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ABSTRACT 
Collision detection between moving objects is an open question which raises major problems concerning its 
algorithmic complexity. In this paper we present a polygon collision detection algorithm which uses polygon 
decomposition through triangle coverings and polygon influence areas (implemented by signs of barycentric 
coordinates). By using influence areas and the temporal and spatial coherence property, the amount of time 
needed to detect a collision between objects is reduced. By means of these techniques, a valid representation for 
any kind of polygon is obtained, whether concave or convex, manifold or non-manifold, with or without holes, as 
well as a collision detection algorithm for this type of figures. This detection algorithm has been compared with 
the well-known PIVOT2D [Hof01] one and better results have been achieved in most situations. This 
improvement together with its possible extension to 3D makes it an attractive method because pre-processing of 
the polygons is no longer necessary. Besides, since this method uses sign operations, it proves to be a simple, 
more efficient and robust method. 
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1. INTRODUCTION 
The problem of collision detection among objects in 
motion is essential in several application fields, such 
as in simulations of the physical world, robotics, 
animation, manufacturing, navigation in virtual 
worlds, etc. Apart from giving scenes a more realistic 
appearance, it is necessary for the objects belonging 
to it to interact, so that they do not collide, and if they 
do, a suitable response is obtained. 

Due to this, collision detection is studied intensively 
by the scientific community. Most of the algorithms 
developed are based in heuristics that aim to reduce 
collision determination time, but they are not usually 
valid for some types of figure, such as non-convex 
polygons, non-manifold polygons or polygons with 
holes. At worst, given two polygons, it is necessary to 
check the intersection between all pairs of edges, with 
O(n·m) time, n and m being the number of edges of 

each figure. 

In this work, on the one hand, we try to use a formal 
3D solid representation system, and on the other one, 
to use it for the collision detection among rigid solids 
(first among 2D polygons). This formal system is 
based on polygons coverings by means of triangles 
(in 2D) and operations with signs. This provides 
more efficient and robust operations according to 
Feito [Fei98]. 

On the other hand, the barycentric coordinates of a 
point regarding a triangle are used in order to 
determine the point or polygon inclusion [Bad90]. 
The use of barycentric coordinates can be seen 
computationally more intensive, but after the initial 
step, and once the sign is calculated, it is only needed 
to recalculate the coordinates sign when the point 
changes from some spatial zones to others. In 
addition, it provides a measure of the distance of the 
point to each triangle, and of course to the polygon, 
so that we can verify if a point or a polygon is to a 
given distance from the static polygon. 

In order to check its efficiency, this algorithms have 
been compared with other ones, such us inclusion 
algorithms, and 2D collision detection ones, 
obtaining satisfactory results that induce us to 
develop and implement these techniques in 3D in the 
future. 
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There follows a brief scheme of the contents that are 
going to discussed in this paper: after the introduction 
we will define the collision detection term used by 
the authors, as well as its possible applications, 
especially in 2D. Then, we shall present a summary 
of the authors’ previous work on which the 
development of this new algorithm of collision 
detection between 2D polygons is based. Next, we 
provide definitions of the basic concepts necessary to 
understand this algorithm. Then we present the new 
algorithm and its implementation. Later, a temporal 
study will be carried out, in which the new algorithm 
is compared with the one developed by Hoffman 
[Hof01] in the PIVOT2D library. Finally, in the 
conclusions section, we summarise the features of the 
new algorithm and future work to be undertaken by 
the authors. 

2. COLLISION DETECTION 
DEFINITION AND APPLICATIONS 
Collision detection is the interference or intersection 
determination between two moving objects. We can 
determine just whether collision occurs or not or else 
we can calculate the features of the objects involved 
in the collision. The response to the collision may 
imply distortion or a change in the trajectory of the 
objects, but this lies outside the scope of our study. 
We define collision detection at several levels. At the 
first level, we deal with collision detection between 
two objects. The complexity is O(n·m). At the second 
level, we deal with collision detection of several 
moving objects. In this case, the complexity is O(k2), 
where k is the number of objects in the scene. In this 
paper we deal with collision detection between  two 
objects. 
We can see that collision detection is a problem 
similar to inclusion detection, so that we can regard 
collision detection as a problem of inclusion 
detection in consecutive time intervals. Nevertheless, 
we can  somehow exploit the space and temporal 
coherence of the movement of the objects in order 
not to repeat calculations, or we may simply eliminate 
features of the objects on which the collision test is 
not to be made. This coherence is going to be used in 
the new algorithm. 
On the other hand, we can see that a great number of 
applications which need collision detection may be 
reduced to objects moving on a flat surface, for 
example, a vehicle travelling around a city, a machine 
that must carry loads in an warehouse, or in virtual 
reality applications, in which an avatar moves about a 
scene in which it must avoid certain obstacles, etc. 
Other applications make use of collision detection 
between objects on a plane. For example, the design 
of integrated circuits may require determining 
"paths" for the various tracks connecting chips and 

electronic components; the automatic design of roads 
may require the determination of the best way of 
avoiding certain obstacles, etc. 

3. PREVIOUS WORK 
Previous work has carried out a characterisation of 
the collision detection problem and the strategies 
used to solve it [Jim02a]. Other authors have also 
made a revision of this problem [Jim01] [Lin98]. 
In this paper we present several techniques in order to 
solve the collision detection problem in 2D, so that if 
it proves to be effective, it may be extended to 3D in 
a future. 
Then, we present some of the developed works by the 
authors; they will be a reference for the understanding 
of the collision detection algorithm between polygons 
presented in this paper. 
To study the inclusion of a point in a polygon we 
used the algorithm proposed in [Fei95] adapted to use 
barycentric coordinates. In Algorithm 1 the result of 
this adaptation is shown. 
int Polygon::inclusionTest(point p) { 
 sum = 0 
 i = 0 
 while (i < triangleNumber) { 
  is_in = Triangle[i]->inclusionTest(p) 
  if (is_in==EDGE_EXTERNAL OR 
    is_in==VERTEX_V1 OR is_in==VERTEX_V2) 
   return IN 
  else 
   if (is_in==IN) 
    sum += 2*Triangle[i]->sign() 
   else 
    if (is_in==EDGE_RIGHT OR 
      is_in==EDGE_LEFT) 
     sum += Triangle[i]->sign() 
  i++ 
 } 
 if (sum==2) return IN 
 else return OUT //No inclusion 
} 

Algorithm 1. Point-Polygon inclusion test. 
In [Jim02b] we can see different algorithms for the 
collision detection between a point and several types 
of figures (convex and non-convex -such as starred 
figures, random contour maps and totally irregular 
figures-). These algorithms are optimised according 
to the type of figure. Besides, the non-convex 
collision detection algorithm adapts to all the 
situations and offers quite good times. 
We have compared the point-polygon collision 
detection algorithm with the crossings test inclusion 
[Hai94] [Las96] and the signed area [Fei95] [Hof89] 
ones. This algorithm is efficient in most situations, 
with higher execution times than crossings test 
algorithm, but quite near to it. Also, the times 
obtained are better than those ones in signed area 
algorithm. 



 

 

The present work is based on the point - non-convex 
polygon algorithm [Jim02b], which has been 
extended so that it works with two polygons. Like its 
predecessor, time and space coherence is used to 
reduce the number of necessary calculations in 
collision determination. The summarised point-
polygon collision detection algorithm (Algorithm 2), 
and an operation example (Figure 1) may be seen 
underneath. 
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Definition 2 : Let three points be A,B,C ∈ Rn, for 
n=2, the coordinates of which on the plane are 
A(xA,yA), B(xB,yB), C(xC,yC), the signed area of these 
three points is defined as [Hof89] : 
   xA xB xC 

|ABC|  =  ½ * yA yB yC 
   1 1 1 
 
The signed area of these three points can be negative, 
depending on the points order. For counter-clockwise 
order the signed area is positive and it is zero if the 
three points are aligned. 
Definition 3 : A triangle T is positive  if sign (|T|)=1, 
and  negative if sign (|T|)= -1. 
Theorem : Let points be A,B,C ∈ R2, and let’s 
suppose they are not collinear. Let another point be P 
∈ R2. Then, there are unique s,t,u ∈ R, so that s + t + 
u = 1 and P = sA + tB + uC, which means: 
 s  =  |BCP| / |ABC| 

t  =  |CAP| / |ABC| 
 u =  |ABP| / |ABC| 
The numbers s,t,u  defined in the above theorem are 
the barycentric coordinates of P with regard to points 
A, B and C. 
Lemma : Let a point be P ∈ R2 with barycentric 
coordinates (s, t, u) in relation to points A, B, C ∈ Rn. 
It is said that point P is inside the triangle defined by 
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e centroid of the figure. 
ake a space division through the sign of barycentric 
ordinate associated to the triangle edge that belongs 
 the polygon (see section 4.3.) 
alculate the sign of the moving point with respect 
ch zone, keep it in a bit mask ( in which value 1 
eans that the point is on the inner side, and value 0 
 the outer side) 
ove the point 
ecalculate the sign with respect to each zone and 
mpare it with the previous mask 

 new mask is equal to the old mask return 
QUAL_STATE. Go to step 3. 
 one bit changes from 0 in the old mask to 1 in the 
w mask: 
1. Calculate barycentric coordinates t and u, only 

when the bit of the mask is 1 
2. If this change has not taken place, the point is in 

the same zone. Return OUT and go to step 3. 
heck whether the point is inside each triangle. By 
ing Algorithm 1 
eturn IN or OUT accordingly, and go to step 3. 
hm 2. 2D Point-polygon collision detection. 

   P0   P1   P2   P3 
 123456 123456 123456 123456 
 +-++++ +-++++ +-++++ +-++++ 
mask 110111 110011 110011 111111 
mask 11-000 10--01 ------ 100100 
mask 11---- 1----0  0--100 
 OUT OUT EQUAL IN 

 1. Sample operation of 2D point-polygon 
on detection algorithm. A covering of the 
on by triangles has been carried out and 

shows a division on zones. 

THEMATICAL AND 
ETRIC FOUNDATIONS 

Definitions 
on 1: Let x be a real number. We define the 
ction, sign (x), as follows : 
sign(x) = (1, if x>0; 0, if x=0; -1, if x<0) 

points A, B, C, if and only if [Bad90] : 
 0 ≤ s, t, u ≤ 1 
Corollary : Likewise, we define point P as outside the 
triangle ABC, if and only if : 
 s < 0 ∨ t < 0 ∨ u < 0 

Geometric Interpretation of Barycentric 
Coordinates of a Point with Regard to a 
Triangle 
If barycentric coordinates of a point P in relation to 
S,T,U are s,t,u, then a point with sign(s)=+1 will be 
placed on the same side as S, with respect to the 
infinite line that goes through U and T. If sign(s)=-1, 
it will be on the opposite side; if sign(s)=0, it will be 
on the line (Figure 2). 

 

 

 

 

Figure 2. Geometric interpretation of barycentric 
coordinates of a point with regard to a triangle. 
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Coverings of the Polygons and Zones 
Division 
A preliminary step in all algorithms consists in a 
covering of the polygon by triangles with origin at 
the centroid of the polygon (Figure 3). This covering 
is a generator system that is valid for every type of 
2D polygon (as well as for its extension to 3D 
polyhedral solids), manifold or non-manifold, with or 
without holes, convex or non-convex [Fei95] [Fei97]. 
Let the centroid be S, and let T,U be the vertices of a 
triangle of the covering, the space can be divided into 
two zones, one for the points with barycentric 
coordinate s<=0, and another one for points with 
barycentric coordinate s>0 (Figure 2). When a point 
changes the sign of its barycentric coordinate s with 
regard to some triangle of the covering, we say that it 
has moved from one zone to another (Figure 1). 

Influence Area of an Edge 
Given a 2D polygon, the influence area with length 
“n” of an edge “e” is defined as a 2D space zone 
which is external to the triangle formed by the 
centroid of the polygon and the edge “e”, and 
bounded by two infinite and parallel lines, the first 
one going through the vertices of the edge and the 
second one at a distance of “n” units from the first 
one (Figure 3). This influence area can be limited by 
the barycentric coordinate s. 

 

 

 
 
 

Figure 3. Influence area of an edge 
Given a 2D polygon, the influence area with length 
“n” of the polygon is defined as the addition of the 
influence areas with length “n” of each of the edges 
forming the polygon. 

Extended Influence Area of an Edge 
Given a 2D polygon, the extended influence area 
with length “n” of an edge “e” is defined as a 2D 
space zone relative to the triangle formed by the 
centroid of the polygon and the edge “e”, and 
bounded by two infinite lines which are parallel to the 
line which passes through the vertices of the edge, 
both at a distance of “n” units from the last one 
(Figure 4). This influence area can be limited by 
barycentric coordinate s. 
Given a 2D polygon, the extended influence area 
with length “n” of the polygon is defined as the 
addition of extended influence areas with length “n” 
of each of the edges forming the polygon. 

 

 

 
 

Figure 4. Extended influence area of an edge 

5. DEVELOPED ALGORITHMS 
Let’s see the development of the 2D polygons 
collision detection algorithm step by step. Firstly we 
will see the most simple (but least efficient) collision 
detection algorithm, so that we may gradually 
optimise it. 

Point-Triangle Inclusion Test 
In order to determine whether a point is included in a 
triangle or not, we just have to check whether the 
barycentric coordinates of the point with regard to the 
coordinates forming the triangle are all within the 
interval [0,1] or,  we may just check whether any of 
the barycentric coordinates is negative. 

Two 2D Segments Intersection Test 
In order to check whether two segments intersect in 
2D space, the barycentric coordinates of a point P 
with respect to the other three S,T,U are calculated 
(the points are the extremes of the two extreme 
segments) and the sign of these coordinates is 
calculated too. If an intersection occurs, then 
barycentric coordinates must be s<=0, t>=0 and 
u>=0, as can be seen in Figure 5: 

 

 

 
 

Figure 5. Edges intersection 

2D Polygon-Polygon Intersection Test 
Static polygon-polygon intersection test consists in 
calculating whether intersection occurs between two 
edges, one from each polygon. The segment-polygon 
inclusion test can be repeated for all the edges of both 
polygons. The run time of this algorithm is O(n·m), n 
and m being the number of edges of each one of the 
polygons involved in the test. In order to reduce these 
times, an influence area with respect to one of the 
polygons can be created, outside which it is known 
that the polygons are not going to collide. The second 
polygon is surrounded by a circumference, whose 
centre is the centroid or common point of the 
covering and whose radius is the maximum length 
from that point to each one of the vertices of the 
polygon. 
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Firstly, a polygon influence area with length equal to 
the circumference radius is used. For a collision to 
take place, the centroid of the second polygon must 
be inside the influence area of the first one. If it is 
not, collision will certainly not take place. The 
problem has been reduced to detecting the collision 
between a point and a polygon greater than the first 
one, bounded by its area of influence. When the 
centroid enters this area, a detailed collision 
detection test is applied (Figure 6). 

 

 

 

 

 

 

In 1, the centroid is inside the influence area: collision does not take place. 
In 2, the centroid is at the limit of the influence area, the influence area 
length is equal to the radius of the circumference. In 3, the centroid is inside 
the influence area: the detailed collision test is conducted. Collision does 
not take place. In 4, the centroid is inside the influence area: the detailed 
collision test is conducted. Collision takes place. 
Figure 6. Influence areas with length equal to the 

radius of the bounding circumference of the 
polygon. 

2D Polygon-Polygon Collision Detection 
Test 
We have seen how to check the intersection between 
two static polygons.  Let us suppose a fixed polygon 
and a moving polygon (this scheme is also valid for 
two polygons in movement). We can use a 
combination of the point-polygon collision detection 
algorithm and the polygons intersection test by 
means of influence areas. The purpose is to verify at 
initial time whether collision between the polygons 
takes place or not (by means of the static test of 
intersection) and, if it does not take place, to apply 
the temporal coherence together with influence areas 
to detect whether the moving polygon is inside the 
influence area of another polygon, so that the detailed 
collision detection test may be applied in that case. 
Firstly, both polygons are surrounded by a 
circumference centered in the centroid. This way, if 
there is no intersection between the circumferences, a 
collision between polygons may be discarded. If a 
collision between circumferences should occur, we 
must check whether the moving polygon is inside the 
influence area or not (if the centroid is in the area). If 
it is not inside the influence area, the procedure is the 
same as for point-polygon collision detection but, 
instead of considering the side of the polygon, we 
must consider its extension, that is to say, the side of 

the corresponding influence area. If the point is inside 
the influence area, the polygon detailed collision 
detection is used (Figure 7). 

 

 

 
 
 
 
 
In 1, we check whether intersection between circumferences occurs; no 
collision takes place. In 2, there is intersection between circumferences, but 
the centroid is not in the influence area; intersection does not take place. 
This situation allows making use of temporal coherence. In 3, there is 
intersection between circumferences, and the centroid is in the influence 
area. A detailed collision test between polygons is carried out. 

Figure 7. Collision detection with bounding 
circumferences and influence areas. 

The number of intersection tests between the edges of 
both polygons may be reduced by calculating where 
the centroid of the moving polygon is situated, that is, 
under what edges’ areas of influence. If the centroid 
is in one of these areas, it is likely to collide with the 
edge of that area (and probably with another one). 
In Figure 8.a) we can see the centroid of the polygon 
in the influence area of an edge. It can only collide 
with this edge (if it were in more influence areas, it 
could collide with each of the edges involved with 
those areas). 

 

 

 
 
 
 

Figure 8. a) Influence area. In red, edges which 
can collide. b) Extended influence area. 

In Figure 8.b) we can see that this reasoning is not 
altogether correct for, although it is still inside the 
same influence area (just one), edge 2 is also 
involved (and in fact it does collide with the 
polygon). This problem may arise in the vicinity of 
the vertices. In order to solve this, we have used the 
extended influence area of the polygon. If the 
centroid is in the extended influence area of an edge, 
that edge can collide with the polygon. Only the 
edges meeting this condition can collide with other 
edges of the polygon. 
In addition, it is possible to reduce the number of 
edges of the polygon in movement that may be 
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involved in the collision. We need only check, with 
respect to each edge of the static polygon that can 
take part in the collision, the sign of first barycentric 
coordinate s of each one of the vertices of the 
polygon in movement. The edges that can collide will 
be those in which a change of sign in these 
barycentric coordinates takes place in the vertices 
(Figure 8.a). This algorithm is shown underneath 
(Algorithm 3). 

Practical Implementation of Influence 
Areas 
The influence areas are open zones, of infinite 
extension. They are somehow bounded by the 
circumference formed by the sum of the radiuses of 
the two bounding circumferences of both polygons 
(Figure 7). This bounding may not be suitable in 
certain circumstances, such as figures with edges far 
removed from the bounding circumference (in 
concavities or holes). 
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to axis X or Y (according to the slope), and at a 
distance n from the vertices (Figure 9.b). 
 
 

 

 
 
 

Figure 9. a) Ideal extended influence area with 
length n of an edge. b) Extended influence area 

implementation for –1<slope<1. 

6. TIME STUDY 
The 2D collision detection module has been 
implemented as part of a C++ 3D graphic library, 
with an object-oriented approach. The graphics 
standard that has been used is OpenGL in a Linux 
platform. 
In order to verify the efficiency of this algorithm, the 
times for different types of trajectories and polygons 
have been measured. These times have been 
compared with those from  the PIVOT2D library 
[Hof01]. This library is one of the few that have been 
developed specifically for 2D objects. It uses Voronoi 
regions for its calculations of collision detection and 
makes use of graphical hardware in order to 
determine whether collision between polygons does 
take place or not and in order to obtain the pairs of 
features involved in it. This option has been 
deactivated for the calculations, so that it only detects 
whether collision takes place or not. 
If necessary, the new algorithm developed allows 
directly obtaining the features involved in the 
collision in approximately the same time as the 
measured time. This measurement will be the object 
of a future study. The characteristics of the 
algorithms are shown underneath (Table 1). 

Characteristic PIVOT 2D NEW 
Uses graphic hardware Yes No 
Uses Voronoi regions Yes No 
Uses barycentric coordinates & 

 

a) b) 

 

n 

n 
Make a triangles covering of the polygon with origin in the 
centroid of the figure. 
Calculate the radius of the bounding circumferences 
r = radius of the moving polygon bounding circumference 
p = point that is the centroid of moving polygon 
First step: 

- Move the polygon 
- If there is no intersection between bounding 
circumferences: 

- Return OUT 
- Go to the first step 

Second step: 
- Calculate the influence mask 
- Compare with the previous influence mask 
- If p moves out of some influence area, then go to the 
third step 
- Else return OUT. Go to the first step 

Third step: 
- If p is in the influence area of length r of the polygon 

- Obtain the edges that may take part in the collision,
using extended influence area of the polygon. 
- Make and return the polygon-polygon detailed 
intersecting test with edges calculated previously. 
- Go to the first step 

- Else return OUT 
- Go to the first step 
Algorithm 3. 2D polygons collision detection test. 
deally, the extended influence area with length n of 
n edge would be that with a distance to the edge 
maller or equal to n (Figure 9.a). This ideal extended 
nfluence area is bounded by the definition of 

inkowski sum of a segment and a circumference of 
adius n.[Lar00] 
 point (the centroid of the moving polygon) outside 

his area ensures that the polygon it represents does 
ot intersect with the static polygon. This space zone 
s difficult to implement. For this reason, we shall 
eal with a slightly greater zone and with a very small 
nd efficient calculation time. This zone is bounded 
y the extended influence area and two lines parallel 

coverings No Yes 

Valid for non-convex polygons  Yes Yes 

Pre-processing No In construc- 
tion time 

Uses hierarchical structures When needed No 
Uses bounding volumes Yes No* 
Tessellation No No 
Returns involved features Yes** Yes** 

Algorithm based in space of: Hybrid geometry 
and image based 

Geometry-
based 

Calculus error 
Yes, it depends 
on resolution. 

Bounded 

Yes, it 
depends on 
precision 

* They have not been used for the tests.   
** These options have been deactivated in the tests. 

Table 1. Main characteristics of PIVOT2D and 
the NEW algorithm. 



 

 

For both algorithms the collision detection time has 
been studied, whether collision takes place or not. In 
order to measure these times, a 360 MHz Pentium-II 
processor has been used. The times of two types of 
trajectories have been measured, a circular one close 
to the static figure, composed of 90,000 movements, 
so that the moving figure returns to its starting point 
(Figure 10.a), and a linear one, composed of 9,000 
movements, so that it draws near to the static polygon 
and collides with it (Figure 10.b). 

 
Figure 10. Trajectory types: a) circular. b) linear. 
In order to perform the tests, different types of 
polygons have been used (Figure 11): convex and 
non-convex (the latter including starred, contour, 
irregular, and with-holes polygons). The times have 
been measured on the basis of the number of vertices 
of both figures. The following table (Table 2) 
summarises the characteristics measured. 

 
Figure 11. Types of polygons: Convex, starred, 

irregular, irregular contour, with hole. 
 

Circular trajectory 
(Figure 10.a) 

Rotatory movement of the moving 
polygon around the center of the static 
polygon.  The movement is very close 
between the polygons and is made up of 
90,000 positions, returning to the 
starting point.  No collision takes place 
along the whole trajectory . 

Linear trajectory 
(Figure 10.b) 

Linear movement towards the static 
figure, composed of 9,000 positions. 
Collision takes place. 

Number of Vertices  Vertices in both polygons between 8 & 
1024 (powers of 2) 

Type of polygons 
(Figure 11) 

Variation of the type of static and 
moving polygon: Convex and non-
convex (starred, contour, irregular)  

Table 2. Main characteristics measured. 
Different tests and time measurements in collision 
detection have been made. The reason why we have 
used circular trajectories and contour polygons in 
most cases is the difficulty the new algorithm faces in 
these situations, because the polygon in movement is 
continuously moving from one influence area to 
another and most of the time it is very near to the 
static polygon. We are considering one of the worst 
cases or situations; in this case, all the areas are 
crossed and the moving polygon is nearly always 
inside some influence area. We have chosen an initial 
distance between polygons of 9 units, because we did 
not want to penalize to the PIVOT2D algorithm, 
which offers worse results when the polygons are 
closer to one another. 

Influence of the Number of Vertices 
This test aims to measure the influence of the number 
of edges in both polygons. A circular trajectory is 
used and the starting situation positions the polygons 
are very close but not touching one another. 
It can be seen (Figure 12) that the new algorithm uses 
less time in most situations, it being only slightly 
worse with very big static polygons (512-1024 
vertices) and very small moving polygons (8-16 
vertices).
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Figure 12. Times obtained in tests with a) the new algorithm and b) PIVOT2D. X and Z axes show the 

number of vertices of the static and moving polygons respectively. 
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This is due to the size of the influence areas (which 
depend on the radius of the bounding circumference 
of the moving polygon) and to the size of the edges of 
the static polygon. The greater the number of edges 
of the static polygon, the smaller the edges, because 
the figure is enclosed within the same volume. 
Therefore, both the size of the different influence 
areas and the degree of spatial coherence diminish, 
because a point moves from one area to others with 
greater frequency, thereby reducing the effectiveness 
of the algorithm. 
The PIVOT2D behaviour becomes worse in the case 
of static polygons with few vertices (8-32 vertices) 
and of polygons in movement with many vertices 
(128-512 vertices), whereas the new algorithm 
achieves quite low times. In all the remaining 
performed tests (different types of polygons and 
linear trajectory), the results are similar or better to 
the obtained with contour polygons and circular 
trajectory. 

7. CONCLUSIONS AND FUTURE 
WORK 
We have obtained a 2D polygon-polygon collision 
detection algorithm with better times than those 
provided by the PIVOT2D library in most situations. 
This algorithm is simple, more efficient and robust. 
Besides, it is suitable for any type of polygon, convex 
or non-convex, manifold or non-manifold, with or 
without holes, and, above all, it may be extended to 
3D, which makes it especially attractive.  
It uses a triangles covering of the polygons as pre-
processing.  This covering is made in a linear time 
based on the number of vertices, no type of complex 
data structure being necessary. The algorithm also 
uses the geometric and temporal coherence. Besides, 
once the collision is detected, we can obtain the edges 
taking part in it, almost at the same time. One final 
advantage is that it allows specifying a distance 
between objects. 
The algorithm is being improved as far as its 
implementation is concerned. These improvements 
can offer us still better times than those reflected in 
this study. Some of these improvements would be: the 
efficient implementation of the operations between 
bit masks; the use of graphical hardware speeding up 
the operations; the use of techniques of space 
subdivision, invariants with rigid transformations; the 
use of the geometric coherence to calculate the edges 
that cross influence areas, so that it is not necessary to 
re-calculate them in the following movement; the 
extension of these techniques to several moving 
objects; and, finally, the use of bounding volumes 
hierarchies at different levels of detail. Extension to 
3D is the most important work to be developed. It is 
also necessary to make a mathematical study of the 

speed of the algorithm based on the size of the 
influence areas and to obtain the times of effective 
calculation of the edges involved in the collision. 
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