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ABSTRACT 
In the last years several 3D model compression methods for multiresolution applications have been presented, 
most of them using 3D meshes.  Octrees are a natural multiresolution representation scheme, although it is 
approximate. Extensions of classical Octrees that represent polyhedral object exactly have been proposed. One 
of them are the SP-Octrees, that incorporates boundary information of the represented object in the internal 
nodes of the octal tree, and  include new terminal node types that contain boundary information of the solid. 
This new scheme can represent polyhedral objects exactly with a smaller storage requirement, and can 
accelerate basic operations with the model. In this work we present the use of this new representation scheme 
for progressive transmission of polyhedral solids. 
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1. INTRODUCTION 
One of the consequences of the increase on 
processing and visualization capacity of the present 
systems is the increase of the complexity of the 
geometric models that we use. In addition, the 
development of the distributed systems allows us to 
transfer those models through networks, making it 
necessary to increase the speed of transmission and 
to reduce the storage cost. 
Multiresolution models based on triangle meshes 
[Gar99][Tau99] can solve the model transmission 
problem, building different levels of detail and 
transferring in each case the desired level.  

 

Some of the schemes used to represent solids and 
volumes are based on the decomposition of the 
space, and use hierarchical structures to store the 
model.  
An Octree is the representation of a model by means 
of an octal tree structure obtained by recursive 
divisions of the bounding box of the solid to codify 
[Mea82] [Fuj84] [Gar82]. The Octrees representation 
allows us to perform boolean operations and 
properties calculation in a simple way, but it is an 
approximated representation of the solid.  
The Binary Space Partition trees (BSP) divide 
recursively the space using a plane in two separated 
half-spaces. Initially created to improve the hidden 
parts removal process [Fuc80], it has also been used 
to represent polyhedral objects exactly [Thi87]. This 
scheme offers an unambiguous, but not unique 
representation. 
In previous works an extension of the classical 
Octrees was proposed by means of the inclusion of 
information of the boundary of the solid not only in 
the terminal nodes, but also in the internal nodes of 
the tree [Can02]. In this way, we avoid traversing the 
tree to the lowest level to accede to that information 
and we are able to accelerate basic operations on the 
model. 
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In this work we present an improvement of this 
scheme that allows us to represent any polyhedral 
object exactly. We also present its use for 
progressive transmission of the represented solid. In 
the following section the general statement of the 
scheme is presented. In section 3 we describe the 
visualization process of a model in the proposed 
scheme. In section 4 we describe the progressive 
transmission of solids using the proposed scheme. 
 

2. SP-OCTREE 
In classical Octrees the internal nodes are those that 
are not homogeneous with respect to the 
classification criteria. So, in these nodes the only 
information appearing is the references to their 
children. 
To improve the classical Octrees, hierarchic schemes 
have been proposed that allow us to obtain an exact 
representation of polyhedral objects by means of the 
inclusion of new types of terminal nodes that contain 
part of the surface of the object, obtaining thus a 
more compact representation [Bru85] [Bru90] 
[Car85]. 

These extensions include information of the solid 
boundary in terminal nodes. So, the same boundary 
plane can appear in several neighbouring terminal 
nodes that share the boundary faces.  
The idea of the proposed scheme, SP-Octrees 
[Can02] (Space Partition Octrees), is based on the 
inclusion of boundary information in internal nodes 
that partially defines the object represented in each 
node of that level. Thus, the information of the 
boundary faces appears in the upper levels of the tree 
and it is not necessary to repeat the information in 
neighbouring nodes that share a face.  
When a node is completely out or in of the 
represented solid we classify it as WHITE or 
BLACK (figure 1, left and centre).  

When the intersection of the solid and the voxel is 
convex, we use a CONVEX node. Formally, a 
CONVEX node is the intersection of the half-spaces 
defined by the planes Pi included in it with its 
bounding box (figure 1, right).  

When the intersection of the voxel and the solid has 
one concavity we use a CONCAVE node. Formally, 
a CONCAVE node is the difference of the bounding 
box of the node with the intersection of the 
complement of the half-spaces included in it (fig. 2). 

When concavities and convexities exist at the same 
voxel, we classify the node as GREY, dividing it in 
eight equals octants, but maintaining in the node the 
information of the planes that are in the convex hull 
of the part of the solid in the node. Thus, in the 
children we only need to represent the boundary 
planes that are not in that convex hull and which 
form the existing concavities.  
Thus, the solid represented by a GREY node will be 
the union of the solid represented by each child, but 
restricted to the convex hull represented in the node. 
  

But with this criteria, if only one vertex of the 
represented solid exists in the voxel and concave ec

i 
and convex ex

i edges converge in it (figure 4), we 
always will have a GREY node although we descend 
in the tree. Therefore, in order to represent this 
polyhedral exactly, we needed to include a new type 
of terminal node. 

Figure 3. GREY node and its tree. 

2 

1 

5 

7 

4 

6 

3 

Subdivision P2 
P4

P0

P5

P6

P7

P1 

P3

P0 P1 P2 P3 P4 P5 

P6 P7 P6 P7
* * * * * * * *

* restricted to the intersection of CONCAVE node  the half-spaces in father node.

Figure 2. CONCAVE node 

P0 P1

P1

P0

Figure 1. WHITE, BLACK and CONVEX nodes

P0 

P1



Figure 4. VERTEX nodes 

Image 1. Bunny head model: adaptative 
visualization by levels 

In these cases we classified the node as VERTEX, 
storing information on what concave and convex 
edges appear between the existing planes in the node. 
So, we know the boolean operations to be made with 
the corresponding half spaces. 

Any node is bounded by the planes that are included 
in any of its ascendant nodes. The BLACK nodes can 
be clipped by the planes in their ancestors. The 
WHITE nodes have an empty set of planes.  
For VERTEX nodes, we treat separately the planes 
that share concave edges from those that share 
convex ones. The process itself is similar to the one 
followed for CONVEX and CONCAVES nodes. 
An important aspect of the proposed scheme is that 
the geometry of the represented object is not stored 
explicitly, which enables the representation obtained 
to be compact and reduces storage requirements. 
 

3. ADAPTATIVE VISUALIZATION 
One of the advantages of the classical Octrees is the 
inherent arrangement in the scheme, which facilitates 
the visualization process defining the order of 
visualization of the nodes. In our case we continue 
maintaining that arrangement. 
In order to visualise an object represented by means 
of the proposed scheme, we traverse the tree level by 
level, drawing for each node the intersection of the 
planes that appear in it with its surrounding box and 
with the planes that appear in its ancestors. In this 
way, as we have information of the boundary of the 
object in the upper nodes, the higher levels of the 
tree allow us to obtain quickly the convex part of the 
boundary of the object.  
To draw the object faces it is necessary to trim the 
planes in one node against those in its descendants. 
This can be done while drawing is carried out or we 
can modify the data structure to store also the 
geometry on the solid faces in each node of the tree. 
This can be easily obtained using a secondary B-Rep 
scheme to accelerate the process.  

This mechanism allows us to make an adaptative 
visualization according to the level of the tree that we 
represent.   
As we maintain boundary information of the solid in 
the internal nodes of the tree (that it is part of the 
convex-hull of the represented solid in each node), 
we have an approximated representation of the 
modelled solid in each level of the tree. 
The quality of the approximation improves as we are 
descending in the tree until arriving at the leaf nodes, 
where we have the exact representation of the solid. 



Image 2. Mechanical piece: visualization in 
each step of transmission 

In image 1 we have the visualization obtained for 
each level in the representation of a bunny head. The 
first image is the original solid (B-rep), and from the 
left to the right and from top to down we have the 
representation of each level. Faces color indicate the 
type of the node containing the face. Color grey 
shows planes in GREY nodes, colors green and blue 
show CONVEX and CONCAVE nodes respectively, 
and colors yellow and red show planes stored in 
upper levels of the tree but displayed in CONCAVE 
and CONVEX nodes respectively. 
In this example we can see how the zones of the 
boundary that need a greater division in the model 
are those in which a greater concentration of concave 
edges exists.  
 

4. PROGRESSIVE TRANSMISSION 
Based in the previous visualization process, we can 
use this structure to make a progressive transmission 
of the tree level by level, so that the receiver of the 
model can visualize it and operate with it from the 
beginning of the transmission, without having to 
receive the complete model. 
For each level, we transmit the nodes of the Octree 
that represent the model and the information of the 
boundary planes that appear in each node of that 
level (the equation of the planes). 
The next algorithm shows the global process of 
transmission of the model: 
 

Send (Level, BoundingBox)Send (Level, BoundingBox)Send (Level, BoundingBox)Send (Level, BoundingBox)    
Send (Planes in RootNodeSend (Planes in RootNodeSend (Planes in RootNodeSend (Planes in RootNode, NodeType, NodeType, NodeType, NodeType))))    
    
If (RootNode=GREYNODE)If (RootNode=GREYNODE)If (RootNode=GREYNODE)If (RootNode=GREYNODE)    

Next_Level<Next_Level<Next_Level<Next_Level<----RootNodeRootNodeRootNodeRootNode    
ffffor each Levelor each Levelor each Levelor each Level        
{{{{    

   Actual_Le   Actual_Le   Actual_Le   Actual_Level = Next_Levelvel = Next_Levelvel = Next_Levelvel = Next_Level    
   Empty (Next_Level)   Empty (Next_Level)   Empty (Next_Level)   Empty (Next_Level)    
                
            while (Actualwhile (Actualwhile (Actualwhile (Actual____Level ¡= EMPTY) Level ¡= EMPTY) Level ¡= EMPTY) Level ¡= EMPTY)     
            {{{{    
        Node<        Node<        Node<        Node<----Get(Actual_Level)Get(Actual_Level)Get(Actual_Level)Get(Actual_Level)    
        for each Child of Node         for each Child of Node         for each Child of Node         for each Child of Node     
                            {{{{    
                                                    Send (Planes in ChildSend (Planes in ChildSend (Planes in ChildSend (Planes in Child, NodeType, NodeType, NodeType, NodeType))))    
                                                    if (Child=NODEGREY)if (Child=NODEGREY)if (Child=NODEGREY)if (Child=NODEGREY)    
                                                                        NextNextNextNext_Level<_Level<_Level<_Level<----ChildChildChildChild    
        }        }        }        }    
            }   }   }   }       

}}}}    
 

Next_LevelNext_LevelNext_LevelNext_Level is a list that stores the GREY nodes 
sended in the actual level whose children must be 
send in the next level. 

GetGetGetGet function obtain a pending GREY node in the 
actual level that has been just transmitted to send the 
information of its children. 
EmptyEmptyEmptyEmpty function initializes the list of pending GREY 
nodes to send in the next level.  
The reception process is similar to this one, building 
the corresponding data structure for every received 
node. 
In image 2 we can see a solid represented by a tree of 
7 levels, for which at the first level we need only to 
transmit the information of 13 planes of the 43 which 
form the boundary of the solid. In level 1, the 
information of 2 new planes will be transmitted plus 
the nodes of the tree of that level.  



Image 3. Bunny  model: adaptative 
visualization by levels 

The next table show the information transmitted at 
each level and the total size transmitted at this level 
for the mechanical piece. 
 

Level Transmitted size Global size 
0 724 724
1 104 828
2 572 900
3 636 1536
4 884 2420
5 1512 3932
6 596 4528

 

Table 1. Mechanical piece transmission (bytes) 
 
In image 3 we can see a model of a bunny 
represented using a tree of 11 levels, we have an 
approximated representation of the modelled solid in 
each level of the tree. 
The following table show the information transmitted 
at each level and the total size transmitted at this 
level for the bunny model. 
 

Level Transmitted size  Global size 
0 37194 37194
1 201 37395
2 507 37902
3 2827 40729
4 14038 54767
5 28196 82963
6 25819 108782
7 5804 124586
8 11455 136041
9 11498 147539

10 10613 158152
 

Table 2. Bunny model transmission (bytes) 
 
We must notice that at no moment we need to 
transmit geometric information of the polygons that 
form that boundary, but only the equation of the 
planes. In this sense, we need a decoding postprocess 
to reconstruct the geometry from the set of planes 
transmitted in each level.  
As we can see in the examples, in the internal levels 
of the tree, where it only appears part of the 
information of the solid boundary, we have 
represented the solid with different levels of detail. 
This allows us to accelerate operations on the model 
(for example point's classification or intersection test 
with a ray). 
Finally, another advantage is that this approach can 
be applied not only with triangular meshes, but also 
with any polyhedral mesh. 

5. CONCLUSIONS  
In this work, the use for progressive transmission of 
a new solid representation scheme has been 
presented. This scheme is based on an extension of 
the concept of classical Octree, introducing part of 
the boundary information of the represented object, 



both in the terminal and in the internal nodes. The 
proposed method allows an exact representation of 
polyhedral objects. 
Its use in progressive transmission allows the 
receiver of the model to visualize it and operate with 
it from the beginning of the transmission, without 
having to receive the complete model.  
The number of levels that appear in the tree depends 
only on the concave edges that appear in the solid, 
whereas in other extensions of classical Octrees the 
number of nodes depends on the number of vertex 
and edges of it. 
In addition, we continue maintaining the properties 
of arrangement of the classical Octrees, and, due to 
the own orientation of the planes inserted in each 
node, it is easy to make the interrogation and 
visualization of the model. 
We are making a detailed comparative study with 
other representation schemes, in space, computation 
time and operations complexity. Also, we are 
studying the possibility of using the scheme for 
objects whose boundary is not plane. 
Finally, we are studying the utility of the scheme as 
an indexing method to accelerate the calculations and 
the operations in B-Rep representation scheme. 
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