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ABSTRACT 

In this paper we present a non-interactive method for recoloring a destination image according to the color 
scheme found in a source image. The approach is motivated by trying to invert the working process employed in 
oil painting, and results are demonstrated by application to several well-known oil paintings. The algorithm uses 
several color models, but leans most heavily on the Lαβ color space.  We first color segment each image bottom-
up by iteratively merging groups of pixels into connected regions of similar color. During color segmentation, a 
color “texture” tree is generated and associated to each region. Next, we construct classes of regions by 
compensating for color duplication and color similarity within the set of averaged color values obtained from 
regions. We extract a color palette for each image by choosing the colors of canonical region representatives 
from these classes. Once this palette is constructed for each image, any inverse map from the set of destination 
palette colors to the set of source palette colors induces a forward map from the classes of regions in the source 
image to sets of classes of regions in the destination image. For each source class in the range of the inverse map 
we transfer color from its canonical region representative to each of the associated destination regions. Color 
transfer occurs at the level of pixels, and uses the color texture trees associated to the regions. Our recoloring 
method attempts to maintain the destination image’s original value structure. This is accomplished by transferring 
only the α and β channels from the source. To make our method computationally tractable, we work within an 
image pyramid, transferring color layer by layer. 
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1. INTRODUCTION 
A painting’s palette is responsible for how color is 
selected, contrasted, harmonized and blended, and it 
exerts a powerful influence on how the viewer 
interprets a painting’s imagery. Consider the two 
Impressionist paintings at the top of Fig. 1. For Starry 
Night, Van Gogh uses stark color contrast. The cool 
saturated blues and greens of the sky and landscape 
are opposed to the warm saturated yellows and 
oranges of the moon and stars to create a visual 
intensity. Compare this with Cezanne’s Skulls, where 

the painter smoothly blends warm reds and oranges of 
low saturation with just a few cooler brown elements 
to create a quiet glow. 

  

 
Figure 1. Test images and an image recoloring. 

(Van Gogh and Cezanne from http://www.artchive.com) 
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Now, imagine being able to somehow liquefy the 
color of a painting in such a way that it could be 
poured from one painting to another thereby 
transferring the chromatic “orchestration,” i.e. the 
artistic intent, of the color scheme, from one painting 
to the other. At the bottom of Fig. 1 we see that, 
paradoxically, Starry Night’s vibrant energy might be 
imbued into the somber imagery of Skulls. 

Our goal in this paper is to investigate the 
problem of transferring the color scheme of a source 
image to a destination image and in the process learn 
more about what it means to “liquefy the color of a 
painting” and to “transfer the artistic intent of a color 
scheme.” The solution we describe is based on the 
notion that one can link an image’s color organization 
to its underlying color palette and then, by making 
relevant associations between colors in the source 
palette and the destination palette, recolor the 
destination image while preserving the artistic intent 
of the color scheme used in the source image. 
Potential applications include: altering the mood of a 
movie scene, rapidly prototyping set designs, and 
assisting in matching CG and live-action plates. 

The idea of transferring the color content from 
one image to another is not new [Rei01], but previous 
algorithms required manual selection of swatches to 
steer the algorithm. Moreover, images were carefully 
chosen so that their compositions had about the same 
color proportions so that statistical methods could be 
used to effect the color transfer. In this paper we 
attempt to overcome such limitations. Our goal is to 
fully automate the color transfer process and thus to 
consider the color transfer problem in its full 
generality.  

In developing the conceptual framework for our 
color transfer method we have tried to take into 
consideration two ideas classically trained painters 
are taught: 1) Paintings should be organized by value 
– the pattern of lights and darks. 2) To develop a 
painting on canvas, first block out broad loosely 
defined regions of color, which determine the 
structure of the image, and then later refine these 
regions by creating image detail. These ideas furnish 
two cornerstones for our design: 1) The value patterns 
of the destination image should survive color transfer 
from the source. 2) An image should be 
“deconstructed” using an image pyramid whose top 
layer or apex reveals only enough detail to determine 
a limited number of regions of color, and whose 
successively lower layers refine these regions. 

For the purposes of illustration, throughout most 
of the presentation we use the low-resolution 
(maximum dimension of 128 pixels) Starry Night and 
Skulls images of Fig. 1 as source and destination 
images. At the end of the paper we present 
recolorings of other well known paintings. 

 

2. BACKGROUND 
The notion of color transfer per se is not widespread 
in the literature, although texture transfer has received 
considerable attention [Her01]. Reinhard et al. 
[Rei01] examine color transfer with the goal of color 
correction in mind. Their method is best suited for 
working with images (or portions of images) whose 
palettes are similar. Their results are quite dramatic 
and successful. A key contribution of their paper is 
the identification of the Lαβ color space of Ruderman 
et al. [Rud01] as an ideal candidate for work in image 
recoloring. Their recoloring method is statistical in 
nature: they modify destination pixels in such a way 
that upon transforming them to their color space they 
will have the same statistical characteristics as 
similarly transformed source pixels.  

We work in four color spaces. Most of the work 
is done in Lαβ color space, which has the property 
that for a range of color images of nature scenes the 
L, α and β axes are highly perceptually decorrelated. 
The L component of the space is a reasonable 
measure of perceptual luminance while the α and β 
components measure chromatic content. We use the 
RGB color space for identifying extraneous colors, 
and we use the HSV color space to help identify color 
similarities within sets of colors from which palettes 
are extracted. Finally, out-of-gamut color correction 
is done with the help of the Y, or luminance, channel 
of the YIQ color space.  

 

3. COLOR SEGMENTATION 
Our primary objectives are to organize the color 
information within an image in such a way that it can 
be analyzed for artistic intent and that it can be 
quantitatively transferred from one image to another. 
These are mutually distinct and competing objectives. 
To discern artistic intent we need to make color 
comparisons on the basis of color metrics. To transfer 
color we need to capture the structure or “texture” of 
the color fields within an image. To handle both 
objectives simultaneously, we construct regions of 
pixels bottom-up using a region-merging algorithm 
that assigns binary trees to regions. Colors obtained 
by averaging color over all the pixels within a region 
are used when we need to determine artistic intent, 
and binary trees are used when we need to transfer 
color texture. Bottom-up region merging determines a 
color segmentation algorithm. We do not use one of 
the standard color segmentation algorithms [Com97, 
Den99] because we need to preserve color texture. 

Our region-merging algorithm uses the pixel 
representation for a raster image first suggested by 
Bieri and Kohler [Bie91]. Geometrically, a pixel 
consists of a vertex, left and top edges, and a face. 
The vertex is determined by the pixel’s row and 
column. Associated with each edge is a flag for 



determining whether or not the edge is currently 
serving as a boundary between two regions of pixels, 
and a time stamp for remembering which merge event 
caused the edge to become converted from a 
boundary edge to an interior edge.  Each edge knows 
which pixel it belongs to, and pixel color is associated 
with each face. 

Geometrically, a region consists of a group of 
one or more pixels that are simply connected using 4-
neighborhoods. A region is represented by a binary 
tree whose leaves are pixels, and has an identifier, an 
area, an average color, a height, an active flag, and a 
distinguished pixel (used in region merging). Initially, 
each pixel is made into an active region of unit area.  

Any two active adjacent regions – regions 
sharing a common boundary edge – are candidates to 
be merged to form a new active region. Any sequence 
of region merges will color segment an image into a 
forest of binary trees. The two children of each binary 
tree are the regions that were merged to form that 
region.  Pixels know which active region they belong 
to.  

During a scanline traversal, edges of the pixel 
that are boundaries with adjacent pixels are placed 
into a priority queue. A merge event occurs when a 
boundary edge is removed from the priority queue 
and passed to a region-merging algorithm that is 
responsible for the bookkeeping to create a new 
active region from the two regions bounded by the 
edge. Fig. 2 shows a pixel diagram for a merge of 
regions N1 and N2 that will be triggered by boundary 
edge e. Our algorithm takes into account additional 
shared boundary edges such as e’ and updates the 
priorities of non-shared boundary edges such as f, g, 
and h thus bringing into play regions that are 
respectively interior, common, and exterior to the two 
regions being merged. The algorithm uses merge-
event time stamping to maintain edge integrity when 
it becomes necessary to remove more than one shared 
boundary edge during a merge. 

 

N1

N2

f

h

g

e

e'

 
Figure 2. Merge of regions N1 and N2 triggered by 

boundary edge e. 

We attempt to preserve the artist’s broad color 
structure by merging neighboring regions with the 
same perceived chromatic content. The merge priority 
of an edge is defined to be the inverse of the sum of 

the squares of the color component differences across 
the edge, computed in Lαβ space. 

 

4. THE IMAGE PYRAMID 
We organize each digital image into a pyramid 
[Hee95] by successively down sampling so that the 
base, at layer zero, has the image at full resolution, 
while the apex has the image at the lowest resolution 
we wish to use. Our down sampling method is 
nonstandard. From a block of four pixels we select 
the pixel that is closest to the average color of the 
block in order to maintain true color and help to 
prevent the painterly style from being degraded by 
color averaging. 

Fig. 3 illustrates how we use the image pyramid. 
The apex forms one “logical” active region. To 
descend through an image pyramid, we select an 
active region in the current layer (indicated by 
hatching in the figure), and we mask those pixels in 
the layer directly beneath (indicated by shading in the 
figure) which can be projected back up to pixels in 
the region selected. Now, we color segment only the 
portion that has just been masked, and we repeat the 
process on down to the base. 

 

apex

base

 
Figure 3. Synthesis within an image pyramid. 

If we start in the layer beneath the apex of the 
image pyramid, and color segment until we have a 
reasonably small number of regions, then we can 
usually achieve good approximations to the color 
organization for the image.  There are broad 
expansive areas of the image to work with which are 
broken up by areas containing highlights, shadows, 
and transitional colors. 

One problem that arises is that there can be too 
many small regions. Some of these small regions 
consist of single never-merged accent pixels, whose 
boundary edges are of such low merge priority that 
continued merging will preserve these “rogue” 
regions at the expense of the structural integrity of the 
composition as a whole.  The decision about how to 
handle rogue regions affects both the formation of 
image palettes and the actual color transfer that takes 
place at the level of pixels. To help prevent image 



corruption, we interrupt the region-merging algorithm 
before the major structural elements are lost and work 
the rogue regions into the merged framework by 
absorption until the desired granularity is obtained. 
More precisely, once a merge-priority threshold is 
reached, we override the algorithm for selecting 
edges that trigger merge events so that rather than 
selecting edges of maximum priority, it reverts to a 
scanline algorithm to find an edge associated to a 
pixel in a region of minimal area. 

We faced a tradeoff when deciding how to select 
companion regions to use for absorption. Our 
experiments showed that absorbing the smallest 
extant regions with their largest nearest neighbors 
gave the best color distributions, while absorbing 
them with their smallest nearest neighbors gave better 
image decompositions. Even though our goal is color 
transfer, we adopted the smallest-nearest-neighbor 
rule so that image recoloring would have fewer image 
artifacts. 

In order for regions in layers that are lower in the 
pyramid to be able to reveal more detail when they 
are color segmented we decrease proportionally the 
threshold we use to interrupt priority merging. 
Because absorption impacts color transfer at the pixel 
level, we do not absorb rogue regions in subsequent 
layers.  

 

5. PALETTE CONSTRUCTION 
Our first step in palette creation is to compensate for 
color duplication within the set of segmented colors, 
i.e. the set of averaged colors from active regions. 
Because regions are 4-connected, there will usually 
be a number of non-adjacent regions that will have 
perceptually indistinguishable colors. We partition 
the set of segmented colors into subsets of colors and 
select one color representative from each subset. 
These representatives form the set of identified 
colors. Working in RGB space, we define two colors 
to be perceptually identical provided their Euclidean 
distance does not exceed a specified threshold. We 
use RGB space for this purpose because Lαβ space is 
logarithmic and makes too fine a distinction between 
dark colors and too coarse a distinction between light 
colors. The color chosen as the canonical 
representative for a subset is the one that is associated 
to the region having the largest area. Following 
segmentation, Starry Night has 159 colors and Skulls 
has 119 colors. Following identification, these are 
reduced to 22 and 13. 

Since we are attempting to model the painter’s 
palette, we want a bare minimum number of colors, 
thus we must account for the fact that within the set of 
identified colors there may be a number of shades of 
a given color. We need to partition the set of 
identified colors into subsets such that all colors 

within a subset are similar up to shading. 
Unfortunately, this is a very difficult task, as no single 
color space accurately captures the notion of shades 
of a color. We again adopted a bottom-up approach. 
Sorting the identified colors by their saturation 
components in HSV space, we let each (unused) color 
serve as the representative for a cluster of colors that 
are similar with respect to shading as determined in 
some color space. Iterating this clustering algorithm 
first in HSV space, where similarity is defined using a 
“tapered wedge” neighborhood, then in Lαβ space, 
where similarity is defined using a “slab” 
neighborhood, allows us to “converge” to a set of 
color representatives for clusters of colors within the 
identified set of colors. Clustering in HSV space has 
advantages for lighter colors, while Lαβ has 
advantages for darker colors. The final color palette 
consists of the set containing the most saturated color 
in each cluster. For our test images, shade clustering 
reduces the number of colors for Starry Night from 
22 to a palette of 10 and in Skulls from 13 to 8.  

For most images it does not make sense to try 
and recolor true black or true white, since they are 
mixing colors used to make shades from palette 
colors. Thus, we do not consider true black and true 
white as belonging to our palette, when we are trying 
to make decisions about color transfer. This has no 
effect on the Skulls palette, but does remove the 
darkest color from consideration in the Starry Night 
palette.  

At the top level of the pyramid, following “shade 
extraction” our algorithm establishes an initial set of  
“master” palette color associations. Thanks to master 
associations, when layers lower in the pyramid are 
considered, although we must continue to compensate 
for color duplication following segmentation, it is no 
longer necessary to extract shades, because at this 
point we are trying to refine the master associations. 
Instead, we discard some colors from the set of 
identified colors of the source image in an effort to 
prevent spurious colors that arise during segmenting 
from corrupting color transfer from source to 
destination. Such spurious colors can result from 
averaging near feature boundaries, averaging over 
non-segmentable textures, or averaging over 
upsampling artifacts. After the issue of color 
duplication has been dealt with, we discard colors by 
sorting them on the basis of segmented area and then 
retaining only enough colors to account for 90% of th 
e portion that has just been segmented. 

In the layer immediately below the layer that was 
segmented to extract the image’s palette, whenever a 
projected region is to be segmented, the region is 
redefined to include the projected regions from all the 
regions in the class of its parent. This ensures that all 
the shades from the source color and all the shades 



from the destination color get considered 
simultaneously.  

To summarize, an image palette color is a region 
color that is responsible for a set of shades, and a 
shade is a region color that is responsible for a subset 
of regions with perceptually indistinguishable colors. 
Thus, image palette colors partition the set of 
segmented colors into classes. The particular region 
in each class whose color is identical with the palette 
color serves as the canonical representative for the 
class to which it belongs. 

Fig. 4 shows the palettes and the segmented 
images recolored with respect to the palette color of 
the class they belong to. These palettes were obtained 
by using a four layer pyramid with the apex having 
maximum pixel dimensions 16 x 16. Colors from the 
palette are sorted in descending order according to 
the total area they are responsible for. A histogram of 
these areas lies above each palette.  

 

  
 

  
Figure 4. Palettes for the low resolution test 

images. 

6. PALETTE COLOR ASSOCIATIONS 
Although making “intelligent” color associations 
between source palette colors and destination palette 
colors is not the primary focus of the current paper, 
we propose a preliminary approach. We call this 
approach naïve, as it is not informed by deep 
knowledge of palette structure or artistic intent. 
Numerous tests suggested to us that it can be 
beneficial to associate the color responsible for the 
largest area in the source with that from the 
destination. This leads to the color transfer heuristic: 
form an anchor pairing between source and 
destination based on largest areas and then make 
further pairings based on how colors deviate from 
these anchor colors. Our implementation sorts the 
palette colors from largest to smallest by area. We 
then translate all of the colors in a palette so that the 
color with the largest summed area is the origin of a 
local palette color space. This serves to measure the 
remaining colors relative to the color with the largest 
summed area. Since translation preserves relative 
values of L, value rankings of the colors do not 

change. In the spirit of Reinhardt et al. [Rei01], we 
turn to elementary statistics to establish a meaningful 
way to make comparisons across color sets. Within 
each palette, the mean and standard deviation of each 
component is calculated, and all components are 
replaced by their z-scores, i.e. the number of standard 
deviations from the mean. We then translate a second 
time so that the anchor color remains at the origin. 
Our algorithm for associating source palette colors to 
destination palette colors forces the colors 
representing the largest summed areas of the two 
images to be paired. To encourage the colors 
representing the second largest areas to be paired, we 
rotate each normalized palette around its L-axis so 
that the β components of the normalized colors 
corresponding to the second largest summed areas are 
zero. Palette color associations and their induced 
source to destination region pairings now arise as 
follows. Associate to each normalized, rotated color 
in the destination palette the color in the source 
palette that is closest to under Euclidean distance 
measure. For each of these palette color pairings, 
form source to destination region pairs by linking the 
source palette color’s canonical region with all of the 
regions in the class of the destination palette’s color. 
Fig. 5 shows the palette color pairing this strategy 
produced for our test images following color 
segmentation of the 32 x 32 resolution layer. Source 
colors are in the top narrow row, and corrected source 
colors (see next section) are in the lower narrow row. 
Destination color is in the bottom thicker row. Since 
the palette color associations in Fig. 5 respect the area 
sort that was imposed upon the destination palette, we 
are able to observe that some source colors (e.g. gray) 
are used only sparingly and some (e.g. gold) not at 
all. 
 

 
Figure 5. Palette color associations for the test 

images. 

7. PIXEL LEVEL COLOR TRANSFER 
The final step of our color transfer method requires us 
to use the binary trees from a paired source region 
and destination region to transfer color from source 
pixels to destination pixels. If the trees were 
isomorphic, then we could traverse them in parallel 
and achieve a one-to-one pixel matching. However, 
the two trees will almost certainly be topologically 
different. Instead, we transfer color between paired 
regions by simultaneously traversing their binary 
trees in such a way as to approximate a parallel 
traverse between two identical full trees.  



There is insufficient space for the full details, but 
our traversal algorithm has the following properties: 
1) if presented with identical trees it pairs identical 
pixels, 2) if a source pixel is transferred to a 
destination region, then this pixel’s color is 
distributed throughout the entire region, 3) if a source 
region is transferred to a destination pixel, we choose 
the color closest to the region’s average color, and 4) 
when neither the source region nor destination region 
is a leaf, we recursively descend through the subtrees 
until a single source or destination pixel is reached. 
The images in the top row of Fig. 6 show the 
advantage we gain from subtree analysis. The image 
at the upper left shows the transfer of the average 
Lαβ color from the paired source region, while the 
image at the upper right shows the transfer of the Lαβ 
color from the paired source pixel for our test 
example. The pixel transfer approach clearly 
preserves more of the visually rich color texture of 
the source region. 

 

  
 

  
Figure 6. Comparison of color transfer by regions 
(left column) versus pixels (right column) and by 

Lαβ (top row) versus αβ (bottom row). 

8. COLOR CORRECTION 
Since we want to transfer chroma not value, we 
transfer only the α and β channels from source to 
destination. Fig. 6 shows how important this is. 
Without value preservation (top row), the structure of 
the image is lost, whereas with preservation (bottom 
row) it is retained. However, two problems arise: 1) 
color corruption due to large discrepancies in the L 
channels i.e. excessive lightening or darkening of a 
color and 2) out-of-gamut colors due to significant 
differences in hues. When the L component of a color 
is low, its chroma should not matter. Since many 
digital images have high saturations in their dark 
colors, transferring the chroma from dark colors to 
destinations with moderately higher value 
components often yields unnaturally saturated colors. 
As a partial solution to this problem, when we 
transfer the α and β channels from the source image 

to the destination image, we attenuate them when the 
destination pixel is bright and has a much higher 
value than the source pixel. 

Even though desaturation is not invoked when 
highly saturated colors are transferred to destination 
colors of lower value, out-of-gamut colors may still 
result because the “strength” of the chroma being 
transferred may artificially inflate one or more of the 
RGB components when we transform from Lαβ 
space. Regardless of how out-of-gamut colors arise, 
after we transform all of the destination image pixels 
back to RGB space we must often make a global 
correction of the RGB image so that all colors are in 
gamut. This is accomplished by identifying the 96-th 
percentile for the set of R, G, and B components 
collected from all image pixels and then scaling the 
entire image by this value, if necessary. We found 
that scaling by the global maximum darkens the 
image too much, so use of this smaller value is a 
compromise that seems to work well in practice. 
Pixels where one or more R, G, and B components 
were above the 96-th percentile are still out-of-gamut, 
so we do a local correction as follows: the maximal 
channel value is clamped and the values of the 
remaining channels are raised in an effort to try to 
preserve the pixel’s luminance, by holding the Y 
component (of YIQ space) constant. 

Desaturating colors as they are transferred from 
source pixel to destination pixel and then invoking 
global color corrections can produce images with 
excessive amounts of gray. This problem is most 
acute when (pure) whites are involved. Trying to add 
chroma to whites in Lαβ space causes colors to soar 
out of gamut in RGB space. Further complicating 
matters is the fact that when trying to transfer 
saturated colors to dark areas, global correction can 
create “hot spots” caused by clamping only a few 
pixels within a region. Issues such as these revealed 
to us how difficult the general problem of color 
transfer really is.  

In making images for this paper we added one 
more feature to try and head off out-of-gamut 
problems. When artists want to incorporate a 
disparate color into their palette at a late stage of 
image composition, they must often readjust the value 
structure of the entire painting. Therefore, prior to 
color transfer we tried preconditioning our destination 
images by implementing an algorithm to modify L 
values of the pixels in the destination image so that 
their resulting histogram would match the histogram 
of L values in the source image. Fig. 5 showed the 
colors in the destination palette on top split in half. 
The top half is the color as it appears in the image 
and the bottom half is the color as it appears after 
conditioning. The fact that a destination image might 
need conditioning in order to be “value compatible” 



  
 

  
Figure 7. Top: Test Fragonard and Kandinsky. 
Lower left: Fragonard value-conditioned from 
Kandinsky, right: Kandinsky from Fragonard. 

(Fragonard & Kandinsky from http://www.artframed.com) 
 

with a source image demonstrates why it is virtually 
impossible for certain recolorings to be done.  For 
example, Fig. 7 shows what happened when we tried 
to condition a Fragonard using a Kandinsky and vice 
versa. The Fragonard became useless after this step, 
as its value structure was destroyed by the process. 
The Kandinsky held up somewhat better. 

 

9. EXAMPLE RECOLORINGS 
When producing high resolution image recolorings, to 
prevent “blockiness” from propagating during 
pyramid descent, we turn off absorption after the 
initial layer is color segmented, and as each new layer 
within the destination pyramid is encountered, we 
examine its pixels one by one in order to resolve any 
questionable parent-region assignments for pixels that 
are children of boundary pixels in the parent layer. A 
high resolution recoloring for our test images is 
shown in Fig. 8. A high resolution recoloring of 
Kandinsky by Fragonard is shown in Fig. 9. 

The top row of Fig. 10 shows additional test 
images by Franz Marc (Yellow Cow) and Emil Nolde 
(Mask Still Life III) that we used to evaluate the 
generality and the limitations of our approach. They 
were selected for their range of palette colors. Figs. 
11 and 12 show bi-directional recolorings. The 
bottom row of Fig. 10 shows the top-level palette 
color associations for each of these recolorings. 

 
Figure 8. Recoloring of Skulls by Starry Night. 

 

 
Figure 9. Recoloring of Kandisky by Fragonard. 

10. CONCLUSIONS 
The goals of this paper were limited – we attempted 
to establish a framework to investigate the problem of 
transferring the chromatic content from one image to 
another in such a way that its artistic intent was 
preserved. The images presented are demonstrations 
of the potential of this framework, and provide a 
benchmark by which to measure future work. In that 
sense, we feel that we have succeeded in our original 
quest. 

Nevertheless, we were never wholly successful at 
making a bi-directional recoloring of Starry Night 
with Skulls, primarily because the narrow range of 
earth tones in Skulls meant that nearly all the colors in 



 
 

  
Nolde                                   Marc 

  
Figure 10. Top row: Nolde and Marc images. 

Bottom row: Palette color associations.  (Nolde and 
Marc from http://www.artframed.com) 

 

 

 
Figure 11. Recoloring of Marc by Nolde. 

 

 

 
Figure 12. Recoloring of Nolde by Marc. 

 
its palette needed to be transferred before the Starry 
Night recoloring made sense. Given the chromatic 
range of Starry Night this is not an easy task. In 
general, we found that the more colors that needed to 
be transferred from the source to the destination, the 
more likely it was that errors in artistic intent would 
occur. 

Thus, the most interesting direction for future 
work will be to investigate how to make decisions 
about color pairing across palettes. It seems clear that 
such an approach must be informed by an 
understanding of the artistic intent of each palette, 
and must attempt to preserve that intent across the 
color transfer. 

To summarize, we feel that the key problems that 
remain are: 1) deciding which colors within a palette 
are the most important ones to use for associations, 2) 
establishing “rule sets” for making color associations 
between palettes, 3) refining color associations while 
descending through an image pyramid (this causes 
new colors to come into play, which are not easily 
reconciled in accordance with top-level color 
associations), and 4) making color transfer decisions 
that keep colors in gamut. 
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