LTW95, KHS01].
Specifying all of these parameters manually can
be a tedious and awkward piece of work, which
sometimes even takes longer than building the
face model itself. Thus, several approaches
have been proposed to automatically generate fa-
cial animations from a high-level user descrip-
tion. These control approaches can be catego-
rized based on different criteria. Pelachaud et
al. [PBV94] concentrate on the underlying phi-
losophy of the approaches and distinguish rule-
based, analysis-based, and performance-based ap-
proaches.

Rule-based approaches employ rules concerning
the links between intonation, emotion, and facial
expressions. These rules have been obtained from
psychological and linguistic studies, see [Pel91]
for an overview. Due to the link between
speech and facial expressions, most of the rule-
based approaches either include a text-to-speech
component [PWWH86, HPW88, IC96, PBS96,
AHK+02] or at least support synchronization to
an external speech system [KMMTT91]. Other
rule-based methods use recorded natural speech
signals to control the animation [PBS91, AHS02].

Analysis-based approaches [EP93, Bra99,
EGP02] analyze video sequences of human faces

(with or without additional audio) and store the
results of the analysis in some internal data base.
From this data base, arbitrary sequences of facial
animation parameters are generated that result
in naturally looking facial animations. The user
only has to provide a control signal (usually
a speech signal) for the desired animation,
which is then composed automatically from the
information stored in the data base.

Performance-based approaches are tightly
coupled to performance-based animation
systems [Wil90, GGW+98]. Actually, the
terminology is somewhat delusive: a paramet-
ric animation system that is controlled by a
performance-based approach would probably
be referred to as a performance-based anima-
tion system. Thus, performance-based control
approaches can be seen as an ingredient that
turns any kind of animation system into a
performance-based animation system.

In this paper, we present a script-based approach
for facial animation. In contrast to purely rule-
based approaches, script-based systems are more
general and flexible. In particular, synchroniza-
tion of independent facial actions can be con-
trolled easily up to the desired level of granular-
ity. Unlike analysis-based methods, our approach
does not require complex computations and data
processing. Furthermore, we do not need any so-
phisticated hardware such as it is required for
performance-based approaches.

3 LANGUAGE DESIGN

The design of Mimic is based on a small set of
clear and intuitive principles, which are explained
in the following subsections. A basic observation
in many scientific areas is that complex processes
can be decomposed in several subprocesses with
less complexity. Recursively repeating this de-
composition for every subprocess, one ends up
with a number of indivisible subprocesses. In this
paper, a process is called an action and an indi-
visible subprocess is denoted as an atomic action.

3.1 Sequences and Parallels

The human mind processes events in categories
like “one after another” and “at the same time”.
The same categories are used to describe com-
plex processes, resulting in terms such as “first . . .
then . . . ” or “after that” for serial events and
“while” or “during” for simultaneous events.
This concept of serial/parallel events proves to be
both intuitive and adequate to describe complex
animation sequences.



For individual actions, there are two types of
temporal relationships between them: actions
that happen one after another are called a se-
quence, while actions taking place simultaneously
are called a parallel. In Mimic, both sequences
and parallels are actions themselves and can be
nested recursively.

From a semantics’ point of view, the main differ-
ence between sequences and parallels is the deter-
mination of the starting point of each action. For
a sequence, the first action starts at the beginning
of the sequence and every other action starts im-
mediately after its preceding action ends. For a
parallel, all actions start at the same time, i.e. at
the beginning of the parallel.

3.2 Temporal Adjustment

In general, the starting point of an action is com-
pletely determined by its context. It is desirable,
however, to allow the user to modify the default
starting point of an action in order to increase
the flexibility of the language. Thus, actions in
sequences as well as in parallels can be shifted
backward and forward with respect to their de-
fault starting point. Within a parallel, the ending
point of an action can be aligned relatively to the
end of the parallel.

3.3 Macros

While coding an animation, it often happens that
the same set of actions is needed more than once.
It would then be nice to specify the actions only
once and use multiple instances of this defini-
tion throughout the animation. Such functional-
ity can easily be provided through macros, similar
to a “#define ...” in the C / C++ language.

4 LANGUAGE DEFINITION

The grammar of Mimic is described in Table 1
in Backus-Naur-Form (BNF). In this table, the
keyword IDENTIFIER is used to represent any pa-
rameter of the underlying facial animation sys-
tem, for instance the opening angle of the jaw or
a (pseudo-)muscle contraction value (see also the
example in Table 2).

A Mimic-program consists of two parts: a defini-
tion section and the main program. In the defini-
tion section, macros for complex actions and/or
facial expressions can be defined using the def and
defxpr keywords. An example using a macro for
a smiling expression is shown in Figure 3.

The main program is an action group. Action
groups are the basic building blocks of the Mimic
language. Every action group is either a sequence
enclosed in curly braces {} or a parallel enclosed
in brackets []. Both sequences and parallels con-
tain actions, which are either action groups or
atomic actions. Each atomic action controls the
temporal behavior of an animation parameter.
This is done by either explicitly specifying a list
of times and associated parameter values, a peri-
odic function, or a fade-in-fade-out statement. A
periodic function generates a list of values chang-
ing periodically over time. The fade-in-fade-out
statement produces a list of values reaching a cer-
tain value, holding it for a specified amount of
time, and fading out again.

Atomic actions can be controlled using a set of
parameters. There are three types of parameters:

• parameters with assigned values: in, hold,
out, value, duration, freq, period, min, max;

• parameters with optionally assigned values:
left, right;

• parameters without values: linear, sin, log,
exp, connect, average, add, overwrite.

The alignment of an action is controlled by the
left and right parameters with an optional value
indicating how much padding should be inserted.
Padding values can be positive or negative, cor-
responding to a shift along the positive or nega-
tive time axis, respectively. Omitting these pa-
rameters is equivalent to specifying the default
left=0. Right alignment is only supported in par-
allels, where the reference point for the alignment
is given by the ending point of the longest action
within the parallel.

The parameters in, out, hold, and value spec-
ify the duration of fade-in / fade-out and how
long to retain the animation parameter value in-
between. Fading in and out can be carried out
using one of several different fading functions:
linear, sin, log, and exp. For instance, the action
“jaw <in=2,hold=3,out=1,value=0.3,log>” speci-
fies the animation parameter jaw to fade-in loga-
rithmically for two seconds, hold the value of 0.3
for three seconds, and fade-out for one second.
The default behavior for fading out is to return to
the animation parameter value that was present
before fading in. However, it is sometimes de-
sirable to fade out taking into account the next
value of the same animation parameter that will
follow in time. This is achieved by specifying the
optional connect parameter: the target value for
the fade-out is set to be the next value of the same
animation parameter in time.



program ::= def list MAIN < parameter list > actiongroup

| def list MAIN actiongroup

def list ::= ε

| def list def

def ::= DEF IDENTIFIER actiongroup

| DEFXPR IDENTIFIER FNAME

actiongroup ::= sequence

| parallel

sequence ::= { action list }
parallel ::= [ action list ]

action list ::= action

| action list action

action ::= IDENTIFIER < parameter list > ( timevalue list )

| IDENTIFIER ( timevalue list )

| IDENTIFIER < parameter list > ;

| IDENTIFIER ;

| < parameter list > actiongroup

| actiongroup

parameter list ::= parameter

| parameter list , parameter

parameter ::= pname

| pname arg = DECIMAL

| pname arg = IDENTIFIER

pname ::= LEFT | RIGHT | LINEAR | SIN | LOG | EXP

| AVERAGE | ADD | OVERWRITE

pname arg ::= LEFT | RIGHT | IN | HOLD | OUT | VALUE | CONNECT

| DURATION | FREQ | PERIOD | MIN | MAX

timevalue list ::= time list ; value list ;

time list ::= ε

| time list DECIMAL

value list ::= ε

| value list DECIMAL

Table 1: Grammar of Mimic in BNF. An ε represents the empty word and indicates the termination
of a recursive rule. Parameters of the underlying facial animation system are marked by the keyword
IDENTIFIER, while FNAME denotes a file name. DECIMAL represents a decimal number. See Section 4
for more details.

Animation parameter values changing period-
ically over time can be generated using the
duration, freq, period, min, and max parameters.
An additionally specified function (usually sin
or linear) oscillates for a given duration between
the min and max values with a user-defined
frequency (or a user-defined period). In a
parallel, the duration parameter can be omitted,
in which case the oscillation spreads over the
whole length of the parallel. In the example
“jaw <sin,min=0.1,max=0.3,freq=2,duration=5>”,
the animation parameter jaw oscillates in a si-
nusoidal way for five seconds between the values
0.1 and 0.3 with a frequency of 2 Hz.

Finally, the blending parameters average, add,
and overwrite are used to control the way in which
multiple occurrences of a single animation param-
eter at a given time are combined. Such a situ-
ation can happen if, for instance, a complete fa-
cial expression (e.g. a smile) defined by the defxpr
macro is overlaid in time by an additional action

(e.g. lowered mouth corners), which modifies an
animation parameter that is also present in the
predefined facial expression. In this example, the
mouth corners should move upwards due to the
smile and downwards due to the explicit action.
Depending on the setting of the blending param-
eter, the concurrent animation parameter values
are either averaged, added up, or the parame-
ter values from the action marked with overwrite
simply overwrite the other ones. The default be-
havior is to add up animation parameters.

5 IMPLEMENTATION

Mimic is implemented as a compiler, which reads
a Mimic-program and outputs animation param-
eter values. The compiler operates in four stages:
scanning, parsing, semantical analysis, and code
generation. Scanner and parser are implemented
using the standard UNIX tools lex and yacc (or
their public-domain equivalents flex and bison).



1 main {
2 [
3 eyelid_right <min=0.325,max=0.375,period=5,sin>;
4 {
5 jaw <in=5,hold=15,exp,out=10,value=0.1,connect>;
6 jaw ( 0 1 2 3 4 5;
7 0.2 0.25 0.2 0.27 0.19 0.22; )
8 [
9 eyelid_right ( 0 37;

10 0.1 0.2; )
11 jaw <left=15,min=0.1,max=0.2,period=5,
12 duration=10,linear>;
13 jaw <left=10,in=5,hold=10,sin,out=5,value=0.2>;
14 ]
15 jaw <in=5,hold=10,exp,out=10,value=0.07,connect>;
16 [
17 jaw <in=10,hold=10,exp,out=5,value=0.1,connect>;
18 <left=10> {
19 jaw <min=0.1,max=0.15,period=3,
20 duration=10,linear>;
21 jaw <left=5,min=0.05,max=0.1,freq=0.4,
22 duration=10,sin>;
23 }
24 ]
25 }
26 ]
27 [
28 eyelid_right <min=0.345,max=0.365,freq=0.4,sin>;
29 jaw ( 0.1 5 20 ;
30 0.1 0.15 0.05 ; )
31 ]
32 [
33 eyelid_right <min=0.315,max=0.385,period=3,sin>;
34 {
35 jaw <in=5,hold=15,sin,out=10,value=0.1>;
36 jaw ( 0 1 2 3 4 5;
37 0.2 0.25 0.2 0.27 0.19 0.22; )
38 jaw <left=10,in=5,hold=5,linear,out=5,value=0.2>;
39 jaw <in=5,hold=10,exp,out=10,value=0.1,connect>;
40 jaw <in=10,hold=10,sin,out=5,value=0.3>;
41 }
42 eyelid_right <left=10> ( 0 20 40 70 90;
43 0 0.1 0.05 0.15 0.0; )
44 ]
45 }

Table 2: A Mimic-program using the ani-
mation parameters jaw and eyelid right.

Some conditions and constraints that cannot be
expressed in a context-free-grammar are checked
during semantical analysis. These conditions are:

• every identifier that appears in a Mimic-
program is either a valid animation param-
eter name or it has been defined in the def-
inition section of the program;

• in a time-value list, the number of times
must match the number of values;

• in sequences, right alignment of actions
must not be used.

In the code generation step, a time-value list is
generated for every animation parameter. The
values are range-checked taking into account ex-
ternal constraints from the facial animation sys-
tem. Finally, the time-value lists are thinned out
if possible: parameter values that can be com-
puted by linear interpolation from the neighbor-
ing values are removed together with their corre-
sponding time stamp.

eyelid_right

jaw

jaw

eyelid_right

3

28

33

6

9

5

13

11

15

19

17 21

29

35

42

36

38

39

40

va
lu

e
va

lu
e

time

0

0.1

0.2

0.3

0.4

0.5

0.6

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

24
0

25
0

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

24
0

25
0

Figure 1: Temporal progression of the ex-
ample from Table 2. The upper graph
shows the progression of the parameter val-
ues for jaw and eyelid right before combin-
ing and blending. The numbers correspond
to the line numbers of the action in Table 2.
The lower graph shows the final combined
values with blending.

6 RESULTS

The full complexity of deeply nested sequences
and parallels is hard to describe. Therefore we
present and discuss two examples of animations
written in Mimic in this section. The first exam-
ple has been designed to explain the semantics
of Mimic and to demonstrate the generation of
animation parameters, while the second example
shows some snapshots from the resulting anima-
tion sequence.

6.1 Example #1

Table 2 shows the Mimic-code of the first exam-
ple. This animation consists of one sequence (line
1–45), which is composed of three parallels. The
first parallel (line 2–26) consists of an atomic ac-
tion (line 3) and a sequence (line 4–25). This
sequence is composed of two atomic actions (line
5–7), one parallel with three atomic actions (line
8–14), another atomic action (line 15), and an-
other parallel (line 16–24), which is composed of
an atomic action (line 17) and a sequence (line



3

jaw

ja
w jawparallel

8−14

eyelid_right
9

6 155

jaw
17

sequence
18−23

19 21

10

5
jaw jaw

15
11

jaw

13
10

jaw

28

29

eyelid_right

parallel
27−31

parallel
16−24

4−25

33

jaw

parallel
32−44

eyelid_right

sequence
34−41

sequence

eyelid_right

2−26
parallel

1−45
sequence

35 36 38 39 40

jaw jaw jawjaw

ja
w

10

10
42

eyelid_right

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

24
0

25
0

26
0

time

Figure 2: Visualization of the structure of the example shown in Table 2. See Section 6.1 for a
detailed description.

18–23) delayed by ten seconds. The second par-
allel in the main sequence (line 27–31) consists
of two atomic actions. Finally, the third paral-
lel (line 32–44) is built from an atomic action
(line 33), a sequence (line 34–41) consisting of
five atomic actions, and another atomic action
(line 42–43).

Figure 1 shows two plots of the temporal progres-
sion of the animation parameter values jaw (in
blue) and eyelid right (in black) resulting from
the animation code listed in Table 2. The upper
plot shows the values of the animation parameters
as they are prescribed from each atomic action.
These values are not yet combined into a single
curve. The numbers indicate the corresponding
line numbers from Table 2, where each action is
defined. Actions that fade in and out are shown
with linear flanks because the blending has not
yet been calculated.

The lower plot in Figure 1 shows the final anima-
tion parameter curves for the parameters jaw and
eyelid right. The blending has been computed
and the parameter values are combined into a sin-
gle curve for each animation parameter. A simple
blending example can be observed along the curve
for the animation parameter eyelid right. The fi-
nal curve is obtained by combining the oscillat-
ing pattern (line 3) with the time-value list from
line 9 and the sinusoidal pattern (line 33) with
the time-value list from line 42 using the default
blending method add.

The effect of the connect parameter is visible at
the end of the jaw curve (corresponding to lines
38–40 in the code). The action from line 38 fades
in and out linearly. The target value for fading

out is identical to the value of the animation pa-
rameter before fading in, which is zero in this
example. In lines 39 and 40, the actions also fade
in and out. However, the action from line 39 is
connected to the action from line 40 by means
of the connect parameter. As a result, the tar-
get value for fading out the action from line 39 is
given by the animation parameter value from the
next action (line 40).

Figure 2 illustrates the structure of the example.
Every rectangle represents an action with the cor-
responding line number from Table 2 printed in
the upper left corner. The placement and size of
the rectangle correspond to the starting point and
duration of the action. Sequences are depicted in
a left-to-right order, parallels are arranged top-to-
bottom. Horizontal arrows indicate indentations
as defined by the left parameter with the duration
printed above the arrow.

6.2 Example #2

Figure 3 shows another example together with
a plot of the corresponding animation parame-
ter curves and five snapshots taken from the re-
sulting facial animation. This example is a se-
quence composed of a parallel and a pre-defined
facial expression. The parallel consists of five
atomic actions controlling the animation param-
eters head rot y, eyelid left, head rot x, jaw, and
lookat x. The pre-defined expression represents
a smile and is encoded in the file "smile.xpr".
The snapshots shown in Figure 3 have been gen-
erated using a physics-based facial animation sys-
tem. Thus, muscle contraction values have been



1 2 3 4 5

defxpr smile "smile.xpr"

main {

[

head_rot_y <in=5,hold=10,out=5,sin,value=-20>;

eyelid_left <left=6,in=3,hold=2,out=1,sin,value=0.8>;

head_rot_x <in=5,hold=10,out=5,exp,value=10>;

jaw <min=0,max=0.09,freq=0.1,sin,duration=20>;

lookat_x ( 0 12 20;

0 100 0; )

]

smile <in=5,hold=10,out=5,value=1,sin>;

}

1 2 3 4 5

lookat_x

eyelid_left

head_rot_x

head_rot_y

jaw

expression smile

0 5 10 15 25 30 35 4020

0

time

Figure 3: Snapshots from an animation sequence as generated by the Mimic-program shown at
the bottom left. The temporal progression of the animation parameters is shown in the graph at
the bottom right. During the first twenty seconds, five different animation parameters proceed in
parallel. During the next twenty seconds, a pre-defined facial expression (smile) is faded in, held,
and faded out again. The colored curves on the right half of the graph represent individual muscle
parameters that are defined in the file "smile.xpr".

used to generate the smiling expression. The
Mimic compiler, however, does not know about
the meaning of the animation parameters. Any
set of animation parameters that generates a
smile when input to the given facial animation
system will work the same way.

7 CONCLUSION & FUTURE WORK

We have presented Mimic, a versatile language
for specifying facial animations. The language
can be used together with any facial animation
system that employs animation parameters vary-
ing over time to control the animation. The user
specifies animations in terms of sequential and
parallel processes, a concept which is intuitive
and familiar to everybody. Additional fine-tuning
of the temporal alignment of individual actions
is supported as well as the use of periodic func-
tions that control oscillatory behavior of actions.
The Mimic compiler automatically takes care of
blending and thinning out animation parameter
values.

In our experiments, we found that facial anima-
tions of arbitrary complexity can be specified eas-
ily using the Mimic language. Coding the exam-
ple from Table 2 took about ten minutes. Judging

from the complex shape of the resulting anima-
tion parameter curves in Figure 1 (bottom), it
probably would not have been possible to obtain
the same result in the same time by directly spec-
ifying a time-value list for each animation param-
eter.

Obviously, there are still many ways for improv-
ing an animation language such as Mimic. Cod-
ing an animation could be facilitated largely if
the system knew about the dependencies between
different animation parameters (e.g. movement of
the eyelids while looking up and down) and would
automatically include such dependent actions. In
addition, a mechanism for speech synchronized
animations should be introduced into Mimic.
To this end, the temporal alignment of actions
could be extended to include the alignment of
phonemes. Finally, the links between emotions,
facial expressions, and speech are worthwhile to
be investigated and included into our system.

REFERENCES

[AHK+02] Irene Albrecht, Jörg Haber, Kolja Kähler,
Marc Schröder, and Hans-Peter Seidel.
“May I talk to you? :-)” — Facial Anima-



tion from Text. In Proc. Pacific Graphics
2002, pages 77–86, October 2002.

[AHS02] Irene Albrecht, Jörg Haber, and Hans-
Peter Seidel. Automatic Generation of
Non-Verbal Facial Expressions from Speech.
In Proc. Computer Graphics International
2002 (CGI 2002), pages 283–293, July 2002.

[Bra99] Matthew Brand. Voice Puppetry. In
Computer Graphics (SIGGRAPH ’99 Conf.
Proc.), pages 21–28, August 1999.

[BV99] Volker Blanz and Thomas Vetter. A Mor-
phable Model for the Synthesis of 3D Faces.
In Computer Graphics (SIGGRAPH ’99
Conf. Proc.), pages 187–194, August 1999.

[EF78] Paul Ekman and Wallace V. Friesen. Facial
Action Coding System. Manual. Consulting
Psychologists Press, Palo Alto, CA, 1978.

[EGP02] Tony Ezzat, Gadi Geiger, and Tomaso Pog-
gio. Trainable Videorealistic Speech Ani-
mation. In ACM Transactions on Graph-
ics (SIGGRAPH 2002 Conf. Proc.), pages
388–398, July 2002.

[EP93] Irfan A. Essa and Alex Pentland. A Vision
System for Observing and Extracting Fa-
cial Action Parameters. Technical Report
#247, MIT Media Laboratory, Cambridge,
MA, 1993.

[GGW+98] Brian Guenter, Cindy Grimm, Daniel
Wood, Henrique Malvar, and Frédéric
Pighin. Making Faces. In Computer Graph-
ics (SIGGRAPH ’98 Conf. Proc.), pages
55–66, July 1998.

[HPW88] David R. Hill, Andrew Pearce, and Brian
Wyvill. Animating Speech: An Auto-
mated Approach using Speech Synthesised
by Rules. The Visual Computer, 3(5):277–
289, March 1988.

[IC96] Horace H. S. Ip and C. S. Chan. Script-
Based Facial Gesture and Speech Anima-
tion Using a NURBS Based Face Model.
Computers & Graphics, 20(6):881–891,
November 1996.

[ISO00] ISO/IEC. Overview of the MPEG-
4 Standard. http://www.cselt.it/mpeg/

standards/mpeg-4/mpeg-4.htm, July 2000.

[KHS01] Kolja Kähler, Jörg Haber, and Hans-Peter
Seidel. Geometry-based Muscle Modeling
for Facial Animation. In Proc. Graphics In-
terface 2001, pages 37–46, June 2001.

[KMMTT91] Prem Kalra, Angelo Mangili, Nadia
Magnenat-Thalmann, and Daniel Thal-
mann. SMILE: A Multilayered Facial
Animation System. In Proc. IFIP WG
5.10, pages 189–198, Tokyo, Japan, 1991.

[LSZ01] Zicheng Liu, Ying Shan, and Zhenyou
Zhang. Expressive Expression Mapping
with Ratio Images. In Computer Graph-
ics (SIGGRAPH 2001 Conf. Proc.), pages
271–276, August 2001.

[LTW93] Yuencheng Lee, Demetri Terzopoulos, and
Keith Waters. Constructing Physics-based
Facial Models of Individuals. In Proc.
Graphics Interface ’93, pages 1–8, May
1993.

[LTW95] Yuencheng Lee, Demetri Terzopoulos, and
Keith Waters. Realistic Modeling for Facial
Animations. In Computer Graphics (SIG-
GRAPH ’95 Conf. Proc.), pages 55–62, Au-
gust 1995.

[MTPT88] Nadia M. Magnenat-Thalmann, E Primeau,
and Daniel Thalmann. Abstract Muscle Ac-
tion Procedures for Human Face Anima-
tion. The Visual Computer, 3(5):290–297,
March 1988.

[NN01] Jun-yong Noh and Ulrich Neumann. Ex-
pression Cloning. In Computer Graph-
ics (SIGGRAPH 2001 Conf. Proc.), pages
277–288, August 2001.

[Par74] Frederic I. Parke. A Parametric Model for
Human Faces. PhD thesis, University of
Utah, Salt Lake City, UT, December 1974.

[Par82] Frederic I. Parke. Parameterized Models for
Facial Animation. IEEE Computer Graph-
ics and Applications, 2(9):61–68, November
1982.

[PB81] Stephen M. Platt and Norman I. Badler.
Animating Facial Expressions. In Computer
Graphics (SIGGRAPH ’81 Conf. Proc.),
volume 15, pages 245–252, August 1981.

[PBS91] Catherine Pelachaud, Norman Badler, and
Mark Steedman. Linguistic Issues in Facial
Animation. In Computer Animation ’91,
pages 15–30. 1991.

[PBS96] Catherine Pelachaud, Norman Badler, and
Mark Steedman. Generating Facial Ex-
pressions for Speech. Cognitive Science,
20(1):1–46, 1996.

[PBV94] Catherine Pelachaud, Norman I. Badler,
and Marie-Luce Viaud. Final Report to
NSF of the Standards for Facial Animation
Workshop, October 1994.

[Pel91] Catherine Pelachaud. Communication and
Coarticulation in Facial Animation. PhD
thesis, Unicersity of Pennsylvania, Philadel-
phia, 1991.

[PHL+98] Frédéric Pighin, Jamie Hecker, Dani
Lischinski, Richard Szeliski, and David H.
Salesin. Synthesizing Realistic Facial Ex-
pressions from Photographs. In Computer
Graphics (SIGGRAPH ’98 Conf. Proc.),
pages 75–84, July 1998.

[PW96] Frederic I. Parke and Keith Waters, editors.
Computer Facial Animation. AK Peters,
Wellesley, MA, 1996.

[PWWH86] Andrew Pearce, Brian Wyvill, Geoff Wyvill,
and David R. Hill. Speech and Expression:
A Computer Solution to Face Animation.
In Proc. Graphics Interface ’86, pages 136–
140, May 1986.

[TW90] Demetri Terzopoulos and Keith Waters.
Physically-based Facial Modelling, Analy-
sis, and Animation. Journal of Visualiza-
tion and Computer Animation, 1(2):73–80,
December 1990.

[Wat87] Keith Waters. A Muscle Model for An-
imating Three-Dimensional Facial Expres-
sion. In Computer Graphics (SIGGRAPH
’87 Conf. Proc.), volume 21, pages 17–24,
July 1987.

[Wil90] Lance Williams. Performance-Driven Facial
Animation. In Computer Graphics (SIG-
GRAPH ’90 Conf. Proc.), volume 24, pages
235–242, August 1990.


