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ABSTRACT

Dynamic tessellation of (trimmed) NURBS surfaces is an important topic for interactive rendering of complex
models. Independently of the decomposition method used to approximate surfaces by polygons, an evaluation of
the surface at many parametric pairs is required to generate meshes vertices. In this paper we give an overview of
the most important evaluation algorithms and compare them regarding their runtime efficiency.

Three different representations and five algorithms for the evaluation of NURBS surfaces are compared: direct
evaluation of NURBS surfaces, evaluation of their Bezier patches and evaluation of them in power basis
representation. We add to the comparison two algorithms, based on the approximated computation of normal
vectors. The deviation among the exact and the approximated normal vectors is measured. The obtained results
are checked with partial comparisons that appear in the bibliography.
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1. INTRODUCTION

In many applications of CAD/CAM, virtual reality,
animation and scientific visualization, object models
are described by NURBS surfaces. This representa-
tion allows defining exactly both algebraic geome-
tries and abstract surfaces standardizing the
representation by a single mathematical equation.
Moreover, thanks to their growing use in CAD/CAM,
NURBS surfaces appear in the main neutral file
formats for interchanging geometric data, like IGES
and STEP. Farin [FarOla] and Pielg and Tiller
[Pie97a] have studied NURBS surfaces in depth.

Because of its importance in computer graphics
applications, the rendering of NURBS surfaces has
been researched intensively in last three decades.
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Different approaches have been elaborated for
visualization. In photo-realistic rendering algorithms,
the color intensity value of each screen pixel is
generated directly from the parametric surface
description of the model. These algorithms can be
classified in based on: scan-line [Bli78a] [Whit78a]
[Lan80a], ray tracing [Whi80a] [Kaj82a] [Qin97a]
[Mar0Oa] and iso-curve sequences [Roc87a]
[Cha89a] [Elb96a]. In hardware rendering [Bed91a]
[Gop97a] [Boo0OOa], the graphical hardware is
extended with more complex geometric primitives
than the polygon. This hardware has VLSI
architectures that make possible the computation of
points and normal vectors of a surface. In approxima-
tion based rendering algorithms, more simple
primitives like polygons [Her87a] [Roc89a] [Pie98a]
[Kum96a] or points [Chh03a] approximate surfaces.
These algorithms benefit from the graphical hardware
features to generate more quickly the image.
Moreover, the approximation of surfaces is done
outside the graphical API. This fact allows selecting
the optimal level of detail in runtime. Therefore, the
application can manage the quality of the image to
generate in runtime as the function of the wanted
interactivity degree or the available graphical hard-
ware features in a local computer.



1.1 Main Contributions

The first contribution of this work is an overview of
NURBS surfaces evaluation methods based on
runtime efficiency. Other authors have done partial
comparisons (only comparisons among two or three
methods). The second contribution is a comparison
(based on computational cost and image quality)
among four approximated normal vectors calculation
with different weighting methods. The overview
includes two evaluation methods that use approxi-
mated normal vectors calculation (weighted by area).

1.2 Paper Structure

The rest of the paper is organized as follows: In
section 2 a background to understand better the need
of our work is done. In section 3 we describe and
analyze the approximated normal vectors calculation
methods. Section 4 covers the overview results and
section 5 concludes and describes future work.

2. BACKGROUND

2.1 Dynamic Tessellation

In dynamic tessellation algorithms, meshes are
generated in the interactive stage of the rendering
pipeline. Many systems tessellate NURBS surfaces as
a pre-process. However, there are two reasons for
using dynamic tessellation. In first place, storing
NURBS surfaces instead of storing polygonal
representations saves a large percentage of available
memory. This is especially interesting when using
large models where many surfaces are not visible and
their incorporation to the potentially visible surfaces
set will be gradual. In second place, an appropriate
tessellation can be obtained in runtime as the function
of the actual viewing conditions. So, this kind of
algorithms is very advisable for interactive visuali-
zation. On the other hand, as dynamic tessellations
must be built as fast as possible, they often are of
lower quality than those generated as a pre-process.

The number of polygons generated by a dynamic
tessellation is the function of the relative position of
the surface respect to the point of view, i.e., its
projection onto the screen. However, tessellations can
be generated to meet memory requirements or a
continuous frame rate.

In dynamic tessellation, uniform decomposition is
generally used because it is less time consuming than
adaptive decomposition. Some works use adaptive
algorithms for interactive visualization. Guthe et al.
[Gut02] computes a fine tessellation in the pre-
processing stage. In runtime, split and collapse vertex
operations are done to adjust view dependently the
quality of the meshes. Chhugani and Kumar [ChhOla]
pre-compute the set of surface vertices that reduces
the distance of the generated mesh to the surface. In
runtime, their algorithm updates the tessellation

adding or removing vertices of a Delaunay
incremental  triangulation that represents the
tessellation. Uniform decomposition tessellates the
surface using a regular grid defined in the parametric
domain. This does not guarantee that the resulting
tessellation will be uniform. Anyway, it is possible to
determine a parametric grid size that may produce
polygons that meet certain restrictions. For instance,
polygons that projected onto the screen will be within
specific size bounds.

In uniform decomposition based algorithms, the mesh
generation is composed of three operations:

e determine the tessellation density or step sizes
(distance between two consecutive parametric
points in a parametric direction),

¢ evaluate points and normal vectors of the surface
for the grid of parametric points,

* generate the sequence of polygons (normally
triangles) that approximate the surface.

As all the operations are done in the interactive
loop, it is necessary to set bounds to their compu-
tational cost. This paper researches solutions for the
second operation. Although several methods have
been published dealing with point and normal vectors
evaluation, this topic has few times been studied from
the point of view of interactive visualization using
dynamic tessellations [Roc89a] [Kum96a].

2.2 Generation of mesh vertices

Obtaining a mesh vertex of the tessellation involves
evaluating the NURBS surface in order to generate a
three-dimensional point and its associated normal
vector. Given a parametric coordinate (u,v), evalua-
tion of a surface point means to obtain its own three-
dimensional point S(u,v) in the surface. The exact
normal vector of a tensor product surface is cal-
culated by the cross product of two tangent vectors
obtained as partial derivatives.

NURBS surfaces are evaluated using three different
representations. Each representation has its own set
of point and normal vectors evaluation algorithms. In
the first representation (B-spline), points and normal
vectors are generated evaluating directly the NURBS
mathematical description. The second is the Bezier
representation. Each NURBS surface is decomposed
in a rectangular matrix of Bezier patches whose union
is geometrically the same as the original surface.
Points and normal vectors are generated using Bezier
surface evaluation methods. The third is the power
basis representation. Here, Bezier patches are
converted into the power basis. It is well known that
the conversion from Bezier to the power basis is
numerically unstable when polynomial degree is high.
Farouki [Far91a] makes a comparative among Bezier



and power basis representations and analyzes the
robustness and errors involved in this transformation.
However, that work does not provide performance
comparison data.

In our performance study we do not consider the
computational cost required to convert from the
NURBS representation to the Bezier and power basis
ones. Although those representations require more
memory than the original NURBS representation, the
storage consumed is much lower than that used for
polygonal representations. So, our tests consider only
the time required for the point and normal vectors
evaluation.

In the bibliography, few works compare Bezier
representation algorithms: Carriére [Car95a] compa-
res the deCasteljau algorithm and its modified
version. The same happens with B-spline represen-
tation algorithms: Luken and Cheng [Luk96a] compa-
res the two-stages Cox-de-Boor algorithm with the
knot insertion method.

Even less works compare algorithms that belong to
different representations:  Sederberg [Sed95a]
compares the deCasteljau algorithm (Bezier repre-
sentation) with the Horner’s scheme based algorithm
(power basis representation).

Moreover, a global comparison (considering all
representations) has not been published. In this work,
we evaluate in the same conditions the best five
algorithms proposed in the bibliography for
evaluating a surface in B-spline, Bezier and power
basis representation:

e For direct NURBS evaluation we have tested
two-stages Cox de Boor [Luk93a] algorithm and
optimized direct evaluation [Pie97a]. The first
method avoids repeated calculations of the same
components or intermediate values (inverses of
differences of u and v knots) by calculating and
storing them in both directions first, and then
evaluation the tensor products at the parametric
pairs. The last method uses coherence between
mesh vertices to speed up the evaluation of
vertices that lies in the same parametric span. We
do not include the knot insertion method in the
comparison because Luken and Cheng [Luk96a]
demonstrate in their work that knot insertion is
less efficient than two-stages Cox de Boor.

e Substituting the NURBS by a Bezier represen-
tation we have tested two algorithms: deCas-
teljau [deC86a] and modified deCasteljau
[Man95a]. We have improved deCasteljau
algorithm using the pre-calculation of the
weights affecting intermediate points of the
recursion, as proposed by Carriére [Car95a].

*  For polynomial representation we have tested
Horner's scheme [Sed95a]. In this method,
coefficients that multiply the powers of
polynomials are previously pre-calculated and
stored.

In our work we have also considered the following
fact. When geometric information is used only for
image generation, it is not necessary to calculate the
exact normal vectors for surface points: it is enough
to obtain a good approximation to them.

We have made rich the comparison adding our
original results obtained when normal vectors are
calculated approximately by interpolation. This
methodology is applied to the optimized direct
evaluation and the Horner’s scheme.

In the next Section we study the problems and
advantages of computing approximations to normal
vectors.

3. CALCULATION OF
APPROXIMATED NORMAL

VECTORS

It is well known how descriptions of polyhedra that
only have vertex coordinates as geometry data can be
processed in order to obtain a normal vector for each
vertex. This procedure is carried out routinely as
preprocess. It is performed when polygonal
descriptions that lack normal vectors are read from
files. It is well known that it helps to save memory in
files and the vectors approximated in this way are
usually acceptable for shading purposes.

We are using this technique for speeding the
computation of meshes from NURBS descriptions.
For this reason we have studied two problems. In first
place we have revised the different methods that can
be used to approximate normal vectors. Our goal was
to compare their computational cost and the goodness
of the approximations they provide. In second place
we wanted to find a tessellation method that could be
applied to NURBS surfaces ignoring data from their
neighbor surfaces. As we will see, this goal obliged
us to extend the algorithm that approximates normal
vectors for the vertices of polyhedra. We insert a final
subsection that discusses one finding we were not
looking for: when using approximated normal vectors
it is not required to check for numerical errors that
sometimes appear when computing normal vectors
exactly.

The surface normal at a mesh vertex can be
approximated averaging normal vectors of its
adjacent facets (using uniform decomposition, four
triangles are required to evaluate the normal vector of
a interior vertex). Facet normal vectors can be
weighted as the function of their geometrical or



topological properties. Thirmer and Wiirthrich
[Thii98a] use the angle of each facet that has a
bearing on the vertex as the normal weight. Max
[Max99a] derives weights using the facet area and
assigns larger weights to smaller facets. If facet
normal vectors are not weighted, we say that normal
vectors are uniformly weighted. We add a new
method of weighting that improves the previously
described methods. In this method we assign smaller
weights to smaller facets.

We have compared these four methods that
approximate the normal vector at a mesh vertex.
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where o is the associated weight to the facet i.

As the results in the following subsection show,
approximated normal vectors do not differ much
using one method or another. However, area
weighted normal vectors are computed faster. This
was not a surprise, because we realized the following
fact when we were preparing the different algorithms:
weighting normal vectors with area, instead of adding
operations to the algorithm, reduces the need for
making them. The other methods compute the normal
using triangle edges and then normalize its module
before adding them.

If this operation is not performed, what we have is a
weighted area normal for the polygon. These savings
are not important when dealing with non-deformable
polyhedra whose normal vectors are computed as
preprocess, but they provide some help when trying
to compute meshes in the fastest possible way within
a simulation.

Now we will discuss another problem. When a vertex
is on the edge of the surface, all these methods need
to know the tessellation of the neighbor surface. In
this case, when the normal is computed using only
facets from the surface that contain the vertex, in the
final shaded image surface edges appear clearly. This
is due to a lack of continuity in the shading between
contiguous surfaces caused by using different normal
vectors for common vertices of neighbor surfaces.
Obviously, if neighbor surfaces have continuity C',
and normal vectors are exactly computed, this
problem does not appear.

We have devised a method to keep the independence
among surfaces while using approximated normal
vectors. Figure 1.a shows the straightforward way of
computing the normal at a vertex that is shared by
two adjacent surfaces and Figure 1.b shows the
extrapolation that we make when computing the
normal without using adjacent surface data. The
figures simplify the problem using a 2D analogy. This
is nearly real because the vertices that appear in the
figure are on the same iso-parametric curve.

Surface A without neighbor

z i)
Neighbor surface

Surface A

Figure 1: a) Two surfaces, b) Extrapolation of the
normal in the last interior vertex.

The process used for computing the normal in a
boundary vertex is the following one. Following an
iso-parametric curve, once the normal vector for the
last interior vertex is computed, we compute another
vector. It has the following characteristics: it is
parallel to a plane defined by the normal in the last
interior vertex and the segment that joins that last
interior vertex with the boundary vertex; it is also
perpendicular to that segment. Then we use this
vector as the symmetry axis to obtain the symmetric
vector to the normal in the last interior vertex. So, the
normal in the boundary vertex, is "pulled out"
extrapolating the last normal computed along its own
iso-parametric curve.

Next subsection presents the computational cost and
precision in the tests that have been performed.

3.1 Computational cost and results
quality

In Table 1, two examples of the goodness of the
approximated normal vectors in an edge shared by
two adjacent surfaces are showed. For this, the
average deviation between approximated normal
vectors obtained in each adjacent surface edge is
measured. The test is made for two C' continuity
adjacent surfaces and two C> continuity adjacent
surfaces and with different resolutions of the
tessellation. As it can be seen in the table the
deviation is nearly null.



Model

C!adjacent surfs. | C? adjacent surfs.

Nu\r/r;?gigsf Average | Max. | Average | Max.
40K 0.76° 1.56° 0.01° 0.02°
32K 0.81° 1.78° 0.01° 0.02°
21K 1.08° 2.02° 0.02° 0.03°
9K 1.37° 2.53° 0.06° 0.07°
1.6K 2.15° 3.97° 0.09° 0.09°

Table 1: Average and maximum deviation (in
degrees) between approximated normal vectors in
and edge shared by two adjacent surfaces.

In Table 2, the computational cost in the generation
of the approximated normal vectors with each
weighting method is showed. In the four methods, the
extrapolation of the normal vectors in the boundary
vertices is included. Weighted by area is the most
efficient method.

Model (Vertices) Unifo Area Inverse Angle
m Area
Goblet (40K) 0.55 0.46 1.1 1.22
Torus (40K) 0.55 0.49 0.86 0.66
Utah Teapot (5K) 0.06 0.05 0.09 0.1

Table 2: Time comparative (in seconds) among
four approximated normal vectors calculation
with different weighting methods.

In Tables 3 and 4, the averaged angular deviation
between the exact and approximated normal vectors
is showed for models with different geometric
complexity.

Number | Uniform Area Inverse Angle
of of Area

Vertices
40K 0.01° 0.01° 0.01° 0.01°
32K 0.01° 0.01° 0.01° 0.01°
21K 0.01° 0.01° 0.01° 0.01°
9K 0.02° 0.03° 0.02° 0.01°
1.6K 0.11° 0.20° 0.20° 0.03°

Table 3: Average angular deviations (in degrees)
among approximated and exact normals in Torus
model (see Figure 2).

Number | Uniform Area Inverse Angle
of of Area

Vertices
40K 0.92° 0.91° 0.92° 0.93°
32K 1.02° 1.02° 1.03° 1.03°
21K 1.29° 1.28° 1.30° 1.31°
9K 2.03° 1.94° 2.04° 2.15°
1.6K 5.07° 4.95° 5.14° 5.46°

Table 4: Average angular deviations (in degrees)
among approximated and exact normals in Goblet
model (see Figure 3).

In Figures 2, and 3, the comparison among the
generated images with exact normal vectors
computation and weighted by area approximated
method is shown.
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Figure 2: a) Exact Normals. b) Approximated
Normals (weighted by Area). Resolutions of
tessellations are from top to bottom: 40K, 32K,
21K, 9K and 1.6K vertices.
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Figure 3: a) Exact Normals. b) Approximated
Normals (weighted by Area). Resolutions of
tessellations are from top to bottom: 40K, 32K,
21K, 9K and 1.6K vertices.

4. OVERVIEW RESULTS

The computational cost of the evaluation methods has
been obtained testing the following models illustrated
in Figure 4 (the run time efficiency of evaluation
algorithms is uncoupled from the trimming process;
for this reason we have made tests with non-trimmed
surfaces):

@@0@@

e Supl5x15 is a NURBS surface of bi-degree 15,
which is decomposed in 64 Bezier patches.



e SuplOx10 is a NURBS surface of bi-degree 10,
which is decomposed in 25 Bezier patches.

e Sup5x5 is a NURBS surface of bi-degree 5,
which is decomposed in 17 Bezier patches.

e Partial Lion is composed of 28 bi-cubic NURBS
surfaces. Its Bezier decomposition leads to 456
patches.

¢ Partial Ride is composed of 37 bi-cubic NURBS
surfaces. Its Bezier decomposition leads to 170
patches.

*  Utah teapot is composed of 28 bi-cubic NURBS
surfaces that are represented by the same number
of Bezier patches

* Goblet is a NURBS surface of degree 2x3. Its
Bezier decomposition leads to 72 patches.

To compare the computational cost of vertex
evaluation methods, these models have been
uniformly tessellated into a large number of vertices.

In Table 5, computational times obtained with each
evaluation method and applied over each model is
shown. These tests have been made with a 600MHz
AMD K7 with 386 MB memory.

In Bezier representation, one of Carriére conclusions
has been corroborated: deCasteljau is more efficient
than modified deCasteljau. However, according to
Carriére, this fact only happens until bi-degree six
surfaces. This conclusion is corroborated with the
evaluation times taken by Sup.10x10 and Sup.15x15
(CAD models sometimes have patches of degree
15x15 or even higher). For larger bi-degrees,
modified deCasteljau is more efficient than
deCasteljau. Moreover, while the initial algorithm is
used with bi-degree surfaces, the second one can be
effectively used in surfaces with different degree in
each parametric direction.

In NURBS representation, original contributed
results by this work show that the optimized direct
evaluation is more efficient than two stages Cox de
Boor. In second place, for optimized direct
evaluation computing normal vectors takes about 30-
40% of the computing effort. This result led us to test
approximated normal methods and, as shown,
achieved results confirmed our expectations: it is
faster to substitute the exact computation of normal
vectors by their approximation.

Comparing NURBS and Bezier representations,
optimized direct evaluation with approximated

normal vectors computation is more efficient than all
Bezier representation based evaluation methods.

Our results confirm the results provided by
Sederberg: Horner's scheme is more efficient than
deCasteljau and modified deCasteljau algorithms.
Even more, we show that the version of this
algorithm that uses approximated normal vectors is
more efficient than the version that evaluates them
exactly. However, comparing with NURBS
representation, it is not faster than optimized direct
evaluation with approximated normal vectors.

5. CONCLUSIONS

The following points summarize the presented work:

* An extension of the classical method of
approximating normal vectors to solve edge
discontinuities is provided.

¢ Five evaluation methods have been implemented
and analyzed. Two versions that use
approximated normal vectors calculation are
added to the comparative.

*  The computational efficiency of the methods has
been compared. Some obtained results confirm
results from the bibliography. Our original
results enrich the comparative.

*  The approximated method is more efficient than
the exact one.

Analyzed methods allow generating the surface
tessellation evaluating the surface for each parametric
coordinate. The comparison can be enriched adding
recursive summation based evaluation methods like
forward differencing  [Bar95a] or Silbermann's
efficient implementation [Sil90a].
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Figure 4: Tested models.

NURBS representation Bezier representation Power basis representation
Optimized direct evaluation T Horner’s scheme
wo-
Number stages . Modified
Model Of Approximated Cox de deCasteljau deCasteljau Approximated
vertices Exact Without normals Boor Exact normals
normals normals Normals
(w. area) (w. area)
Sup.15x15 5K 1.9 1.07 1.12 3.04 14.95 11.98 3.17 2.98
Sup.10x10 9K 1.9 1.07 1.16 2.78 10.7 9.12 3.37 3.18
Sup.5x5 10K 1.04 0.6 0.82 2.03 3.15 3.18 2.06 1.86
Partial Lion 4K 0.33 0.2 0.25 0.39 0.37 0.38 0.33 0.3
Partial Ride 3, 7K 0.3 0.21 0.24 0.36 0.3 0.31 0.27 0.25
Utah 5,5K 0.46 0.33 0.38 0.56 0.53 0.55 0.44 0.4
Teapot
Goblet 40K 2.80 1.72 2.18 3.58 3.00 2.55 2.31

Table 5: Computational times (in seconds) for each surface evaluation method.
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