
Progressive transmission of polyhedral solids
using a hierarchical representation scheme

Pedro Cano Juan Carlos Torres Francisco Velasco

Dpto. Lenguajes y Sistemas Informáticos

E.T.S. Ingeniería Informática - Universidad de Granada
C/ Periodista Daniel Saucedo Aranda s/n

18071 - GRANADA (Spain)

{pcano, jctorres, fvelasco}@ugr.es

ABSTRACT
In the last years several 3D model compression methods for multiresolution applications have been presented,
most of them using 3D meshes. Octrees are a natural multiresolution representation scheme, although it is
approximate. Extensions of classical Octrees that represent polyhedral object exactly have been proposed. One
of them are the SP-Octrees, that incorporates boundary information of the represented object in the internal
nodes of the octal tree, and include new terminal node types that contain boundary information of the solid.
This new scheme can represent polyhedral objects exactly with a smaller storage requirement, and can
accelerate basic operations with the model. In this work we present the use of this new representation scheme
for progressive transmission of polyhedral solids.

Keywords
Solid modelling, Hierarchical modelling, Octree, Multiresolution, Visualization, Progressive transmission.

1. INTRODUCTION
One of the consequences of the increase on
processing and visualization capacity of the present
systems is the increase of the complexity of the
geometric models that we use. In addition, the
development of the distributed systems allows us to
transfer those models through networks, making it
necessary to increase the speed of transmission and
to reduce the storage cost.
Multiresolution models based on triangle meshes
[Gar99][Tau99] can solve the model transmission
problem, building different levels of detail and
transferring in each case the desired level.

Some of the schemes used to represent solids and
volumes are based on the decomposition of the
space, and use hierarchical structures to store the
model.
An Octree is the representation of a model by means
of an octal tree structure obtained by recursive
divisions of the bounding box of the solid to codify
[Mea82] [Fuj84] [Gar82]. The Octrees representation
allows us to perform boolean operations and
properties calculation in a simple way, but it is an
approximated representation of the solid.
The Binary Space Partition trees (BSP) divide
recursively the space using a plane in two separated
half-spaces. Initially created to improve the hidden
parts removal process [Fuc80], it has also been used
to represent polyhedral objects exactly [Thi87]. This
scheme offers an unambiguous, but not unique
representation.
In previous works an extension of the classical
Octrees was proposed by means of the inclusion of
information of the boundary of the solid not only in
the terminal nodes, but also in the internal nodes of
the tree [Can02]. In this way, we avoid traversing the
tree to the lowest level to accede to that information
and we are able to accelerate basic operations on the
model.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Journal of WSCG, Vol.11, No.1, ISSN 1213-6972
WSCG’2003, February 3-7, 2003, Plzen, Czech Republic.
Copyright UNION Agency – Science Press

In this work we present an improvement of this
scheme that allows us to represent any polyhedral
object exactly. We also present its use for
progressive transmission of the represented solid. In
the following section the general statement of the
scheme is presented. In section 3 we describe the
visualization process of a model in the proposed
scheme. In section 4 we describe the progressive
transmission of solids using the proposed scheme.

2. SP-OCTREE
In classical Octrees the internal nodes are those that
are not homogeneous with respect to the
classification criteria. So, in these nodes the only
information appearing is the references to their
children.
To improve the classical Octrees, hierarchic schemes
have been proposed that allow us to obtain an exact
representation of polyhedral objects by means of the
inclusion of new types of terminal nodes that contain
part of the surface of the object, obtaining thus a
more compact representation [Bru85] [Bru90]
[Car85].

These extensions include information of the solid
boundary in terminal nodes. So, the same boundary
plane can appear in several neighbouring terminal
nodes that share the boundary faces.
The idea of the proposed scheme, SP-Octrees
[Can02] (Space Partition Octrees), is based on the
inclusion of boundary information in internal nodes
that partially defines the object represented in each
node of that level. Thus, the information of the
boundary faces appears in the upper levels of the tree
and it is not necessary to repeat the information in
neighbouring nodes that share a face.
When a node is completely out or in of the
represented solid we classify it as WHITE or
BLACK (figure 1, left and centre).

When the intersection of the solid and the voxel is
convex, we use a CONVEX node. Formally, a
CONVEX node is the intersection of the half-spaces
defined by the planes Pi included in it with its
bounding box (figure 1, right).

When the intersection of the voxel and the solid has
one concavity we use a CONCAVE node. Formally,
a CONCAVE node is the difference of the bounding
box of the node with the intersection of the
complement of the half-spaces included in it (fig. 2).

When concavities and convexities exist at the same
voxel, we classify the node as GREY, dividing it in
eight equals octants, but maintaining in the node the
information of the planes that are in the convex hull
of the part of the solid in the node. Thus, in the
children we only need to represent the boundary
planes that are not in that convex hull and which
form the existing concavities.
Thus, the solid represented by a GREY node will be
the union of the solid represented by each child, but
restricted to the convex hull represented in the node.

But with this criteria, if only one vertex of the
represented solid exists in the voxel and concave ec

i
and convex ex

i edges converge in it (figure 4), we
always will have a GREY node although we descend
in the tree. Therefore, in order to represent this
polyhedral exactly, we needed to include a new type
of terminal node.

Figure 3. GREY node and its tree.

2

1

5

7

4

6

3

Subdivision P2
P4

P0

P5

P6

P7

P1

P3

P0 P1 P2 P3 P4 P5

P6 P7 P6 P7
* * * * * * * *

* restricted to the intersection of CONCAVE node the half-spaces in father node.

Figure 2. CONCAVE node

P0 P1

P1

P0

Figure 1. WHITE, BLACK and CONVEX nodes

P0

P1

Figure 4. VERTEX nodes

Image 1. Bunny head model: adaptative
visualization by levels

In these cases we classified the node as VERTEX,
storing information on what concave and convex
edges appear between the existing planes in the node.
So, we know the boolean operations to be made with
the corresponding half spaces.

Any node is bounded by the planes that are included
in any of its ascendant nodes. The BLACK nodes can
be clipped by the planes in their ancestors. The
WHITE nodes have an empty set of planes.
For VERTEX nodes, we treat separately the planes
that share concave edges from those that share
convex ones. The process itself is similar to the one
followed for CONVEX and CONCAVES nodes.
An important aspect of the proposed scheme is that
the geometry of the represented object is not stored
explicitly, which enables the representation obtained
to be compact and reduces storage requirements.

3. ADAPTATIVE VISUALIZATION
One of the advantages of the classical Octrees is the
inherent arrangement in the scheme, which facilitates
the visualization process defining the order of
visualization of the nodes. In our case we continue
maintaining that arrangement.
In order to visualise an object represented by means
of the proposed scheme, we traverse the tree level by
level, drawing for each node the intersection of the
planes that appear in it with its surrounding box and
with the planes that appear in its ancestors. In this
way, as we have information of the boundary of the
object in the upper nodes, the higher levels of the
tree allow us to obtain quickly the convex part of the
boundary of the object.
To draw the object faces it is necessary to trim the
planes in one node against those in its descendants.
This can be done while drawing is carried out or we
can modify the data structure to store also the
geometry on the solid faces in each node of the tree.
This can be easily obtained using a secondary B-Rep
scheme to accelerate the process.

This mechanism allows us to make an adaptative
visualization according to the level of the tree that we
represent.
As we maintain boundary information of the solid in
the internal nodes of the tree (that it is part of the
convex-hull of the represented solid in each node),
we have an approximated representation of the
modelled solid in each level of the tree.
The quality of the approximation improves as we are
descending in the tree until arriving at the leaf nodes,
where we have the exact representation of the solid.

Image 2. Mechanical piece: visualization in
each step of transmission

In image 1 we have the visualization obtained for
each level in the representation of a bunny head. The
first image is the original solid (B-rep), and from the
left to the right and from top to down we have the
representation of each level. Faces color indicate the
type of the node containing the face. Color grey
shows planes in GREY nodes, colors green and blue
show CONVEX and CONCAVE nodes respectively,
and colors yellow and red show planes stored in
upper levels of the tree but displayed in CONCAVE
and CONVEX nodes respectively.
In this example we can see how the zones of the
boundary that need a greater division in the model
are those in which a greater concentration of concave
edges exists.

4. PROGRESSIVE TRANSMISSION
Based in the previous visualization process, we can
use this structure to make a progressive transmission
of the tree level by level, so that the receiver of the
model can visualize it and operate with it from the
beginning of the transmission, without having to
receive the complete model.
For each level, we transmit the nodes of the Octree
that represent the model and the information of the
boundary planes that appear in each node of that
level (the equation of the planes).
The next algorithm shows the global process of
transmission of the model:

Send (Level, BoundingBox)Send (Level, BoundingBox)Send (Level, BoundingBox)Send (Level, BoundingBox)
Send (Planes in RootNodeSend (Planes in RootNodeSend (Planes in RootNodeSend (Planes in RootNode, NodeType, NodeType, NodeType, NodeType))))

If (RootNode=GREYNODE)If (RootNode=GREYNODE)If (RootNode=GREYNODE)If (RootNode=GREYNODE)

Next_Level<Next_Level<Next_Level<Next_Level<----RootNodeRootNodeRootNodeRootNode
ffffor each Levelor each Levelor each Levelor each Level
{{{{

 Actual_Le Actual_Le Actual_Le Actual_Level = Next_Levelvel = Next_Levelvel = Next_Levelvel = Next_Level
 Empty (Next_Level) Empty (Next_Level) Empty (Next_Level) Empty (Next_Level)

 while (Actualwhile (Actualwhile (Actualwhile (Actual____Level ¡= EMPTY) Level ¡= EMPTY) Level ¡= EMPTY) Level ¡= EMPTY)
 {{{{
 Node< Node< Node< Node<----Get(Actual_Level)Get(Actual_Level)Get(Actual_Level)Get(Actual_Level)
 for each Child of Node for each Child of Node for each Child of Node for each Child of Node
 {{{{
 Send (Planes in ChildSend (Planes in ChildSend (Planes in ChildSend (Planes in Child, NodeType, NodeType, NodeType, NodeType))))
 if (Child=NODEGREY)if (Child=NODEGREY)if (Child=NODEGREY)if (Child=NODEGREY)
 NextNextNextNext_Level<_Level<_Level<_Level<----ChildChildChildChild
 } } } }
 } } } }

}}}}

Next_LevelNext_LevelNext_LevelNext_Level is a list that stores the GREY nodes
sended in the actual level whose children must be
send in the next level.

GetGetGetGet function obtain a pending GREY node in the
actual level that has been just transmitted to send the
information of its children.
EmptyEmptyEmptyEmpty function initializes the list of pending GREY
nodes to send in the next level.
The reception process is similar to this one, building
the corresponding data structure for every received
node.
In image 2 we can see a solid represented by a tree of
7 levels, for which at the first level we need only to
transmit the information of 13 planes of the 43 which
form the boundary of the solid. In level 1, the
information of 2 new planes will be transmitted plus
the nodes of the tree of that level.

Image 3. Bunny model: adaptative
visualization by levels

The next table show the information transmitted at
each level and the total size transmitted at this level
for the mechanical piece.

Level Transmitted size Global size
0 724 724
1 104 828
2 572 900
3 636 1536
4 884 2420
5 1512 3932
6 596 4528

Table 1. Mechanical piece transmission (bytes)

In image 3 we can see a model of a bunny
represented using a tree of 11 levels, we have an
approximated representation of the modelled solid in
each level of the tree.
The following table show the information transmitted
at each level and the total size transmitted at this
level for the bunny model.

Level Transmitted size Global size
0 37194 37194
1 201 37395
2 507 37902
3 2827 40729
4 14038 54767
5 28196 82963
6 25819 108782
7 5804 124586
8 11455 136041
9 11498 147539

10 10613 158152

Table 2. Bunny model transmission (bytes)

We must notice that at no moment we need to
transmit geometric information of the polygons that
form that boundary, but only the equation of the
planes. In this sense, we need a decoding postprocess
to reconstruct the geometry from the set of planes
transmitted in each level.
As we can see in the examples, in the internal levels
of the tree, where it only appears part of the
information of the solid boundary, we have
represented the solid with different levels of detail.
This allows us to accelerate operations on the model
(for example point's classification or intersection test
with a ray).
Finally, another advantage is that this approach can
be applied not only with triangular meshes, but also
with any polyhedral mesh.

5. CONCLUSIONS
In this work, the use for progressive transmission of
a new solid representation scheme has been
presented. This scheme is based on an extension of
the concept of classical Octree, introducing part of
the boundary information of the represented object,

both in the terminal and in the internal nodes. The
proposed method allows an exact representation of
polyhedral objects.
Its use in progressive transmission allows the
receiver of the model to visualize it and operate with
it from the beginning of the transmission, without
having to receive the complete model.
The number of levels that appear in the tree depends
only on the concave edges that appear in the solid,
whereas in other extensions of classical Octrees the
number of nodes depends on the number of vertex
and edges of it.
In addition, we continue maintaining the properties
of arrangement of the classical Octrees, and, due to
the own orientation of the planes inserted in each
node, it is easy to make the interrogation and
visualization of the model.
We are making a detailed comparative study with
other representation schemes, in space, computation
time and operations complexity. Also, we are
studying the possibility of using the scheme for
objects whose boundary is not plane.
Finally, we are studying the utility of the scheme as
an indexing method to accelerate the calculations and
the operations in B-Rep representation scheme.

6. ACKNOWLEDGMENTS
This work has been supported by the "Ministerio de
Ciencia y Tecnología" (Spain) and by FEDER under
contract TIC2001-2099-C03-02.

7. REFERENCES
[Bru85] Brunet, P.; Navazo, I.: Geometric modelling

using exact octree representation of polyhedral
objects. Eurographics’85, (1985).

[Bru90] Brunet, P.; Navazo, I.: Solid Representation
and Operation Using Extended Octrees. ACM
Transactions on Graphics, Vol. 9, nº 2. (1990).

[Can02] Cano, P.; Torres, J.C.: Representation of
Polyhedral Objects using SP-Octrees. Journal of
WSCG, vol. 10 (1) pp: 95-101. (2002).

[Car85] Carlbom, I.; Chakravarty, I.; Vanderschel,
D.A.: A hierarchical data structure for
representing the spatial decomposition of 3D
objects. IEEE Computer Graphics & Applications
5,4, pp:24-31 (1985).

[Fuc80] Fuchs, H.; Kedem, Z.; Naylor, B.: On
Visible Surface Generation by a Priori Tree
Structures. ACM Computer Graphics, 14(3),
(1980).

[Fuj84] Fujimura, K.; Yamaguchi, K.; Kunii, T.:
Octree-related data structures and algorithms.
IEEE Computer Graphics and Applications, pp:
53-59, (1984).

[Gar99] Garland, M.: Multiresolution Modelling:
Survey & Future Opportunities.
EUROGRAPHICS’99 State of the Art Report.
EG, (1999).

[Gar82] Gargantini, I.: Linear octrees for fast
processing of three-dimensional objects.
Computer Graphics and Image Processing, 20,
(1982).

[Mea82] Meagher, D.: Geometric modelling using
octree encoding. Computer Graphics and Image
Processing, 19(2):129-147, (1982).

 [Tau99] Taubin, G.: 3D Geometric Compression
and Progressive Transmission.
EUROGRAPHICS’99 State of the Art Report.
EG, (1999).

[Thi87] Thibault, W.C.; Naylor, B.: Set Operations
on Polyhedra Using Binary Space Partitioning
Trees. ACM Computer Graphics, 21(4), pp: 153-
162, (1987).

