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ABSTRACT

In this work we introduce a new method for computing Form Factors in Radiosity. We demostrate how our
method improves on existing projective techniques such as the hemicube. We use the Nusselt analog to directly
compute form factors by projecting the scene onto the unit circle. We compare our method with other form
factor computation methods. The results show an improvement in the quality/speed ratio using our technique.
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1. INTRODUCTION

Radiosity is one of the most important techniques for
the synthesis of realistic images with global
illumination. One of the keys of the application of the
radiosity method is the computation of the form
factors. The form factor of a patch i to another patch
Jj specifies the fraction of total energy emitted from i
that arrives at patch j.

The formula of the calculation of the form factor
of a patch i to another is :
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V;; is the visibility function and the rest of terms
are geometric magnitudes. Since it is not possible to
find an analytical solution, the integral is solved by
approximation. The importance of the form factor
speed up calculation lies on the high cost of this
process within the radiosity method (90%) and its
apparent complexity O(N?).

In this work we compile, classify and evaluate
different methods for the computation of the form
factors, in particular, those based on the use of a
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single plane projection. It is also introduced a new
algorithm, the polygonal projection onto the base of
the hemisphere method (PPBH), which is compared
with their precedents. After the previous work
review, the basis of the method is presented in section
3. In section 4, we give a description of the
experiments between the studied methods, showing
the results in section 5. We finish with relevant
conclusions and the new opened fields for the future.

2. PREVIOUS WORK

One of the most studied methods has been the
hemicube algorithm introduced by Cohen and
Greenberg [Cohen85]. They proposed to locate a
hemicube over the shooting patch so that the other
patches can be projected on its five faces. Each one
of the faces take advantage of the Z-buffer to solve
the visibility problem. So, each face is a pixel buffer
where each cell has its individual form factor value,
called delta form factor, so that if a polygon is visible
from a pixel it increases its form factor in the
corresponding delta-value.

Nelson Max [Max95] made a deep study about this
method. Following the same scheme of hemicube,
the method of the cubical tetrahedron appeared
afterwards [Jeffrey91]. This technique solely uses
three half faces of hemicube to project the scene.

Following the tendency of the reduction of the
number of projection faces, Sillion and Puech
[Sillion89] presented the single plane method. In that
proposal the scene only project on one plane whose
extension varies according to the energy which we
want to gather. The distribution of the sampling



points must be chosen in such a way the delta form
factors of the cells was approximately equal.

In a later work Recker et al. [Recker90] developed
the method of the single plane derived directly from
the hemicube. The plane where the scene projects
corresponds with the top face of the hemicube and its
extension follows the same rule that the method of
Sillion above. In this approach each cell has its own
delta form factor. In the same work, they introduced
the method of the extended single plane, developing
the idea that in the central part of the plane greater
precision is required.

However, these methods share a common problem of
rectangular partition of the plane. Recently, Vivo et
al. [Vivo01] have introduced a new cell distribution
for the form factors calculation using a polar plane.
They take advantage of the geometry coherence of
the problem. Their method improves the quality of
the image and it has a similar time cost than the same
family of methods.

Some new methods have been based in the use of the
projection onto the hemisphere or unit circle
proposed by Gatenby and Hewit [Gatenby91] with a
hemisphere discretization method when it is split in
triangular regions with nearly equal areas, or the ray
tracing strategy utilized by Doi and Itoh [Do0i98]
when a surface element is subdivided into small
triangular patches. A solid angle criterion is used to
guarantee accuracy; when the angle is larger than the
user tolerance, recursive triangulation is applied.

In this paper we present a method to compute form
factors projecting onto the base of the hemisphere. It
is based in the Nusselt analog. We will show how the
computing time and the quality of the results can be
better than other methods.

3. DESCRIPTION OF THE METHOD.

The Polygonal Projection onto the Base of the
Hemisphere (PPBH) method computes the form
factor integral measuring the area covered by each
visible polygon projected onto the unit circle. This
area is computed by a double projection: first onto
the hemisphere and then orthogonally down onto its
base. The relative area occupied accounts exactly for
the form factor so we can expect an accuracy
improvement instead of using rectangular techniques.

Next we present a geometrical description of the
PPBH method. After that, we describe two different
approaches to compute the projected area: a discrete
and the continuous algorithm.

Base of the method

We use the central point of the shooting patch as
origin of a local coordinate system and we transform
each vertex to this reference system.

Now we have to project each edge onto de
hemisphere and then onto its base. In order to do the
double projection in one step, we only evaluate the
X,Y coordinate of the intersection between the plane
passing through the origin and the edge and the
hemisphere (Figure 1). The intersection with the
hemisphere will be a circle arc and its orthographic
projection an ellipse arc.
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Figure 1. Edge projection onto the hemiesphere
base

Being the imaginary plane that passes through the
edge, w : Ax+By+Cz=0 , and the formula of the
hemisphere, x’+y°+z°=1 (z>=0), the final equation
for Y coordinate of an edge projected point would be:
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Equation 2 is a curved line easy to calculate and it
gives the exact value of the edge projection in the
base. The projected vertex of the segment are the
final values of the curve. Obviously, if we do the
same for each polygon edge we will obtain a list of a
linked curve segments. The region closed by the
segment list is the polygon projection. According to
the Nusselt analog the area of this projection relative
to the hemisphere base area divided by & is exactly
its form factor.

Discrete method

Given that equal areas on the hemisphere base
correspond to equal form factors, we can superpose a
square grid where each cell would account the same
form factor. So, only knowing the length of the base
cell, the delta form factor would also be known and
no further storage. In fact, whatever decomposition is
valid if all cells have the same area. We can control
the cell size to adjust the precision of the
computation. Each cell will be a sample point.

We have chosen a square grid covering the unit
circle. Each element in the grid accounts the same
form factor which could be easily calculated.

That square grid is used as a Z-Buffer where we can
store the current depth and polygon id. In such a way
the visibility problem is solved processing every



polygon at a time. The ids of visible polygons are
eventually available in the buffer when the whole
scene had been processed. Thus, the form factor
value of each polygon is approximated by the number
of own cells. It must be notice that the irradiation is
totally computed in one projection step because of all
polygons are projected onto the hemisphere base. The
visibility problem is solved by storing the distance
between the nearest projected point and origin.

We can balance the error/speed ratio with the grid
resolution. We follow the geometry of the problem so
it is expected to improve accuracy on. However, the
method shares with the hemicube the orientation and
aliasing drawbacks.

Continuous method

When a polygon is projected onto the base of the
hemisphere, the exact value of its form factor can
easily computed. As it is known, we can calculate the
area of a polygon in two dimensions with the sum of
the area below each edge, and considering positive or
negative sign according to the sense of the edge. We
apply the same theory to compute de area of the
projection, but now each edge is a curve segment. We
compute the area below the curve edge by Eq. 2
integration. The limits of the integral are the
projected vertex. The sign of an area depends on the
sense the edge is traveled. Finally, the sum of those
areas gives the area inside the projection.

The integration of Equation 2 corresponds with the
following function:
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The integral must be calculated between the end
points [x0,xI] of the edge projection if the curve
doesn’t change its direction. If there are two spans
with different directions then the integral splits in
two, one from x0 to xc and the other from xc to x/,
being xc the minimum or maximum x of the curve.

Since we want to get the exact value of the form
factor, it is no useful the Z-Buffer due to approximate
sampling strategy. Therefore we need an exact
algorithm to give solution to visibility problem.

Traditionally, the problem has been solved in the
object space by means of a kind of algorithms known
as area-sorting algorithms. Those algorithms maintain
a list of visible parts of polygons clipping new
polygons against the visible list.

In addition, we have built a BSP tree structure to
ensure next polygon resides behind the visible graph.
In such a way the whole process speeds up.

At the end of the algorithm, we only have to traverse
the graph projecting polygon pieces. The sum of the
areas of the projected pieces is the visible polygon
projected area and the form factor between these two
polygons is directly computed.

4. IMPLEMENTATION AND
RESULTS

Now we show a comparative study between our
discrete PPBH and other projective methods. We
have implemented the hemicube, the simple plane,
the discrete and continuous polar plane as well as the
discrete method presented above. In this way, it has
been possible to compare computing time and image
quality among these different methods changing the
number of sampling points.

A series of test scenes has been chosen to
experimentally observe the advantages and
disadvantages of the method. The firts scene is a
office room with one light and 4428 elements (plate
1) . And the most complex scene is a cloister with
one big light and 80884 eclements (plate 2).

It has been used the original implementation of
Helios [Helios]. Any hardware acceleration has not
been used so that the comparisons are more similar.

In order to obtain the error between the calculated
scene and the real one, the method of the continuous
projection onto the hemisphere base has been utilized
as the base pattern. We have computed the average
error for all the coefficients of the form factor matrix.
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Figure 2. Mean error for the office scene (plate 1)

When the scene becomes more complex, our solution
is clearly better than other discrete methods like the
hemicube or the simple plane.
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Figure 3. Computing time (ms) for the Cloister
scene (plate 2)

In figure 3 we can observe how the new mothod
computes form factors more quickly than hemicube
with a number of sample points less than 650000 and
it is always better than polar plane.

5. CONCLUSIONS AND FUTURE
WORK

After making the different experiments and as a result
we could summarize the advantages of the method of
the discrete projection of polygons onto the
hemisphere in the following ones:

e It does not need to store a delta form factors
table, since it has a unique value for all cells.

e We can control the error changing the cell size.

e The projection is carried out in one step.

e The linear cost of the discrete PPBH is
comparable to the other similar methods of
projection but it has a better quality value.

e The PPBH takes in account the 100% of energy.

In summary, we have presented a new algorithm to
compute form factor improving the accuracy of
previous methods. One variant allows us to use it as
exact solution and the other is compared with their
precedents in speed and quality.

In order to improve the speed of the method, it is
possible to take advantage of the hardware
implementation of the Z-Buffer in the future.

6. ACKNOWLEDGEMENTS
This work has been granted by MCYT project TIC-
2002-04166-C03

7. REFERENCES

[Cohen85] Cohen, Greenberg. The Hemicube: A
Radiosity Solution For Complex Environment.
Computer Graphics, Vol 19(3), pp. 31-40. July
1985

[Doi98] Akio Doi and Takayuki Itoh. Acceleration
Radiosity  Solutions through the wuse of
Hemisphere-base Formfactor Calculation. Jour.

of Visualization & Computer Animation, vol.9(1),
pp.3-15, 1998.

[Helios] HELIOS. www.helios32.com. Radiosity: A
Programmer's Perspective, John Wiley & Sons,
New York, NY, ISBN 0-471-30488-3

[Jeffrey91] Jeffrey C. Beran-Koehn and Mark J.
Pavicic. A Cubic Tetrahedra Adaptation Of The
Hemicube Algorithm. In James Arvo, editor,
Graphics Gems II, pages 299-302. Academic
Press, Boston, 1991.

[Gantenby91] gatenby N. Y hewit W.T. A proposed
Alternative To The Hemicube Algorithm.
Eurographics Workshop of Rendering. 1991.

[Max95] Nelson Max. Optimal Sampling Of
Hemicubes. Procedings of the 4™ Eurographics
Workshop for Rendering. EG93RW, ISSN 1017-
4656, pp. 185 - 200, and Addendum, pp. 348 -
351.

[Recker90] Rodney Recker, David George, Donald
Greenberg.  Acceleration  Techniques  For
Progressive Refinement Radiosity. Computer
Graphics. Vol 24 (2), pp 59-66. March 1990.

[Sillion89] Frangois Sillion y Claude Puech. A
General Two-Pass Method Integrating Specular
And Diffuse Reflection. Computer Graphics, Vol
23(3). pp. 335-344. July 1989.

[VivoO1] R.Vive, M.J.Vicent, J.Lluch, R.Molla,
P.Jorquera, "Study of the form factor calculation
by single polar plane", IAESTED Visualization,
Imaging, and Image Processing, Marbella, 2001.

8. STUDIED SCENES

Plate 1. Office Scene

Plate 2. Cloister scene



