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ABSTRACT 
Advanced 3D scanning technologies enable us to obtain dense and accurate surface sample point sets. From 
sufficiently dense sample point set, Crust algorithm, which is based on Voronoi diagram and its dual Delaunay 
triangulation, can reconstruct a triangle mesh that is topologically valid and convergent to the original surface. 
However, the algorithm is restricted in the practical application because of its long running time. Based on the 
fact that we do not need dense sample in featureless area for successful reconstruction, we propose a non-
uniformly sampling method to resample the input data set according to the local feature size before 
reconstruction. In this way, we increase the speed of reconstruction without losing the details we need. 

Keywords 
surface reconstruction, Delaunay triangulation, geometric modeling. 
 

1. INTRODUCTION 
With the development of 3D scanning 

technologies, we are now able to obtain dense, 
accurate samples of real objects’ surface, and 
modeling complex objects from samples becomes a 
significant recent trend in geometric modeling 
[Rusink00]. As the sample points only have the 
information of their 3D position, surface 
reconstruction, which is to build a piecewise linear 
surface approximating the original surface, is one 
essential problem of this modeling method.  

2. OVERVIEW 
In recent years, people have proposed a lot of 

algorithms for the problem. These algorithms can be 
roughly divided into two completely different kinds: 
approximation and interpolation. The first kind of 
approach generally estimates an approximating 
surface that passes close by the original sample 
points and its typical work is the algorithm presented 
by Hoppe et al [Hoppe96]. The second kind of 
approach normally uses Voronoi diagram and 
Delaunay triangulation to find the topological 
connection of the sample points. Different to the 
result of the first kind, the surface reconstructed by 
the second kind of approach passes through the 
original sample points. The α-shape of Edelsbrunner 
et al [Edels94], the crust of Amenta and Bern 
[Ament99][Ament98a][Ament98b] are both included 
in the second kind.  

Compare to other algorithms, the Crust algorithm 
is not only simple and direct in theory but also 

faithful to the original surface. In view of that the 
first kind of algorithms approximate rather than 
interpolate the original surface, they potentially do 
some low-pass filtering of the data. As we are 
considering the general surface reconstruction 
problem here, we actually use the same filter to get 
rid of types of noise. Apparently, it can’t have good 
result to every input data. So, the best way is to filter 
noise before reconstruction. That is to say we don’t 
consider noises in the input data. In this case, the 
result of the former kind algorithm is certainly more 
faithful than that of the latter kind. 

Unlike α-shape algorithm, Crust doesn’t need to 
choose any parameter, which is the major drawback 
of α-shape method. When the sample is sufficiently 
dense, it can automatically reconstruct a triangle 
mesh that is topologically valid and convergent to the 
original surface.  

However, Crust algorithm is too slow for many 
practical applications with current computing 
resource. Unless we can improve its speed, it can't be 
used it in large data set. In this paper, we present a 
non-uniformly sampling method to decrease the 
complexity of reconstruction. The down-sampled 
point set is dense in detailed areas and sparse in 
featureless areas. The reconstructed surface has the 
same topology of the original surface, and the details 
are maintained well.  

3. DEFINITIONS 
Our approach is built on the Crust algorithm 

introduced in [Ament99][Ament98a][Ament98b].  



This algorithm is based on the following definitions.  
Definition 1. The medial axis of a surface F is the 
closure of all centers of the spheres touching the 
surface in more than one point. 
Definition 2. To any point p on F, its local feature 
size )(pLFS is the Euclidean distance from p to the 
nearest point on medial axis.  
Definition 3. Let S be a sample set of F, if the 
Euclidean distance from any point p on F to the 
nearest sample point is within )( pLFSr ⋅ , then S is 
an r-sample of F. 
Definition 4. The positive pole of a sample s is the 
farthest vertex in Voronoi cell Vs, and its negative 
pole is the farthest vertex of Vs on the other side of 
the surface. 
Definition 5. Let S be a sufficiently dense sample 
point set from a surface F, the Crust of S is 
composed by the triangles one of whose 
circumsphere is empty both of the samples and the 
medial axis. 

It has been observed that an r-sample with 5.0=r  
is generally dense enough for Crust to correctly 
reconstruct the surface [Ament99]. 

4. ALGORITHM 
We assume that the input point set S is a 

sufficiently dense sample of a smooth surface. 
In Crust algorithm, we first compute the Voronoi 

diagram of the sample and select the poles in the 
Voronoi vertices to estimate the medial axis, then we 
compute the Delaunay triangulation of the combined 
point set of the samples and poles, in the end we 
choose the triangles whose vertices are all samples. 
From the process of the algorithm, we can see that 
the most time-wasting step of Crust algorithm is the 
computation of 3D Voronoi Diagram and Delaunay 
triangulation. Notice that the number of sample and 
poles is at most 3n, the time complexity of the 
algorithm is about )9()( 22 nOnO + , where n is the 
number of input points. Therefore, there are two 
ways to reduce the complexity: improve the 
efficiency of the computation of 3D Voronoi 
Diagram, or decrease the number of points. Voronoi 
diagram and its dual Delaunay triangulation have 
been studied widely since it was presented in 1936. It 
is difficult to improve efficiency of algorithm in 
advance. Thus we try the second way.  

Notice that the local feature size is big in 
featureless area and small in detailed area, Crust does 
not require dense sample everywhere. However, as 
the surface is unknown, sample device can’t know 
the local feature size of the area it is sampling, it is 
almost impossible to realize r-sample. If we do it 
manually, on the one hand the sampling process will 
be quite troublesome, on the other hand people can 
only evaluate how detail the surface is so that the 

sample can’t be very well coincident to the r-
sample’s requirement. In order to maintain the detail 
information in the reconstructed model, people 
usually desire the sample as dense as possible. The 
result is that the input point set is often with a great 
deal of points that are not necessary to correct 
reconstruction. If we discard these points, we can 
still correctly reconstruct the surface without losing 
details. In addition, the running time of 
reconstruction will be reduced. 

5.1. Local feature size  
As the sample is assumed dense enough, the poles 

are approximate to the medial axis. According to the 
definition of pole, the nearest pole of a sample s is its 
negative pole. Thus we can use the distance between 
them to approximate the sample’s local feature size. 

5.2. Non-uniformly down sampling 
If S is an r-sample of F and p is a point on F, then 

the distance between p and its nearest sample point s 
is within )( pLFSr ⋅ . Since every sample is also a 
point on F, the distance between s and s1 is no more 
than )(sLFSr ⋅ , where s1 is the nearest point of s in 
S.  
As show in figure 1, s is a point in S, v is the 
negative pole of s, s1 is another point in S that 

)(),( 1 sLFSrssd s ⋅= . Let s be the center and 
)(sLFSrs ⋅ be the radius, we have the ball B1. Let v 

be the center, )(sLFS be the radius, we have another 
ball B2. In accordance with the definition of local 
feature size, s1 is outside ball B2. Passing through s 
we make a plane L tangent to F. Because of the 
assumption that the surface is smooth, s1 and B2 must 
be located the same side of L. From the above 
discussion, we can see that F must be in the shaded 
region of figure 1 if it is in B1. 

 
Figure1.  If the surface is in the ball B1, it must be 

in the shaded region. 
There are two factors influencing local feature size 

– the curvature and proximity of the other parts of 
the surface[Ament98b]. However, the second factor 
can’t affect the local feature size in a small region, so 
we need not take into account the factor in a local 
area. That is to say, the local feature size is inversely 



proportional to the curvature in the shaded region 
when r is small enough.  

Let p be a point on the surface in the shaded 
region, and p' is the intersection of the line pv  and 
B2. As we all known, the more flat the surface is, the 
lower the curvature is. It is apparent that the 
curvature of point p is smaller than that of point p'. 
Since point p' and s are both on the ball B2, their 
curvatures are the same. Thus, we have 

)()( sLFSpLFS ≥ . In addition, on account of that p 
is in the shaded region, we have ),(),( 1ssdpsd ≤ . 
As a result, we get )(),( pLFSrpsd s ⋅≤ . As S 
satisfies the requirement for r-sample, rs is less than r. 
So, we have )(),( pLFSrpsd ⋅≤ .  

Then, we can make the following conclusion:  if 
we can find another point Ss ∈′  that satisfied 
equation )(),( sLFSrssd ⋅≤′ , S is an r-sample of a 
surface F. 

Therefore, if we delete all the points in the shaded 
area excepting the farthest one and s itself, the down-
sampled point set S ′  is still an r-sample of F In 
[Ament99] it is written that, an r-sample point set is 
sufficiently dense for correctly reconstruction if r is 
no more than 0.5. Thus, r should be less than 0.5 here. 
In fact, we obtain good result when 5.0=r . 

Down-sampling: 
1 Initial every point in S as unmarked 
2 For (i=0; i<n; i++){ 
3   if si is unmarked { 
4     0max =d ; 0=m ; 
5     for (j=0; j<n; j++) { 
6       if sj is unmarked { 
7         if )(),( iji sLFSrssd ⋅< { 

8           marked sj ; 
9           if max),( dssd ji >  update maxd  and m 

10 }} 
11 unmarked sm;} 
12 select all the unmarked points as the down-

sampled point set 

5. SURFACE RECONSTRUCTION 
In view of the fact that the poles of denser sample 

approximate the medial axis better than that of 
sparser one, we use the poles evaluated in the 
previous steps. Just like Crust algorithm, we combine 
the down-sampled point set and its corresponding 
poles to a new point set. The following steps are the 
same to Crust: we compute Delaunay triangulation 
for the new point set and select the triangles in which 
the three vertices are all sample points as the 
simplices of the reconstructed surface. 

5.1. Experimental Result 
We experiment with the two data sets ---- 

Mannequin and Stanford Bunny. Here, Voronoi 
diagram and Delaunay triangulation are implemented 
by the free qhull code [Qhull99] from Geometry 
center, and the parameter r is chosen as 0.5. The 
result is show in figure 2 and figure 3. 

5.2. The reduction of data 
Just as our expectation, the density of down 

sampled point set is varied according to the surface’s 
detail. The samples are still very dense in the region 
like the eyes, mouth and ears of mannequin. But in 
the featureless region, such as the jaw and forehead, 
they are very sparse compare with the original 
dataset. In the example of Stanford bunny the points 
are reduced relatively uniformly. It is because that 
the surface of bunny does not change very quickly.  

Form the result we also can see that the reduction 
of data is varied with the different dataset. It is relied 
on the density of the input points: the denser the 
input data set is, the more points we can delete. In the 
example of Mannequin, the size of new data set is 
reduced to about 1/3, however it is about 1/4 in 
Bunny.  

5.3. Complexity 
Now let us compare the complexity of the 

algorithm. The running time is dominated by the 
following steps: computing the Voronoi diagram of 
the input point set, down sampling, computing the 
Delaunay triangulation of the down-sampled point 
set. The core operation of down sampling is the 
computation of two points’ distance, and the amount 
of the operation is within newnn ∗− )1( , so the 

asymptotic complexity of down sampling is )( 2nO . 
Therefore, the total complexity of our approach is 
about )9()()( 222

newnOnOnO ++ . Comparing with 
using the input dataset directly, the complexity is 
decreased about )9()()9( 222

newnOnOnO −− , here 
nnnew 4

1≈  in the Bunny, nnnew 3
1≈  in Mannequin. 

In these two examples, the computation is both 
decreased more than 50%.  

5.4. Smooth rendering 
Since the points are sparse in featureless region, 

the triangles approximating the surface are 
comparatively large there. That makes the 
reconstructed surface look very coarse. As we know 
that the result of Gouraud shading look much 
smoother than that of flat shading. We try Gouraud 
shading to solve the problem. It is a very simple and 
effective method. We first calculate average normal 
of all the triangles sharing one vertex, following that 



we use the value as the normal of that vertex. Next 
we bi-linearly interpolate the normal of the vertices 
as the normal of the surface inside the triangle 
[Gouraud71]. From figure 2 (e) and figure 3 (e), we 
can see that the result of that method is satisfying --- 
the reconstructed surfaces are acceptable now. 

6. CONCLUSION 
We have presented a non-uniform down sampling 

method for dense and unorganized point set before 
surface reconstruction according to the local feature 
size. Guaranteeing the topological shape, we use a 
smaller point set to reconstruct the original surface. 
As the result, the speed of reconstruction is improved. 
This method also can be applied in mesh 
simplification. In fact we can use r-sample to define 
the level of detail for mesh. With the increasing of r, 
the mesh’s level of detail is decreasing. So we can 
realize mesh simplification by using this down-
sampling method to build an r-sample model with 
bigger r.  

As the triangles in the plat areas are relatively 
large, the whole model looks coarse. However, 
Gouraud shading can give us a tolerable visual effect 
when r is not very big. In addition, if we want a more 
elaborate visual effect, subdivision can be used to get 
smooth surface. 
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(a)           (b)   (c)                       (d)                 (e) 

Figure2: Dataset Mannequin (a) The Point cloud of original dataset. (12772 points) (b) The point cloud of 
down-sampled dataset. (4820 points) (c) The surface reconstructed from down-sampled dataset. (d) The 
surface of (c) after smoothed. (e) The surface reconstructed from original dataset.  

 
(a)             (b)     (c)         (d)   (e) 

Figure 3: Dataset Stanford bunny  (a) The Point cloud of original dataset. (35947 points) (b) The point 
cloud of down-sampled dataset. (8845 points) (c) The surface reconstructed from down-sampled dataset. 
(d) The surface of (c) after smoothed. (e) The surface reconstructed from original dataset. 


