
ON IMPROVING KD-TREES FOR RAY SHOOTING

Vlastimil Havran1 Jiřı́ Bittner2

2Center for Applied Cybernetics
1Max-Planck-Institut für Informatik Czech Technical University in Prague

Stuhlsatzenhausweg 85 Karlovo nám. 13
66123 Saarbrücken 12135 Praha 2

Germany Czech Republic
havran@mpi-sb.mpg.de bittner@fel.cvut.cz

ABSTRACT

Efficient ray shooting algorithm is inherently required by many computer graphics algorithms,
particularly in image synthesis. Practical ray shooting algorithms aiming at the average-case
complexity use some underlying spatial data structure such as kd-tree. We show the new termi-
nation criteria algorithm that improves the space and time complexity of the kd-tree construction.
It provides efficient ray-shooting queries and does not require any specific constants from a user.
Further, we show how to apply a novel clipping algorithm into the kd-tree within construction
phase in order to improve its properties.

Keywords: ray shooting, ray casting, spatial data structures, clipping, kd-tree.

1 INTRODUCTION

Many global illumination algorithms use a dis-
crete sampling of visibility, carried out by a ray
shooting algorithm. Huge number of ray shoot-
ing queries (� 106� 109) are performed in order
to compute one antialiased image of a commonly
used resolution such as 640 � 480.

The ray shooting is a difficult problem in spite
of its simple definition: given a ray find its
nearest intersection with objects in the scene, if
such an object exists. The trivial solution that
tests every object against the object resulting in
�(N) complexity is practically unusable when
the number of objects N exceeds 10 � 100. The
worst-case complexity algorithms developed
within computational geometry require
(N4)

space in the worst case [Szirm98] to achieve
O(logN) query time that is unusable for high
number of objects. For this reason the average-
case solutions [Arvo89] based on some spatial
subdivision or hierarchy of objects are used in
practice.

In this paper we deal with two methods that im-
prove the construction of a kd-tree which serves
as the base for ray shooting algorithms. The first
method concerns the termination criteria of the
kd-tree construction. We introduce a new auto-
matic termination criteria by involving the cost
of the kd-tree in commonly used fixed termina-
tion criteria. The second method called split
clipping deals with shrinking bounding boxes of
objects straddling the splitting planes during the
construction of the kd-tree.

The paper is organized as follows: Section 2 re-
calls the basic properties regarding the construc-
tion of the kd-tree. In Section 3 we describe the
kd-tree construction with automatic termination
criteria. In Section 4 we show the split clipping
algorithm for the kd-tree construction. Section 5
presents results and the practical evaluation of
the proposed method on a set of scenes. Finally,
Section 6 concludes the paper providing some di-
rections for future work.

2 KD-TREES
The kd-tree is usually built over a set of points
in Rd [Berg97], but in the case of ray shoot-
ing it is built over bounding boxes of scene ob-
jects. For more formal description of kd-tree and
efficient ray traversal algorithms see [Havra00b,
Havra97].

A kd-tree is constructed hierarchically. At the
current leaf l of kd-tree a splitting plane is se-
lected that subdivides the bounding box of l into
two boxes corresponding to child nodes. The ob-
jects of l are distributed into the new descendants
of l. The process is repeated recursively until cer-
tain termination criteria are reached.

An important feature of the kd-tree is its adapt-
ability to the scene geometry, which can be sig-
nificantly influenced by positioning of the split-
ting plane. In the paper introducing kd-trees in
the context of ray shooting [Kapla85] the split-
ting plane is positioned in the mid-point of the
chosen axis, and the order of splitting axes is reg-
ularly changed. Below we recall a more elaborate
approach of the kd-tree construction.

2.1 Surface Area Heuristics
The surface area heuristics for the kd-tree con-
struction was introduced by MacDonald and
Booth [MacDo90]. Since this approach based on
geometric probability is essential for our novel
technique, we recall the method in more detail.

The surface area heuristics finds the position of
the splitting plane by minimizing a cost func-
tion. The cost function estimates the cost of
ray traversing through the kd-tree under some
simplifying assumptions. It uses the probability
p(Y jX) that an arbitrary ray hits the region Y ly-
ing inside a region X once it passes through X .
(see Fig. 1).

Figure 1: Geometry involved in determi-
nation of the probability p(Y jX).

Suppose that both regions X and Y are
convex. Then the conditional probability

p(Y jX) can be expressed as a ratio of the
surface area of the region Y to the sur-
face area of the region X (see [Arvo89]):

p(Y jX) =
SY
SX

(1)

The geometry of kd-tree induces axis-aligned
bounding boxes for interior nodes and leaves.
Further, we denote AB(v) the axis-aligned
bounding box associated with the node v. Let
us assume the situation at the beginning of the
kd-tree construction. The root node contains N
objects. All of them would have to be tested for
intersection with a ray passing through the scene.
Assume that the intersection test for i–th object
takes computational time Ti. The cost for such
node is expressed as:

C =
NX

i=1

Ti (2)

Recursively subdividing the kd-tree decreases
the number of intersection tests, but increases
the number of interior nodes to be traversed (see
Fig. 2). Now let us consider the case when the
ray visits both left and right children of the in-
terior node with some probability given by the
surface areas as described above.

Figure 2: New costs after one splitting.

The node on the left side in Fig. 2 has been re-
placed by a tree shown on the right side. The
original cost C has changed to Cnew given as the
sum of three terms – CTS , CL, and CR. Term
CTS is the cost of traversing the interior node; it
does not incorporate any ray-object intersection
tests. Costs for left and right child nodes, CL and
CR, depend on the conditional probability that a
ray hits the left and/or right child of interior node
v once it visits v. The new cost Cnew is given as
follows:

Cnew = CTS + CL + CR (3)

= CTS + pL:
NLX

j=1

Tj + pR:
NRX

k=1

Tk

pL =
SA(AB(leftchild(v)))

SA(AB(v))

pR =
SA(AB(rightchild(v)))

SA(AB(v))

, where

Tj ; Tk is the time for intersection test
with j-th and k-th object respec-
tively,

pL; pR is the probability that a ray will
intersect the left and right child
respectively,

SA(AB(v)) is the surface area of the bound-
ing box associated with the node
v,

NL; NR is the number of objects inter-
secting the AB associated with
the left and right node respec-
tively.

The goal is to build a kd-tree with minimized
global cost which is computed using the Eq. 3 re-
cursively. Further, we focus on a greedy heuris-
tics that tries to minimize the global cost.

2.2 Termination Criteria
The cost model provides a recipe for positioning
the splitting plane in an interior node, but it does
not answer an essential question: should we sub-
divide the node at all, or should we declare the
node as a leaf?

Any node v in the kd-tree has the following basic
characteristics: its depth d(v) from the root node,
the axis-aligned bounding box AB(v) associated
with v, and the number of objects N intersecting
the interior of AB(v). The construction of the
kd-tree implies that the number of objects inter-
secting AB(v) decreases with increasing depth
of the node. Having a node v and its character-
istics, we now face the question: to subdivide or
not to subdivide?

Traditionally, this question is answered by ad
hoc termination criteria (further abbreviated to
AHTC) algorithm, which was given with the

introduction of ray shooting algorithms based
on the kd-tree [Kapla85] and octree [Glass84].
The AHTC follows the ”common sense” with-
out thoroughly considering the distribution of ob-
jects in the scene: the current node v becomes
a leaf when the number of objects intersecting
the AB(v) is lower than or equal to a fixed con-
stant nmax, or its depth d(v) reaches another
fixed constant dmax. The two constants nmax
and dmax are specified by a user.

The values of these two constants nmax and dmax
are left to the user’s experience even in com-
mercial rendering systems that use ray shoot-
ing based on kd-trees (Mental Ray [MenRa95]).
Kaplan suggests that Constant nmax is set
to 1 [Kapla85]. We are not aware of any justi-
fied recommendations for maximum leaf depth
dmax in a research paper. In software pack-
ages some default values are provided, Men-
tal Ray [MenRa95] uses the following defaults:
dmax = 24 and nmax = 4. Incorrect setting of
these constants can easily result in two problems.
The first one is the high space and time complex-
ity for the kd-tree construction. The second one
is high time complexity of ray shooting queries.
Below we develop an algorithm for automatic es-
timation of good termination criteria.

3 AUTOMATIC TERMINATION CRITE-
RIA

Subramanian and Fussel [Subra91] coined the
term automatic termination criteria (further ab-
breviated ATC), which should not require any
user specific constants during kd-tree construc-
tion. However, they did not describe any par-
ticular algorithm. Motivated by the idea of
ATC [Subra98], we have designed to our knowl-
edge the first ATC algorithm based on the cost
model.

We can estimate the global cost when kd-tree is
being constructed using the Eq. 3 recursively for
interior nodes and Eq. 2 for leaves. The cost
should correspond to the cost of ray shooting
queries after the construction. However, linear
relationship between the real and estimated costs
is impossible, since the cost model does not cover
occlusion and uses just estimates for child nodes.

Fig. 3 shows the real cost in seconds per one ray
obtained for ray tracing several scenes from the

Figure 3: The time in seconds per one ray
for different depth of kd-tree built with ad-
hoc termination criteria for 10 scenes from
SPD database, group G4.

SPD database [Haine87] using different setting
of dmax. The number of objects for scenes in
Fig. 3 is about 104 (group of scenes G4 as de-
scribed in Section 5). When the minimum of
the global cost would be found for some dmax,
then the construction could be finished at this
depth without significant increase of time com-
plexity for ray queries. The global cost computed
according to Eq. 3 follows the shapes of these
curves enough precisely.

A simple ATC algorithm can follow the curves
on these graphs. We could construct a kd-tree for
some maximum leaf depth dmax = d and com-
pute the estimated global cost of the kd-tree C(d)
using Eq. 3. Then we can subdivide all the leaves
of the current kd-tree one step further (if possi-
ble) using dmax = d + 1, and compute the new
estimated global cost C(d + 1) of this deepened
kd-tree. When C(d+1) is sufficiently lower than
C(d), then the kd-tree can be further deepened to
depth (d + 2) since it is likely that this subdivi-
sion step will decrease the global cost again. If
not, kd-tree construction is finished.

However, incrementally increasing maximum
leaf depth dmax for the whole kd-tree is not the
only way to get the pseudo-minimum of the esti-
mated global cost. Actually each node v to be po-
tentially subdivided has its own history of split-
ting that is associated with all the nodes on the
path between the root node and the node v. Set-

ting only one maximum leaf depth dmax for the
whole kd-tree is not very appropriate to the prob-
lem because of locality of the splitting and ob-
jects distribution. ATC should keep track of the
history of splitting of the kd-tree nodes.

We should remark that one subdivision step need
not necessarily bring an improvement in cost im-
mediately. It is possible that the estimated cost
increases due to a current subdivision step, even
if the splitting plane with minimum cost is se-
lected. This can be caused by two possible rea-
sons. First, the splitting plane could not separate
enough objects. In this case, most objects are
intersected by the splitting plane, thus a recur-
sive ray traversal algorithm can require one more
traversal step. Second, the linear cost estimate of
the unsubdivided child node is just an estimate.
If a subdivision step is unsuccessful, it does not
mean that further subdivision of the correspond-
ing child nodes cannot decrease the global esti-
mated cost considerably. If many unsuccessful
subdivision steps occurred on the path between
the root node and the current node, this would
indicate that objects in these spatial regions were
difficult to separate. Avoiding further subdivi-
sions steps in this case could decrease the global
cost of the kd-tree.

We observed during experiments with termina-
tion criteria algorithms that using some maxi-
mum leaf depth dmax is a useful feature even in
the ATC algorithm. First, the use of dmax bounds
the maximum memory requirements for the kd-
tree representation by limiting the number of kd-
tree nodes to a constant (2dmax). Second, since
ABs associated with objects can overlap, the ob-
jects need not be separable by a splitting plane at
all. In this case the number of objects in a leaf
cannot become lower than or equal to a constant
nmax.

However, setting of dmax should follow the num-
ber of objects N in the scene. If the objects with
the shape of AB do not overlap in the projec-
tion to all coordinate axes and the kd-tree with
one object in every leaf is required, the maximum
depth of a leaf node for the balanced kd-tree is
dmax = log2N . When we assume arbitrarily dis-
tributed objects in the scene with possible over-
lapping of objects, then the maximum leaf depth
dmax to achieve the critical cost point could be

higher. To bound this quantity we propose to ex-
press the maximum leaf depth as:

dmax = k1: log2N + k2 (4)

The values of constants k1 and k2 can be cho-
sen according to experiments on some set of
scenes to achieve the critical performance point.
We found for experiments on 30 scenes from
SPD database [Haine87] that a suboptimal set-
ting of these constants in our rendering sys-
tem [GOLEM] is k1 = 1:2; k2 = 2:0.

Further, we discuss the setting of the constant
nmax. Our observation is based on the case when
we access a leaf with nmax objects during a ray
traversal algorithm. Assuming that the cost of
traversal step CTS is sufficiently lower than the
cost of ray-object intersection test CIT , it should
be advantageous to set nmax = 1. Then in the
ideal case in the constructed kd-tree the leaves
contain either one or no object. First, the empty
leaves are traversed quickly. Second, if a leaf
with one object is checked for ray-object inter-
section and the intersection exists, no further ray-
object intersections need to be performed. Hav-
ing one object per leaf is not always possible,
since objects or/and ABs associated with the ob-
jects can overlap. Therefore, during the construc-
tion we have to detect these branches of the kd-
tree where further deepening does not bring any
improvement of the global cost of the kd-tree.
In order to detect these cases we also use a cost
model.

Below, we improve ATC algorithm by tracking
the history of subdividing the spatial region us-
ing the cost model. When the node v with N
objects is subdivided, its resulting estimated cost
is computed according to Eq. 3. When the node
v is declared a leaf, its cost is expressed using the
Eq. 2. Then we can express the ratio of these two
costs, which shows the quality rq of the subdivi-
sion step:

rq =
Cnew
C

; (5)

where Cnew is computed according to Eq. 3 and
C according to Eq. 2. The higher the quality of
the subdivision step the lower rq: for a success-
ful subdivision step we assume rq < 1:0. For
example, if a node with AB of cubic shape that

contains uniformly distributed objects is subdi-
vided in its spatial median, then for CTS = 0 we
get the quality of the subdivision rq = 2=3. If rq
is a constant greater than constant rminq (we can
set rminq to one or some constant slightly lower
than one), we can consider the subdivision step
unsuccessful. However, the case that rq > rminq

can occur only transiently, and the quality of sub-
division step rq can improve again in the sub-
sequent subdivision step(s). Therefore, we keep
track of the number of unsuccessful subdivision
steps on the path from the root node to the current
node. If the number of these unsuccessful sub-
division steps is higher than some allowed fixed
constant Fmax, we declare the node a leaf, since
further subdivision steps are unlikely to decrease
the estimated global cost of the kd-tree. Intu-
itively, for scenes with higher number of objects
the number of allowed unsuccessful steps should
be higher. Since dmax is derived from the num-
ber of objects, we propose to compute Fmax from
the maximum leaf depth dmax as follows:

Fmax = K1

fail +K2

fail:dmax (6)

We found experimentally a suboptimal setting
for the constants in the GOLEM rendering
system: K1

fail = 1:0, K2

fail = 0:2, and
rminq = 0:75.

The ATC algorithm described here is an empir-
ical algorithm based on experiments using 30
scenes of various number of objects from SPD
database. We do not claim its optimality or the
optimal setting of constants k1, k2, K1

fail, and
K2

fail. Such setting of constants is implemen-
tation dependent, and particularly, it depends on
the ratio CTS=CIT . The advantage of the ATC
algorithm above is that after specifying these
constants it does not require any user setting for
each particular scene in runtime. Further, it pre-
serves good time and space complexity of kd-
tree construction with regard to the number of
objects. The ATC algorithm provides a kd-tree
of lower or approximately equal time complexity
for ray shooting queries when compared with the
kd-tree built with AHTC.

4 SPLIT CLIPPING ALGORITHM
The use of axis-aligned boxes for scene objects
significantly simplifies the kd-tree construction.

Since an object Oi can straddle splitting planes,
it can happen that after several subdivision steps
the object as such does not intersect the bound-
ing box AB(v) of the current node v of the kd-
tree hierarchy, although the AB(Oi) of the ob-
ject intersect the AB(v). This case is depicted in
Fig. 4 (a).

Although ABs of objects fit well in the kd-
tree construction, there are several disadvantages
arising from the simple use of ABs instead of
objects’ surfaces. First, objects that cannot have
an intersection with a ray are also tested in some
leaves. Second, objects only virtually present in
an interior node v influence the estimated cost of
v for both Eq. 3 and Eq. 2 and thus the process of
kd-tree construction.

Apparently, one solution would be to postprocess
all leaves of the kd-tree and check using an inter-
section test between the AB(v) associated with
a leaf v and the object for all leaves. In this case
we do not avoid the problem of influencing the
kd-tree construction by objects that only virtu-
ally intersect ABs of the interior nodes. In the
postprocessed kd-tree we can also get subtree(s)
with empty leaves only that should be consoli-
dated to single empty leaves.

Applying the intersection test above for each ob-
ject and for each position of the splitting plane in-
side the interior node during construction would
be very costly. Therefore, we propose the novel
solution based on sweeping technique, which
solves the problem with minimum effort, but re-
quires some special object-clipping procedures.

We assume that objects are present in the AB(v)
to be subdivided. Then we determine the posi-
tion of the splitting plane using any method avail-
able. If the position of a splitting plane is known,
we also know the objects straddling the splitting
plane. For these objects we reduce the two ABs
on both sides of the splitting plane as much as
possible, as depicted in Fig. 4 (c). This step re-
quires a special clipping method for all shapes of
objects. For a given object O, its current AB,
and the position and orientation of a splitting
plane, we want to construct two tight ABs as-
sociated with the fragments of the object on both
sides of the splitting plane. These reduced ABs
for the both sides of the splitting plane must be

passed during the construction together with the
reference to the object. We call this method that
clips the ABs of objects with regard to a split-
ting plane split clipping (further abbreviated as
SC). The description of split clipping procedures
for particular objects shapes is omitted due to the
lack of space.

5 RESULTS
We verified experimentally the performance of
kd-trees built with ATC using 30 scenes from
Standard Procedural Database [Haine87]. We di-
vide the scenes into three groups, G3, G4, and
G5, with different number of objects to justify
our ATC algorithms. G3 consists of scenes with
about 103 objects, G4 of scenes with about 104

objects, and G5 of scenes about 105 objects, each
group contains ten scenes.

The results are reported using the set of pa-
rameters given by Minimum Testing Output de-
scribed in [Havra00a] for simple ray tracing.
For testing we used parameters suggested in the
Readme.txt file in the SPD package distri-
bution [Haine87] (the number of primary rays
shot is 513 � 513, depth of recursion is 4). All
experiments were conducted on a Pentium III,
466 MHz, 128 MBytes RAM, running Linux.
The test program in the GOLEM rendering sys-
tem [GOLEM] was compiled using gcc with -
O2 optimization. The parameters for the subset
� of the minimum testing output were obtained
using a software profiler tool.

We measured the results of AHTC, further de-
noted (dmax, nmax) for all three groups aver-
aged for all the scenes within one group. Fur-
ther, we measured the results for ATC with and
without SC, also averaged over all scenes within
one group. We also computed average (~G) for all
the scenes. The results are given in Table 1. In
order to evaluate the memory complexity we use
the number of nodes referenced (NG +NE) and
we can also compare the number of references
to objects in the leaves (NER). For comparison
of time complexity we consider �RUN , which is
virtually independent of hardware used.

We can observe that AHTC can increase mem-
ory complexity by a factor of up to 300% (for G3
and (24,1) compared with ATC). When nmax is
set too low, the time complexity is drastically in-

Figure 4: (a) Splitting during the kd-tree construction can result in references to objects that have
no intersection with the leaves. (b) When the AB associated with an object straddles the slitting
plane, it is not guaranteed that the object also straddles the splitting plane. (c) Split clipping –
reducing the AB of the object by clipping, one box on the left side and second one on the right
side of the splitting plane.

creased, which is most visible on group G5 and
(8,2). The best results when using AHTC are
reached for (24,2) setting. However, this setting
is not suitable when the number of primitives is
small, as in G3. On average for all 30 scenes,
ATC compared with (24,2) decreases the time
complexity of ray shooting queries by 4.2% de-
creasing the number of nodes by 7% and number
of references to objects by 31%. At the best case,
kd-tree with ATC improves the time complex-
ity of ray shooting queries by 20% over (24,2)
and in the worst case ATC is 10% slower than
(24,2). The kd-tree with ATC performs faster
for ray shooting than (24,2) for 23 of 30 scenes
tested.

Further we discuss the results for the kd-tree built
with SC algorithm that we used together with
ATC. We compare this approach to the kd-tree
built with ATC and without SC. The time TB re-
quired to construct kd-tree is increased, the time
of the ray tracing algorithm is decreased as ex-
pected. The time to build the kd-tree is increased
by 140% (taken by split clipping of objects), the
number of nodes is increased by 5.4% on av-
erage, and the number of empty leaves is in-
creased by 30% on average (memory efficient,
null pointer is used in the interior node contain-
ing empty leaf). The number of references to
objects is decreased by 10.5%, the number of
ray-object intersection tests is decreased by 21%,
and the time complexity for ray shooting queries
is improved by 9% on average. For large scale
scenes, when the kd-tree is built in advance and
saved to a file for interactive or real time render-
ing [Wald01], the increase of TB is nothing to
worry about, since the low memory requirements

and performance of ray shooting is the main con-
cern. The best improvement of time complexity
for ray shooting for a single scene is 35%. This
improvement is significant, since ray shooting al-
gorithm with kd-tree nearly touches the theoreti-
cal lower bound O(logN) of time complexity on
average [Szirm98].

6 CONCLUSION AND FUTURE WORK
In this paper we have shown that the new auto-
matic termination criteria provide the reasonable
way for constructing kd-trees in the context of
ray shooting algorithms. Even if the average im-
provement over the ad hoc termination criteria
is not (and cannot be) overwhelming, we have
shown that for scenes of various number of ob-
jects it provides a good setting that also mini-
mizes the memory usage. The particular impor-
tance for the user of a rendering system with au-
tomatic termination criteria is that this method
does not require any constants to be set for a par-
ticular scene.

The kd-tree construction with split clipping
method solves correctly the problem of presence
of objects inside the node to be subdivided. This
method is optimal in the number of checked ob-
jects and provides a correct solution for referenc-
ing of objects in the leaves and during the con-
struction. Even if it increases the building time
of kd-tree, it further decreases the time complex-
ity of ray shooting by 9% on average.

The kd-tree construction with split clipping of-
fers some space for further investigation concern-
ing the efficient split clipping methods for vari-
ous shapes of objects. We did not optimize these
clipping algorithms. The automatic termination

Minimum Testing Output
Scene Notation � � �

NG NE NEE NER rITM
~NTS

~NETS
~NEETS TB TR �APP �rat �RUN

G3 (8,1) 140 141 29 1292 52.09 12.44 2.76 0.74 0.07 21.02 13.29 0.77 37.51
(8,2) 137 138 26 1292 52.95 12.18 2.71 0.59 0.06 21.03 13.29 0.77 37.59
(16,1) 3690 3691 767 4844 10.30 22.03 4.24 1.69 0.17 12.61 13.29 0.31 19.43
(16,2) 1870 1871 255 3590 12.93 18.97 3.71 1.05 0.13 13.10 13.29 0.39 20.57
(24,1) 8978 8979 1133 12429 10.30 23.72 4.52 1.73 0.31 13.22 13.29 0.29 20.23
(24,2) 4303 4304 298 8663 13.02 19.83 3.85 1.05 0.20 13.19 13.29 0.38 20.19
ATC 2043 2044 501 2937 12.80 19.25 3.78 1.55 0.13 12.83 13.29 0.37 19.51
ATC+SC 2142 2143 602 2793 10.31 19.54 3.84 1.77 0.22 12.08 13.29 0.33 17.65

G4 (8,1) 172 173 24 8757 250.54 12.62 2.67 0.69 0.80 75.45 13.73 0.94 175.32
(8,2) 171 172 22 8757 250.75 12.50 2.64 0.65 0.78 75.52 13.73 0.94 175.62
(16,1) 12421 12422 3042 21654 13.03 26.67 4.86 2.14 1.34 16.18 13.73 0.32 24.75
(16,2) 8317 8318 1263 19515 15.07 24.47 4.49 1.61 1.26 16.76 13.73 0.38 25.98
(24,1) 65655 65656 8352 91893 10.84 31.37 5.65 2.35 2.73 16.86 13.73 0.26 25.45
(24,2) 33433 33434 2414 66189 13.32 26.92 4.88 1.66 2.02 16.77 13.73 0.33 25.27
ATC 16873 16874 3836 25848 12.31 26.70 4.86 2.19 1.45 16.01 13.73 0.31 24.14
ATC+SC 17462 17463 5282 22824 9.78 26.81 4.89 2.56 2.60 14.82 13.73 0.27 22.04

G5 (8,1) 181 182 23 104396 2659.95 12.66 2.62 0.63 14.01 883.41 13.40 0.99 2696.34
(8,2) 180 181 22 104396 2660.08 12.62 2.61 0.62 14.01 884.45 13.40 0.99 2698.10
(16,1) 24068 24069 4124 147680 40.80 27.54 4.79 1.91 19.60 26.24 13.40 0.59 46.44
(16,2) 23113 23114 3580 147514 41.69 26.99 4.71 1.78 19.52 26.35 13.40 0.60 46.27
(24,1) 476453 476454 83642 663728 11.53 38.32 6.55 3.00 35.32 23.46 13.40 0.26 31.60
(24,2) 251440 251441 28940 498597 14.18 33.74 5.76 2.21 28.70 21.09 13.40 0.34 30.14
ATC 249915 249916 55707 366588 12.36 35.23 6.01 2.90 27.26 19.94 13.40 0.29 28.78
ATC+SC 262549 262550 73790 328496 9.60 35.10 5.97 3.40 66.34 18.51 13.40 0.25 26.11
(8,1) 165 166 25 38149 987.52 12.57 2.68 0.69 4.96 326.62 13.47 0.90 969.73

~G (8,2) 162 163 23 38148 987.93 12.43 2.65 0.62 4.95 327.00 13.47 0.90 970.44
(16,1) 13393 13394 2644 58059 21.38 25.41 4.63 1.91 7.04 18.34 13.47 0.41 30.20
(16,2) 11100 11101 1700 56873 23.23 23.48 4.30 1.48 6.97 18.74 13.47 0.46 30.94
(24,1) 183695 183696 31042 256017 10.89 31.14 5.57 2.36 12.79 17.85 13.47 0.27 25.76
(24,2) 96392 96393 10551 191150 13.51 26.83 4.83 1.64 10.31 17.01 13.47 0.35 25.20
ATC 89610 89611 20014 131791 12.49 27.06 4.89 2.21 9.61 16.26 13.47 0.32 24.14
ATC+SC 94051 94052 26558 118038 9.90 27.15 4.90 2.58 23.05 15.14 13.47 0.28 21.94

Table 1: Average values for scene groups G3, G4, G5; ~G is average for all 30 scenes. Notation:
(dmax; nmax) – ad hoc termination criteria with dmax and nmax, ATC – automatic termination
criteria, SC – split clipping. Minimum testing output: NG – number of interior nodes, NE (NEE)
– number of (empty) leaves, NER – total number of objects references in leaves, rITM – ratio
between the number of intersection tests to minimum number of intersection tests, ~NTS – average
number of nodes accessed per ray, ~NETS (~NEETS) – average number of (empty) leaves accessed
per ray, TB – time required to build kd-tree, TR – running time of the ray tracing, �APP , �rat,
�RUN – invariants of the hardware related to ideal ray shooting time. Particularly interesting is
�RUN as the ratio of the time spent on ray shooting to the ideal ray shooting time [Havra00a,
Havra00b] since it is the ratio between the real time and the solution of O(1) time complexity.

criteria algorithm as presented in this paper is
the first step in the direction to construct the data
structures without requirements of any constants
from the user and providing good performance
for scenes of different complexities.

Acknowledgements
This research was partially supported by the
Czech Ministry of Education under Project
LN00B096 and the Aktion Kontakt OE/CZ grant
number 1999/17.

REFERENCES
[Arvo89] Arvo,J, Kirk,D: A survey of ray tracing acceleration

techniques, In An Introduction to ray tracing, pp. 201–262,
Academic Press, 1989.

[Berg97] de Berg,M, et al:Computational Geometry: Algorithms
and Applications, Springer–Verlag, 1997.

[Glass84] Glassner,A Space subdivision for fast ray tracing. IEEE
Computer Graphics and Applications, 4(10):15–22, Oct.
1984.

[Haine87] Haines,E: A proposal for standard graphics envi-
ronments, In IEEE Computer Graphics and Appli-
cations, Vol. 7, No. 11, pp. 3–5, 1987, Available at
http://www.acm.org/pubs/tog/resources/
SPD/overview.html

[Havra97] Havran,V, Kopal,T, Bittner,J, Žára,J: Fast robust BSP
tree traversal algorithm for ray tracing. Journal of Graph-
ics Tools, 2(4):15–23, December 1997.

[Havra00a] Havran,V, Purgathofer,W: Comparison methodology
for ray shooting algorithms. Technical Report TR-186-
2-00-20, Institute of Computer Graphics, Vienna Univer-
sity of Technology, Favoritenstrasse 9/186, A-1040 Vi-
enna, Austria, November 2000. Human contact: technical-
report@cg.tuwien.ac.at. Under submission.

[Havra00b] Havran,V: Heuristic Ray Shooting Algorithms,
Ph.D. thesis, Czech Technical University, Novem-
ber 2000. Available at http://www.cgg.cvut.cz/
˜havran/phdthesis.html.

[GOLEM] Havran,V: GOLEM rendering system, 2000. HOME
page at http://www.cgg.cvut.cz/GOLEM.

[Kapla85] Kaplan,M: The Use of Spatial Coherence in Ray Trac-
ing, ACM SIGGRAPH’85 Course Notes 11, pp. 22–26,
July 1985.

[MacDo90] MacDonald,J, Booth,K: Heuristics for ray tracing us-
ing space subdivision, The Visual Computer, Vol. 6, No. 3,
pp. 153–166, 1990.

[MenRa95] SOFTIMAGE: Mental Ray, A Programmer’s Refer-
ence Guide. Gesellschaft für Computerfilm and Maschin-
intelligenz Gmbh & Co. KG, Berlin, 1995.

[Subra91] Subramanian,K, Fussell,D: Automatic Termination
Criteria for Ray Tracing Hierarchies, Proceedings of
Graphics Interface ’91, pp. 93–100, 1991.

[Subra98] Subramanian, K: Personal communication, 1998.
[Szirm98] Szirmay-Kalos,L, Márton,G: Worst-case versus av-

erage case complexity of ray-shooting. Computing,
61(2):103–131, 1998.

[Wald01] Wald,I, Slusallek,P, Benthin,C, Wagner,M: Interac-
tive Rendering with Coherent Ray Tracing. Eurograph-
ics’2001 conference, pp. 153-164, 2001.

