
Antipole Clustering For Fast Texture Synthesis

Battiato S., Pulvirenti A., Reforgiato Recupero D.
Dipartimento di Matematica ed Informatica - Università di Catania

Viale A. Doria 6 - 95125- Catania Italy
{battiato, apulvirenti, diegoref}@dmi.unict.it

ABSTRACT

This paper describes a new method for analysis/synthesis of textures using a non-parametric multi-resolution
approach able to reproduce efficiently the generative stochastic process of a wide class of real texture images.
This is realized through a new data structure the Antipole Tree and a suitable research strategy able to outperform
both the classical linear full-search heuristic and the TSVQ (Tree Structure Vector Quantization) acceleration
used in previous related works. Experimental results performed on an exhaustive set of textures [VisTex] show
the effectiveness of the proposed approach.

Keywords
Texture Synthesis, Pyramid Decomposition, Antipole Clustering, Nearest-neighbor.

1. INTRODUCTION
The exciting world of “texture”, with its different
application and results (texture classification,
discrimination, retrieval, mapping and/or rendering)
represent only a partial view of the various lines of
research and application fields. Among others, to be
able to realize fast and effective algorithm for texture
synthesis, with high performance both in term of real
time generation and perceived quality is a fascinating
goal. Two different strategies or lines of research
have been followed in the literature. The more
ambitious one tries to “learn”, with a proper set of
filters, the underlying stochastic model ([Cro83]) of
an input texture; the synthesis is then obtained by a
suitable sampling. The main drawback of these
methodologies is the computational complexity that
tends to be impractical for real-time applications
[Wu00]. More efficient techniques tend to properly
match texture features ([Por00]), measured at
different resolution levels ([Bur83]): a series of
heuristics are used without explicitly derive a real
mathematical model. In [Heg95] and [Deb97]
impressive results using marginal histograms of
image pyramids and maintaining cross-scale

dependencies are obtained (see also [Bat00a],
[Bat01b]).

More recently [Efr99] and [Wey00] pointed out a
series of simple but effective techniques showing
excellent results on large class of textures. In
particular the work presented in [Wey00] has been
furtherly generalized in [Her01] to realize a
computational framework where analogies between
pairs of images can be deduced. Other techniques
such as those presented in [Xu01b] combine together
smart patch merging. This paper describes a series of
possible solutions trying to improve existing
algorithmic solutions by making use of advanced
approximated search data structures. The procedural
approach described in [Wey00] applies a
multiresolution technique tracking neighborhood
dependence level by level. The synthesis is realized
using a classical sampling strategy over the data
collected in the analysis phase. The entire process is
then accelerated using a TSVQ (Tree Structure
Vector Quantization) [Ger92]. We claim that the
overall computation time needed to perform a full-
search sampling strategy can be avoided using
suitable advanced data structures and searching
strategies. In our approach, image pixels are grouped
into clusters of bounded radius by an efficient
clustering algorithm: the Antipole Tree Clustering
[Can02b], which belongs to the class of the “bisector
trees” [Cha01]. The clustering probability model of
spatial neighborhoods derived from a texture was
introduced for the first time by [Pop93]. Our
clustering algorithm works in such a way that “far”
elements lie in different clusters. The algorithm is
able to find such a pair (A, B) (called Antipole) in
linear time. Finally, elements of the sets are

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission
and/or a fee.

WSCG POSTERS proceedings
WSCG’2003, February 3-7, 2003, Plzen, Czech Republic.
Copyright UNION Agency – Science Press

partitioned according to their proximity to one of the
two Antipole endpoints (A, B). This top-down
recursive splitting procedure will produce a binary
tree whose leaves are the final clusters. Once the
Antipole Tree data structure is built an efficient
nearest neighbor search algorithm is developed and
used in our framework. Experimental results show the
improvement with respect to the sampling process
described in [Wey00] in term of computation time
with respect to the full-search strategy while
maintaining the same final quality. The paper is
structured as follows. The next Section introduces the
Antipole clustering strategy and describes an

algorithm for the nearest neighbor problem
comparing performances of different techniques.
Section 3 shows the experiments results obtained
with the proposed solution while a conclusions
Section tracks direction for future works and
research.

2. ANTIPOLE STRATEGY AND TSVQ
The Wei-Levoy algorithm [Wey00] uses the locality
and stationarity properties of the textures to
synthesize an image by a raster scan order. Each pixel
in the input sample is mapped into the pixel of the
nearest neighborhood vector (see Fig. 1). The input
consists of an example texture patch together with a
random noise image having the desired size of the
output image. The algorithm modifies this random
noise to make it looks like the given example. Since
this process is computationally expensive, multi-
resolution pyramids and quantization acceleration are
used (see [Ash01], [Bil01], [Wey02]). In particular a
speed-up is obtained using TSVQ [Ger92], which
takes as input a set of training vectors and generates a
binary tree of codebooks having a depth specified by
the user, which will be representative of the dataset.
First the process finds a centroid c of the training
vector and uses it as root of the tree. After that, the
same centroid c and a properly perturbated centroid
are chosen as children of the root. The process
proceeds recursively until the specified depth is
reached. In [Wey02] the approximation introduced
considers a variable number of training codebooks
allowing also a limited backtracking in the tree
traversal to trade-off between computation time and

final image quality. In our approach a positive cluster
radius σ, is used to guarantee that pixels with a
similar neighborhood lie in the same cluster. The
Antipole clustering of bounded radius [Can02b] is
performed by a top-down procedure starting from a
given finite set of points S which checks if a given
splitting condition is satisfied. If this is not the case
then splitting is not performed and the given subset is
a cluster. The computation of an approximate
centroid [Can02] having an approximated distance
less than σ from every point in the cluster is hence
performed. Otherwise, a suitable pair of points (A, B)
of S called Antipole is generated and the set is
partitioned by assigning each point of the splitting
subset to the closest endpoint of the Antipole (A, B).

Nearest-Neighobor(Tree T , Object Q, Threshold t,

OutputObj OUT)

1 if (T:Leaf = FALSE) then

2 DA Check(Q; T:Al; t; OUT);
3 DB Check(Q; T:Ar; t; OUT);
4 Q:Dv Q:Dv [fDA; DBg

5 if(DA � DB) then

6 NN-Visit(T:left , T:right , Q, t, OUT ,
T:Rad l , T:Radr , DA, DB);

7 else

8 NN-Visit(T:right , T:left , Q, t, OUT ,
T:Radr , T:Rad l , DB , DA);

9 end if;

10 else

11 VisitCluster(T:Cluster, Q, t, OUT);
12 end if;
13 end Nearest-Neighbor.

NN-Visit(Tree A, Tree B, Object Q, Threshold t,
OutputObj OUT , Radius RadA,
Radius RadB , Distance DA, Distance DB)

1 if (DA < t+RadA) then

2 Nearest-Neighobor(A; Q t; OUT);
3 end if;
4 if (DB < t+RadB) then

5 Nearest-Neighobor(B; Q t; OUT);
6 end if;
7 end if;
8 end NN-Visit.

VisitCluster(Cluster Cluster , Object Q,

Threshold t)

1 Q:Dv Q:Dv [f Check(Q; Cluster:C t; OUT) g;
2 for each O 2 Cluster:CList do

3 if Triangularity(O, Q, OUT , t) = FALSE then

4 Check(Q; O; t; OUT);
5 end if;
6 end for each;
7 end VisitCluster.

Check(Object Q, Object O, Threshold t, OutputObj OUT)

1 DO dist(Q;O);
2 if (DO < t) then
3 t DO ;
4 OUT = O;
5 end if;
6 return DO ;
7 end Check.

Figure 2 – Pseudo code of the NEAREST-NEIGHBOR,
VISITCLUSTER and CHECK procedure.

Figure 1 - Typical shape of the neighbourhood
used in the analysis/synthesis process (on the
left). Each synthesized pixel, as showed in the
magnified texture (in the middle), is determined
by suitable analyzing its neighbourhood.

Approximate-Nearest-Neighbor(Tree T , Object Q)

1 if (T:Leaf = FALSE) then

2 DA Dist(Q; T:Al;);
3 DB Dist(Q; T:Ar ;);
4 if(DA � DB) then

5 Approximate-Nearest-Neighbor(T:left , Q);
6 else

7 Approximate-Nearest-Neighbor(T:right Q);
8 end if;

9 else

10 return T:Cluster:Centroid;
11 end if;
12 end Approximate-Nearest-Neighbor.

The Antipole algorithm has been successfully applied
in a Mobile Wireless Network Problem [Fer02].
Once the data structure is built a suitable nearest
neighbor algorithm can be designed around it. Fig. 2
contains the pseudo-code relative to the nearest
neighbor search performed on the corresponding
Antipole Tree built by the Antipole Clustering
strategy. The search, starting from the root, proceeds
by following the path in the tree, which guarantees
that the nearest cluster centroid is found pruning the
impossible branches. A backtracking search explores
the remaining branches of the tree to obtain a correct
answer. At each step the distance between the query
object and the nearest neighbor is bounded by a
threshold t. At the beginning of the process t is
initialized to +∞. During the search, an overall speed-
up is obtained by using the triangle inequality. In
order to do that, during the Antipole data structure
construction, for each introduced object O a vector
ODV of all distances from O to each Antipole element
in the unique path followed by O from the root to its
final cluster is maintained. A similar QDV is generated
also for each query Q. The procedure
TRIANGULARITY will check if exists an element 1 ≤ i
≤ min(|QDv |, |ODV |) such that t < QDV[i] - ODV[i]. If
the condition is verified then the object O will be
discarded. On the other hand if such a condition is
not verified we need to compute the distance between
the object O and the query Q in order to decide if the
element can be in the output set. Notice that the
Antipole indexing organize the data in such a way
that linear scanning during the search may be
avoided. This results in a faster nearest neighbor
search procedure with respect to the linear Nearest
Neighbor search. As suggested in [Wey02] a suitable
acceleration of the Antipole Tree Search described
above can be obtained by introducing an
approximated nearest neighbor search (see Fig. 3).
This modified approximating procedure follows the
path in the tree, which minimizes the distance from
the query, returning the centroid of the cluster
contained in the leaf node. This approximated nearest
neighbor search is fully competitive with the TSVQ
acceleration producing in many cases better results.

(a) (b) (c)

3. EXPERIMENTAL RESULTS
This Section reports all the experimental results
obtained with the proposed approach with respect to
the work of [Wey00]. Figure 4 shows a synthesized
texture obtained respectively with the linear full-
search strategy and by Antipole strategy. As reported
in the previous Section the Antipole strategy speeds-
up the process, without data loss. The notation
{R1xC1,1},…{RixCi,kj}…,{RmxCm,kn} indicates
multiresolution n levels each with neighbor size RixCi
at the top level merged with the previous kj-1 levels
each one having neighborhood size Ri -2 x Ci-2,….,
Ri -2*(kj-1) x Ci-2*(kj-1). For example the
expression {7x7,1}{9x9,2} means: synthesise 2
levels multiresolution with the first level neighbour
size 7x7 and the second level neighbour 9x9 merged
with the previous level with neighbour size 7x7. The
algorithm was implemented in ANSI C and all
experiments were carried out on a PC PIII 900Mhz
on Linux OS, using the [VisTex] database. Each
running time as reported in [Wey00] is referred to the
synthesis process obtained starting from a random
equalized noise image. The timing comparison has
been realized, using different neighborhood, single
level and multiresolution. In all cases the running
time of the Antipole strategy was better than the
classical full search.

Images Neighboor Full Antipole Gain (%)
{5x5,1} 728 44 93,96
{7x7,1} 1386 69 95,02

{5x5,1}{5x5,2} 1260 84 93,33
Texture {7x7,1}{7x7,2} 2580 206 92,02

{3x3,1} 221 38 82,81
{9x9,1} 2820 427 84,86

{5x5,1}{5x5,2} 1260 205 83,73
Flowers {5x5,1}{7x7,2} 2520 428 83,02

{5x5,1} 728 179 75,41
{9x9,1} 2820 1145 59,40

Money {3x3,1}{5x5,2} 1221 374 69,37

Table 1 - Running time comparison, in seconds,
between full search (third column) and Antipole data
structure (fourth column). The second column
describes the size of each neighbor at each level.
Percentage gain is reported on the last column

Table 1, reports some results, showing the average time
and the corresponding percentage gain obtained over

Figure 4 - Synthesized images obtained by
classical full search (b) and Antipole Tree Search
(c) from input images (a) using {5x5,1}
neighborhood. Figure 3 – APPROXIMATE NEAREST NEIGHBOR

search via Antipole Tree.

several textures. The results presented in Table 1 show
that the Antipole Clustering running time over distinct
textures may be different. This means that the
underlying vector space distribution generated during
the synthesis process also affects the performance of the
proposed method. The running time of the Antipole
Tree reported in Table 1 includes the building time of
the tree which takes only a few seconds. The TSVQ
acceleration used by ([Wey00], [Wey02]), is able to run
two orders of magnitude faster than the full search. It
works well, over a large dataset of texture, but
introduces some approximation. As shown in [Ash01],
the textures that are composed of various small objects
do not give output images of good quality (e.g. leaves,
flowers, etc.). In many cases only the full neighborhood
search guarantees satisfactory results. Fig. 5 shows a
series of examples with comparisons with the TSVQ
acceleration. The TSVQ tree is constructed using the
maximum number of codewords as suggested in
[Wey00]1. Our proposed acceleration technique seems
to be more robust, as shown in Fig. 5. The acceleration
allows a further time gain ranging from 70% to 90%
with respect to the exact Antipole search (see:
http://alpha.dmi.unict.it/~texture/ for more details).

Figure 5 - A comparison between the Antipole exact
search (second column), approximate Antipole search
(third column), TSVQ search (last column).

4. CONCLUSIONS
In this paper we proposed a novel approach for texture
synthesis using the Antipole Tree Data structure. Future
work includes the study of new approximation
strategies and indexing methods together with the
introduction of new heuristics and sampling strategies
to solve some shortcomings of the current method
([Ash01], [Cha01], [Her01]).

ACKNOLEDGMENTS
A special thanks goes to Prof. A. Ferro and Prof. G.
Gallo for useful discussions and suggestions.
5. REFERENCES
[Ash01] M. Ashikhmin, Synthesizing natural textures, ACM
Symposium on Interactive 3D Graphics, pp. 217–226, 2001;
[Bat00a] S. Battiato, G. Gallo, Multi-resolution Clustering of
Texture Images – Texture Analysis in Machine Vision, - Vol.
40, pp.41-51, World Scientific, 2000;

1 We are grateful to University of Washington Data Compression Laboratory

(http://rcs.ee.washington.edu/COMPRESSION/code/tsvq/) to make
available a freeware source code of the TSVQ.

[Bat01b] S. Battiato, G. Gallo, S. Nicotra – Glyph
Representation of Directional Texture Properties – J. of
WSCG, Vol. 10, No.1-3, pp. 48-54, 2002;
[Bil01] P. Billault, Texture Synthesis Algorithms, Image
Signal Depart. de Math. Appliquees, Technical report 2001 ;
[Bro66] P. Brodatz, Textures: A Photographic Album for
Artists & Designers, Dover, New York, 1966;
[Bur83] P.J. Burt, E.H. Adelson, The Laplacian Pyramid as a
Compact Image Code, IEEE Trans. on Comm., Vol. 31,
pp.532-540, 1983;
[Can02] D. Cantone, G. Cincotti, A. Ferro, A. Pulvirenti, An
Efficient Approximate Algorithm for The 1-Median Problem
in Metric Spaces, Tech. Rep. Univ. of Catania, 2002;
[Can02b] D. Cantone, A. Ferro, T. Maugeri, A. Pulvirenti, D.
Shasha, Antipole Indexing to support Range Search on
Dynamic Metric Space, Tech. Rep. Univ. of Catania 2002;
[Cha01] E. Chávez, G. Navarro, R. A. Baeza-Yates, J. L.
Marroquín: Searching in metric spaces. ACM Comp. Surveys
33(3): pp. 273-321 (2001);
[Cro83] G.R. Cross, A.K. Jain, Markov Random Field texture
models, IEEE, PAMI, Vol. 5, pp. 25-39, 1983;
[Deb97] J.S. De Bonet, Multiresolution Sampling Procedure
for Analysis and Synthesis of Texture Images, In Computer
Graphics, pp. 361-368, ACM SIGGRAPH, 1997;
[Efr99] A. Efros, T. Leung, Texture Synthesis by a Non-
parametric Sampling, IEEE Proc. of ICCV, pp.1033-38,
1999;
[Fer02] A. Ferro, G. Pigola, A. Pulvirenti, D. Shasha, Fast
Clustering and Minimum Weight Matching Algorithms for
Very Large Mobile Backbone Wireless Networks, Int. J. of
Found. of Comp. Science - Special Issue on Wireless
Networks, 2002 to appear;
[Ger92] A. Gersho, R. M. Gray, Vector Quantization and
Signal Compression, Kluwer Ac. Publ., 1992.
[Heg95] D.J. Heeger, J.R. Bergen, Pyramid-Based Texture
Analysis/Synthesis, In Computer Graphics, pp. 229-238, ACM
SIGGRAPH, 1995;
[Her01] A. Hertzmann, C. E. Jacobs, N. Oliver, B. Curless,
D.H. Salesin, Image Analogies, In Proc. of ACM-
SIGGRAPH, pp 327-340, 2001;
[Pop93] K. Popat, R. Picard, Novel cluster-based probability
model for texture synthesis, classification, and compression,
In Visual Comm. and Image Processing, pp. 756-768, 1993;
[Por00] J. Portilla, E.P. Simoncelli, A Parametric Texture
Model based on Joint Statistics of Complex Wavelet
Coefficients, Int. J. of Comp. Vision, Vol. 40, No. 1,. 2000;
[VisTex] Texture Synthesis: VisTex Texture, http://graphics.
stanford.edu/projects/texture/demo/synthesis_VisTex_192.html;
[Wey00] L.Y.Wei, M. Levoy, Fast texture synthesis using
tree-structured vector quantization, In Proc. of ACM-
SIGGRAPH 2000, pp 479–488, 2000;
[Wey02] L.Y.Wei, Texture synthesis by Fixed Neighborhood
Searching, Ph.D.Diss.Stanf. Un. 2002;
[Wu00] Y.N. Wu, S.C. Zhu, X.W. Liu, Equivalence of Julesz
Ensemble and FRAME Models, Int’l Journ. of Comp.
Vision, Vol. 38, No. 30 pp.245–261, 2000;
[Xu01b] Y. Xu, S.C. Zhu ,B. Guo, H.Y. Shum,
Asymptotically Admissible Texture Synthesis, In Proc. of
Int'l Workshop. on Sta.t and Comp. Theories of Vision,
2001;

