
The Multi-LDI: an Image Based Rendering Approach for Interaction,
Navigation, and Visualization in Complex Virtual Environments

Stanislav L. Stoev and Ingmar Peter and Wolfgang Strasser

WSI/GRIS, University of Tübingen,
Auf der Morgenstelle 10, C9,
72076 Tübingen, Germany

{sstoev,peter,strasser}@gris.uni-tuebingen.de

ABSTRACT

In this paper, we present a new data structure for image-based rendering: the multi LDI. The multi
LDI consists of a number of Layered Depth Images (LDI) covering a hemisphere of possible
viewing angles. It allows compact image-based storage and fast rendering of large and complex
scenes, while supporting rendering from large range of viewing directions. Since the internal
occlusion in each LDI is very small, and only one of the LDIs in the multi LDI is rendered at a
time, the rendering cost is significantly reduced compared to geometry-based rendering and even
compared to other image-based rendering methods. Moreover, the single LDIs in the multi LDI
can be generated on demand using a number of depth images rendered with an offscreen renderer.
We also discuss a comparison of the geometry-based rendering and our image-based method and
present some measured rendering times.
Furthermore, we describe the utilization of this technique in a complex Virtual Environment (VE)
for realizing navigation, visualization, and interaction aids. In particular, we present a multiple
viewport technique providing two important features: (1) A sort of history during the modeling
process, whereas a live 3D copy of the scene is displayed in a window in front of the user. (2)
Different live views of the scene, seen from arbitrary viewpoints, in order to display details
occluded in the normal view.

Keywords: Image Based Rendering, Layered Depth Images, Virtual Environments, Interaction
Techniques.

1 Introduction

The main objective of a virtual environment (VE)
is to give the best possible impression of real-
ity, while displaying virtual worlds. These might
be distant worlds, micro/macro worlds, as well
as artificial worlds. Keeping in mind the fact
that many users are quite familiar with the desk-
top paradigm, the developers of virtual envi-
ronments attempted to adapt some of the well-
known and well working desktop techniques for
interaction to VR. This is done in all of the avail-
able VR-concepts nowadays: head mounted dis-
plays (HMD), CAVE-like setups, and table-top
projections.

A typical example for such an interaction is the
multiple viewpoint technique. Viewing a scene
simultaneously from multiple different perspec-
tives is often used in CAD-systems. This in turn
allows a better understanding of and orientation
in the explored environment. A counterpart of
such a tool in a 3D application is introduced
in [Schma99] and is called snapshot tool.

Additionally to the adaptation of desktop tech-
niques to virtual environments, synthetic envi-
ronments allow the implementation of techniques
not having a counterpart neither in desktop com-
puters, nor in the physical world. For this, real-
life human abilities have been intensively stud-
ied in the past decades. The results have been
applied to improve existing and develop new
human-computer-interaction techniques in VE.
For instance, in a VE one can use virtual maps (or
WIM which stand for world-in-miniature as intro-
duced in [Stoak95]). Despite the common use of
such techniques, however, virtual tools have also
limitations. One of the most important issues is
the rendering time. Even little decrease of the
frame rate can significantly affect the user’s per-
ception and interaction.

In this paper, we consider the two techniques
introduced above, the snapshot tool (Fig-
ure 1(a)) and the WIM-tool (Figure 1(b)),
and propose an image-based rendering
method for their realization in virtual en-



ba

Figure 1: The world in miniature and the viewpoint freezing (snapshot-tool) tools.

vironments: the multi LDI. The common,
straightforward implementation uses a reference
or a copy of the virtual world. Unfortunately, the
multiple rendering of the data can significantly
deteriorate the frame rate and even negatively
influence the interaction. The proposed multi
LDI approach enables us to render fast not
a copy of the scene, but a view-dependent,
scene-complexity independent 3D image of it.

2 Related Work

The previous work discussed in this section is di-
vided in two main related areas.

First, we focus on interaction in virtual environ-
ments in general and describe some background
on navigation in virtual worlds. Afterwards, in
Section 2.2 we discuss related work on image-
based rendering techniques and their application
in VR.

2.1 Navigation and Interaction

The navigation in virtual environments is a prob-
lem with increasing importance, since the size
of virtual worlds is rapidly growing. Fortu-
nately, people are confronted with the counter-
part of this problem in every day life. This fa-
cilitates the exploration of this problem. In their
work, Darken and Sibert [Darke93] presented a
toolkit for navigation applying principles from
real world navigation aids (e.g. maps). They
also compare the strengths and weaknesses of
such aids. Stoakley et al. [Stoak95] extended
this work to three-dimensional maps. He defines
navigation as a term covering two related tasks:
movement through a virtual space and determin-
ing the orientation relative to the surrounding en-
vironment. Considering these two issues, Stoak-
ley introduced the World-in-Miniature or WIM-
technique. A WIM is a scaled down 3D copy
of the virtual world displayed on an hand-held
panel. Originally, the WIM was applied for in-
teraction in virtual worlds, i.e. manipulating ob-

jects in space. Pausch et al. [Pausc95] extended
this approach to provide a navigation tool. Due to
its easy and intuitive application, WIM-like tools
are widely used in virtual environments nowa-
days. Therefore, we introduced the two-handed
WIM technique to our system, which is based on
the pip and pen interaction metaphor presented
in [Szala97, Schma99].

A discussion and evaluation of navigation tools
can be found in [Ware90]. Bier [Bier86] de-
scribes in his work a set of techniques for scene
composition. Mine [Mine95] discusses the fun-
damental forms of interaction in virtual environ-
ments, including movement, manipulation, and
menu interaction.

2.2 Image-Based Rendering

In the past years, image-based rendering (IBR)
techniques are becoming more and more popular.
Their success is based on the fact that the render-
ing complexity of an image-based scene repre-
sentation is almost independent on the geometri-
cal complexity of the scene. Instead, it is heavily
dependent on the resolution of the images used in
the IBR representation. The increasing computer
power nowadays, makes it possible to view large
scenes with a reasonable resolution and interac-
tive frame rates using image-based approaches.
This makes IBR techniques very well suited for
our work.

Various attempts to integrate IBR in virtual
environments are reported the literature. For
architectural walkthroughs [Aliag97] or city
scenes [Wimme99] it is often sufficient to use
pictorial information to replace distant parts of
the scene. Instead of rendering the complete
interior of a distant room seen through a door,
the authors of [Aliag97] use a portal texture. It
shows a picture of the room and is placed into
the door opening and only replaced by real ge-
ometry when the user approaches the respective
door. In [Raffe97, Raffe98] the portal textures,



which are “flat” images, are replaced by depth
images. Depth images store to each pixel color
additionally the disparity value of each pixel.
This allows carrying out a correct perspective
warp of all pixels with respect to the viewer’s po-
sition. In contrast to portal textures, the perspec-
tive distortion of the image is handled correctly.
Problems with depth images occur, if parts of
the scene are visible from the viewer’s position,
which are not stored in the depth image. There-
fore, Aliaga and Lastra [Aliag99] employed Lay-
ered Depth Images (LDI) [Shade98] to replace
parts of a complex scene, which are distant from
the viewer. Unfortunately, the time and memory
requirements of their approach are very exten-
sive, because all LDIs (form 180 to more than
5000 LDIs), for all possible view directions have
to be calculated. Since this was reported to take
from one to 28 hours, the LDIs are computed in
a preprocessing step.

In general, an LDI [Shade98] is an image, in
which every pixel represents a ray (Figure 2).
Each ray stores an arbitrary number of depth pix-

A
B

eye
point 1

eye
point 2

visible area

depth pixels

Figure 2: LDI storing two objects. The
lower part of object B is invisible for eye
point 1, but visible for eye point 2.

els. Thus, occluded parts of the scene are stored
in the LDI as well. In this way, an LDI per-
mits to calculate various views of a scene without
showing any gaps caused by incomplete object
information. The rendering time and the mem-
ory requirements of an LDI depends linearly on
the total number of all pixels stored in all rays of
the LDI structure. In contrast to layered impos-
tors [Decor99, Schau98], LDIs do not use a fixed
depth resolution. In this way, LDIs provide high
image quality, while requiring moderate amount
of memory. Furthermore, the acquisition of LDIs
is very simple. Using a set of depth images the
spatial position for each source pixel can be cal-
culated and the pixel inserted into the LDI struc-
ture. Pixels representing the same surface point
are removed by simple comparison of the pro-
jected depth values, thus keeping only relevant
information stored in the LDI.

LDIs are widely used in various application ar-

eas, where complex geometry rendering is re-
placed by image-based rendering. For instance,
in an Image-Based Object (IBO) [Olive99], six
LDIs form a single object, which can be viewed
from all directions. At most three of the LDIs,
positioned on each side of a cube, are rendered
to generate a correct view of the stored object.

3 The LDI-based Interaction Props

In this work, we present an extension of the trans-
parent interaction props introduced by Schmal-
stieg et al. [Schma99]. Schmalstieg reports on
the implementation of a snapshot mechanism for
providing multiple views during the creation and
exploration of virtual worlds. Once the scene
seen through the transparent pip is fixed, a win-
dow with this content can be arbitrarily posi-
tioned in the space (a new viewport is defined).
This multiple view tool, also called snapshot-
tool, can be adjusted to always display a live-
scene containing even objects added after the
scene was “frozen”. Freezing means in this con-
text that the scene, the user sees through the win-
dow, is fixed relatively to this window. In the
next step, the window itself can be fixed in the
space in front of the user (Figure 1(b) and 5(d)-
(f)). Note, that freezing does not mean that the
scene behind the window is static or a texture of
it.

On the other hand, such a tool can also be used
for freezing an unchangeable copy of the scene,
reflecting particular stages of development. Be-
sides its strengths, however, the main problem
with the realization of this concept is that every
time the world is caught on the pip, a reference or
a copy of the latter is added to the rendered data.
Thus, the original scene has to pass through the
rendering pipeline an additional time, for each
provided viewing window. Even though, these
additional viewports are much smaller than the
original viewport, the complete scene is rendered
once for each additional viewport. Since this
is unacceptable for large, detail-rich virtual en-
vironments, we employed an image-based tech-
nique for accomplishing this task (as will be
shown in Section 5). The proposed technique al-
lows for displaying the snapshot of the scene in-
dependent of its complexity, while supporting all
features of the original snapshot tool.

Another contribution of this paper is the
extension of the WIM-metaphor described
above [Stoak95, Pausc95]. The problem is
similar to the one introduced by the snapshot
tool, namely the doubling of the rendered data.
However, the WIM representing image-based
structure has to be computed with significantly



higher resolution, in order to provide sufficiently
detailed information when parts of the map are
zoomed. Fortunately, the map tool does not have
to be generated on the fly during the interaction,
thus we compute it in a preprocessing step.

The props described above introduce several re-
quirements, which have to be considered when
choosing an appropriate image-based rendering
technique:

• Data acquisition on-the-fly;

• Fast rendering of multiple views of the
scene, covering a wide angle of viewing di-
rections;

• Addition and removal of geometry objects
to/from the scene.

In order to meet these requirements, we devel-
oped a new image-based data structure the multi
LDI. A multi LDI consist of several small LDIs
instead of providing one large LDI for covering
the entire range of view directions (in our case
a hemisphere). Since the memory requirements
and rendering time depends linearly on the num-
ber of depth pixels stored in an LDI in total,
the higher the amount of internal occlusion in
an LDI, the less efficient will be the rendering.
Apparently, the more the viewing position is al-
tered the more visibility changes in the scene will
occur. In the context of LDIs this means: The
greater the range of viewing angles for which an
LDIs allows the rendering of a correct image, the
more depth pixels have to be stored in it and the
less efficient will be the LDI rendering.

Since we have to cover the whole hemisphere of
possible viewing angles above the snapshot tool
respectively the WIM, storing all the scene infor-
mation in a single large LDI will be quite inef-
ficient. Therefore, the proposed multi LDI sub-
divides this hemisphere into patches and attaches
one single LDI to each of them as shown in Fig-
ure 3. Each time a prop is rendered, the viewing
angle relatively to the display window is used to
determine the appropriate LDI. Since each of the
LDIs covers only a small range of view direc-
tions, it can be rendered very fast.

In contrast to an IBO [Olive99], which requires
the simultaneous rendering of up to three LDIs,
with the multi LDI only one LDI is rendered at
a time. Furthermore, each LDI of an IBO cov-
ers a wider range of viewing directions. Thus,
the rendering time for each IBO’s LDI is greater
than the rendering time for one LDI of the multi
LDI. Finally, the LDIs for an IBO have to be pre-
computed and cannot be generated on-the-fly, as
this is done with the multi LDI as will be shown
next.

(b)

(a)

(c)

A2

A1

LDI p
lane A

LDI plane B

LDI A

30
o

B1

LDI B
B2 B3

LDI

Hemisphere around

LD
I i

m
ag

e 
pl

an
e

the pip plane

Hemisphere
projected view side view

Hemisphere

Figure 3: The dots indicate the camera po-
sitions used to generate the pictures for the
single LDIs. The set of all LDIs defines
the multi LDI. For the generation of the
LDI A in (c), the depth images of the cam-
eras A1, A2, and B1 are applied.

4 Hardware Setup

Our hardware setup consists of an electromag-
netic 6 DOF tracker (Ascension, Flock of Birds)
and a stereo table top display (Barco, Baron)
called the Virtual Table. The tracker is used for
determining the position and the orientation of
three receivers. The first is used to track the po-
sition and orientation of the viewer’s head. The
virtual camera is attached to this receiver. The
second is attached to a physical pen, which the
user holds in his/her dominant hand. The vir-
tual counterpart of the pen is used to manipulate
the 3D virtual buttons, sliders, and other inter-
action elements projected on the pip. The pip is
tracked with the third receiver and is a transpar-
ent panel, on which the interaction elements are
back-projected [Schma99]. Furthermore, the pip
is also used as an image plane for an additional
viewport, through which the scene is projected.
Additionally, the pip also allows to superimpose
information through it, like this is done with the
magic lens [Bier93].

5 Realization

In this section, we introduce the software envi-
ronment used for our implementations. After-
wards, the image-based techniques for the snap-
shot tool and the WIM navigation tool are pre-
sented in detail.



5.1 Software System

Our implementation is based on the Studier-
stube framework [Schma96]. This is an object-
oriented library extending the standard Open In-
ventor functionality. It allows for transparent
processing of tracker events and their propaga-
tion through the scene graph.

5.2 Utilization

Initially, when the virtual map tool (WIM) is ac-
tivated, the complete virtual world is mapped on
the personal interaction panel of the user. Af-
terwards, the user can select a region of interest
directly on the scaled down world, defining the
scaling of the view volume [Stoev01]. A “beam-
ing there” does not immediately follow this ac-
tion. Instead, we offer a preview of the selected
area through a seam mapped on the pip. First
when the user finishes the current adjustment of
the view area, he/she can activate the “beam-
ing”. Hence, a precise traveling through the vir-
tual world is possible.

The application of the snapshot tool is easy as
well. When this feature is activated, a reference
(rather than a copy) of the current world is shown
through the pip (a second viewport is defined
as shown in Figure 5). Thus, the user does not
see any difference between the scenes displayed
through the two viewports. Now, the pen held in
the dominant hand is applied as a virtual handle
for adjusting the orientation, position, and scale
of the world, shown through the second view-
port [Stoev01]. When this adjustment is com-
pleted, one can freeze the world currently seen
through the pip relative to the pip. This means
that the pip (respectively the viewport on the pip)
and the scene seen through the pip can be po-
sitioned in the space in front of the user. Since
the creation of an LDI can be an expensive task,
we left the initial SEAM-concept unchanged, thus
geometry-based, until the user freezes the win-
dow in space. At this point, the generation of
the multi LDI is triggered and it is displayed
on the pip. In this way, the rendered geometry
is not more than doubled. Each time a geome-
try containing SEAM-window is frozen, the LDIs
for it are generated and no geometry is rendered.
Thus, there can be no more than one geometry-
rendered copy of the whole scene at a time.

5.3 LDI-acquisition

When the user freezes the new view window, we
start with the LDI-generation. First, an imagi-
nary hemisphere over the front side of the pip
is aligned with the center of the pip (Figure 3
(a)). The radius of the hemisphere is set to be

the current distance between the user’s head po-
sition and the center of the pip. We divide the
hemisphere into eight equally sized patches and
a central patch, defining the multi LDI, as shown
in Figure 3 (b). The patches cover 2/3 of the
hemisphere’s area corresponding to an angle of
120◦. For each patch, which defines an interval
of viewing directions, an LDI is created. The im-
age plane (LDI-plane) of each patch is parallel to
the plane defined by the three camera positions
of the patch and contains the midpoint of the pip
(Figure 3(c)).

The outer shell of the hemisphere is not covered
with patches, since the view-angle in this area is
very narrow and rarely used. In general the user
views the window from the front, moving the vir-
tual camera within the space covered by the LDI-
patches. We ascertained that this is not limiting
or distorting the utilization of the snapshot tool.
However, in order to not confuse the user, we dis-
play a kind of an opened box (Figure 3(c)), which
occludes the area not covered with LDI-patches
before gaps can occur.

In the next step of the LDI-acquisition, we po-
sition a number of virtual cameras in each patch
as depicted in Figure 3 (b). Each camera uses an
offscreen renderer to generate a depth image of
the scene (Figure 4). Knowing the position and

b
ac

kg
r.

LDI im
age plane

Depth buffer Frame buffer

Figure 4: In order to create an LDI, we use
the frame and depth buffer data of each
shot picture and sort the pixels in the ap-
propriate LDI(s).

orientation of the camera we can compute the po-
sition of each pixel in the LDI.



For the generation of a single LDI, we merge
the depth images belonging to this patch (dots in
each patch in Figure 3), as proposed by Shade et
al. [Shade98]. In addition, the images of the cam-
eras adjacent to the current patch are also taken
into account. In this way, we can guarantee that
no distorting “flickering” appears, when the user
moves from one LDI to the next. Note, that this
is especially awkward, when the LDI is viewed
in stereo mode and each eye sees an image gen-
erated from a different LDI patch. On the other
hand, this problem does not occur, when one
large LDI is utilized. Using a set of small LDIs,
however, provides much better performance than
utilizing one large LDI for the whole hemisphere.
As stated above, since each two adjacent LDIs
contain common depth images, the switching
from one LDI to the other is imperceptible for
the viewer.

The offscreen rendering applied for all 29 camera
positions (8 patches × 3 cameras and one patch
with 5 cameras) can be a very time consuming
task. Therefore, initially we compute only the
LDI patch covering the current view-direction
position. Afterwards, a function is scheduled,
which is executed each time the application is
idle. Each time the function is executed, the LDI
for one patch is computed. If, however, the view-
point of the user changes, the application com-
putes the needed LDI immediately.

5.4 The LDI Splatter

During the rendering of an LDI onto the win-
dow frozen in space, we first determine the posi-
tion and the angle of the window (LDI-projection
plane) relative to the viewer. This determines
which LDI of the multi LDI has to be rendered.
The current camera position and the projection
plane position are used to compute the projec-
tive transformation, which maps the LDI pixels
onto the projection window. The pixels of the
LDI are splatted using a software renderer. We
use McMillans’s ordering algorithm [McMil95]
to access the single pixels in such a way, that
they can be successively drawn without apply-
ing an explicit depth test. In contrast to Shade
et al. [Shade98], however, we compute the splat
size for each pixel individually. This increases
the precision and avoids visual artefacts caused
by the coarse splat size approximation. The
resulting picture is used as a texture, which
is mapped onto the projection plane using the
graphics hardware.

Since the Studierstube is based on Open Inventor,
we implemented the LDI-splatter as an Inventor
class derived from the regular 2D texture class.
Each time an instance of this class is traversed,

a new view-dependent texture is generated and
mapped onto the given window in space. Thus,
it creates the illusion of viewing a true 3D world
behind the LDI’s projection plane.

5.5 Adding and Removing Objects in an LDI

The scene frozen on the LDI contains all details
of the latter, being present when the acquisition
was started. However, depending on the applica-
tion area, updates of the LDI might be desirable.
For instance, during the construction of a virtual
environment a window may be frozen to show a
given invisible area, such that the added new ob-
jects are also displayed in this window.

This concept can be easily adapted to the LDI
data presentation. When an object is created and
it is visible in the LDI window, we can render the
object as a geometry object. For this, we need the
depth information of the pixels in the final splat-
ted image. Fortunately, the LDI structure pre-
sented above can be easily extended to provide
this capability. Thus, a mixed rendering includ-
ing geometry and LDI data can be performed.

6 Application

The LDI-technique described above is integrated
in an application for visualization of digital ele-
vation models, urban planning, and terrain explo-
ration. Due to the (almost unlimited) size of the
displayed data, this application provides a good
test bed for the proposed techniques. Further-
more, the navigation in such large scenes is also
a challenging task, which we addressed with the
described extension of the WIM-metaphor.

The displayed terrain we used in our system has
a size of approximately 12x12 kilometers. The
images in Figures 1(b) and Figure 4 showing the
map tool were made with this application. The
snapshot images are made with the same appli-
cation, however, on a small, scaled up part of the
terrain.

7 Results

In order to evaluate the performance of the pro-
posed technique, we compute the times for the
geometry rendering of three scenes with 126′790,
264′247, and 630′799 triangles respectively. Af-
terwards, we compare the times for rendering
various number of snapshot windows represented
as geometry data and as multi LDI data (Fig-
ure 6). The number of windows varies from
none, which means that only the surrounding
world is rendered (as geometry), to 4 windows.
The measurements are performed on a Pen-
tium III 733Mhz machine (1Gb main memory)



Second world drawn as an LDISecond world: geometry/LDI Second world: geometry/LDI

Second world drawn as geometrySecond world drawn as geometry Second world: geometry/LDI

a

ed f

b c

Figure 5: The images (a)-(c) show the snapshot tool: (a) The scene surrounding the user and the
one seen through the second viewport are aligned. (b) The scene seen through the pip is grabbed
and rotated. (c) the manipulated scene is frozen in an LDI window. (d) Again the new world is
aligned with the main world. (e) The second world is manipulated. (f) The manipulated world is
frozen in a new LDI-window.

0

1

2

3

0 1 2 3 4
number

of windows

ti
m

e 
in

 s
ec

.

127k tri. Geometry 127k tri. Ldi

264k tri. Geometry 264k tri. Ldi

630k tri. Geometry 630k tri. Ldi

127k triangles rendered as 264k triangles rendered as 630k triangles rendered as
Windows Geometry Ldi Geometry Ldi Geometry Ldi

0 0.1567 0.1567 0.2838 0.2838 0.72708 0.72708
1 0.3136 0.1953 0.56788 0.3261 1.45416 0.77736
2 0.4708 0.2341 0.85276 0.3687 2.18624 0.82796
3 0.6272 0.2731 1.1355 0.4111 2.91304 0.87896
4 0.7844 0.3121 1.421 0.4541 3.636 0.93096

Figure 6: Comparison of the geometry
rendered snapshot tool and the multi LDI-
based rendering.

with NVidia Ge-Force 2 GTS graphics hardware
(64Mb texture memory).

The window with the LDI containing the scene
was positioned in such a way, that the required
resolution of the multi LDI was not more than
256 × 256 pixels. This is quite large when we
consider, that the resolution of the Virtual Ta-
ble we use in stereo mode is 1024 × 768. After
offscreen-rendering a depth image, the time re-
quired for inserting it in an LDI-patch was on av-
erage 0.13 seconds. Since each pixel is inserted
in a depth-sorted order, this average time varies
depending on the number of the pixels, which are
already stored in the LDI.

More interesting and important is the rendering
time for the LDI, when applied in the proposed
tools. Depending on the viewing angle and the
distance to the current viewpoint, this time may
vary as well. The values for the multi LDI ren-
dering shown in Figure 6 are “worst case” values.
They include the time for computing a texture
with the given resolution (splatting) and mapping
it on the pip.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 100,000 200,000 300,000 400,000 500,000 600,000
number of triangles

ti
m

e 
in

 s
ec

.

Geometry rendered
Ldi rendered

Figure 7: Rendering time for scenes with
various complexities, rendered as geome-
try and as multi LDI data.

Figures 6 and 7 clearly show, that the pro-
posed technique is especially useful, when sev-
eral views are used during exploration of the
scene, and when it contains complex geometry.
For instance, let us consider a case in which there
are two simultaneous views of the scene and the
regular surrounding scene, i.e. the scene is ren-
dered three times per frame. Our scene with
126′790 triangles requires approximately 0.47
seconds per frame using the standard geometry
rendering pipeline. Applying our approach, this



cost is reduced to rendering the scene as geom-
etry once and rendering two multi LDIs. This
results in 0.23 seconds at all. In other words, the
rendering time was reduced by more than 50%,
which means that the frame rate was more than
doubled.

8 Conclusions and Future Work

The only expensive part of our approach is the
offscreen rendering. Thus, the next step in our
implementation will be the parallelization of the
LDI acquisition, which in turn will reduce the la-
tency of the system during the offscreen render-
ing.

To summarize, in this paper we proposed a set
of rendering and interaction techniques for VR-
applications. First, we presented the multi LDI-
concept for covering a hemisphere with small
LDI-patches. Such a data structure can be ren-
dered significantly faster than a single large LDI.
Afterwards, we described a modification of the
WIM-technique, based on a pre-computed multi
LDI.
We discussed in detail the implementation of
the above techniques. Then, we compared the
achieved results with the regular geometry ren-
dering, and briefly presented the application and
the setup, the techniques are integrated in. In our
opinion, the proposed multi LDI approach is a
promising modification of the standard WIM and
snapshot tools, considering the growing amount
of data managed in virtual worlds nowadays.

REFERENCES
[Aliag97] Daniel G. Aliaga and Anselmo A. Lastra. Ar-

chitectural walkthroughs using portal textures. In
IEEE Visualization ’97, pages 355–362. 1997.

[Aliag99] Daniel G. Aliaga and Anselmo A. Lastra. Au-
tomatic image placement to provide a guaranteed
frame rate. In SIGGRAPH 99 Conference Proceed-
ings, pages 307–316, August8–13 1999.

[Bier86] Eric A. Bier. Skitters and jacks: Interactive 3D
positioning tools. In Proc. 1986 ACM Workshop on
Interactive 3D Graphics, pages 183–196, October
1986.

[Bier93] Eric A. Bier, Maureen C. Stone, Ken Pier,
William Buxton, and Tony D. DeRose. Toolglass
and magic lenses: The see-through interface. In
SIGGRAPH 93 Conference Proceedings, pages 73–
80, 1993.

[Darke93] Rudolph P. Darken and John L. Sibert. A toolset
for navigation in virtual environments. In Proceed-
ings of the ACM Symposium on UIST, pages 157–
165, 1993.

[Decor99] Xavier Decoret, François Sillion, Gernot
Schaufler, and Julie Dorsey. Multi-layered impos-
tors for accelerated rendering. Computer Graphics
Forum, 18(3):61–73, September 1999.

[McMil95] Leonard McMillan. A list-priority rendering
algorithm for redisplaying projected surfaces. Tech-

nical Report TR95-005, University of North Car-
olina - Chapel Hill, February 14 1995.

[Mine95] Mark Raymond Mine. Virtual environment in-
teraction techniques. Technical Report TR95-018,
University of North Carolina - Chapel Hill, May 4
1995.

[Olive99] Manuel M. Oliveira and Gary Bishop. Image-
based objects. In Proceedings of the Conference on
the 1999 Symposium on interactive 3D Graphics,
pages 191–198. 1999

[Pausc95] Randy Pausch, Tommy Burnette, Dan Brock-
way, and Michael E. Weiblen. Navigation and loco-
motion in virtual worlds via flight into Hand-Held
miniatures. In SIGGRAPH 95 Conference Proceed-
ings, pages 399–400. August 1995.

[Raffe97] Matthew M. Rafferty, Daniel G. Aliaga, and
Anselmo A. Lastra. 3D image warping in architecu-
tral walkthroughs. Technical Report TR97-019,
University of North Carolina - Chapel Hill, Septem-
ber 03 1997.

[Raffe98] Matthew M. Rafferty, Daniel G. Aliaga, Voicu
Popescu, and Anselmo A. Lastra. Images for ac-
celerating architectural walkthroughs. IEEE Com-
puter Graphics & Applications, 18(6), November –
December 1998.

[Schau98] Gernot Schaufler. Per-object image warping
with layered impostors. In Rendering Techniques
’98, Eurographics, pages 145–156. Springer-Verlag
Wien New York, 1998.

[Schma96] Dieter Schmalstieg, Anton L. Fuhrmann,
Michael Gervautz, and Zsolt Szalavári. ’Studier-
stube’ - An Environment for Collaboration in Aug-
mented Reality’. In Proceedings of Collaborative
Virtual Environments ’96, 1996.

[Schma99] Dieter Schmalstieg, L. Miguel Encarnação, and
Zsolt Szalavári. Using transparent props for inter-
action with the virtual table (color plate S. 232). In
Proceedings of the Conference on the 1999 Sympo-
sium on Interactive 3D Graphics, pages 147–154,
April 26–28 1999.

[Shade98] Jonathan W. Shade, Steven J. Gortler, Li-wei
He, and Richard Szeliski. Layered depth images.
In SIGGRAPH 98 Conference Proceedings, pages
231–242. July 1998.

[Stoak95] Richard Stoakley, Matthew J. Conway, and
Randy Pausch. Virtual reality on a WIM: Interac-
tive worlds in miniature. In Proceedings of ACM
CHI’95 Conference on Human Factors in Comput-
ing Systems, pages 265–272, 1995.

[Stoev01] Stanislav L. Stoev, Dieter Schmalstieg, and
Wolfgang Straßer. Two-handed through-the-lens-
techniques for navigation in virtual environments.
In Proceedings of the Eurographics Workshop on
Virtual Environments, 16-18 May 2001.

[Szala97] Zs. Szalavári and M. Gervautz. The personal in-
teraction panel - A two handed interface for aug-
mented reality. Computer Graphics Forum (Pro-
ceedings of EUROGRAPHICS’97), 16(3):335–346,
1997.

[Ware90] Colin Ware and Steven Osborne. Exploration
and virtual camera control in virtual three dimen-
sional environments. In Proceedings of the 1990
Symposium on Interactive 3D Graphics pages 175–
183, 1990.

[Wimme99] Michael Wimmer, Markus Giegl, and Di-
eter Schmalstieg. Fast walkthroughs with image
caches and ray casting. Computers and Graphics,
23(6):831–838, December 1999.


