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ABSTRACT

Topological methods have been proven to be useful both for the visualization and the definition of
distance measures of vector fields. This paper introduces and assesses a new distance measure for
first order critical points of 2D vector fields. This distance measure forms the foundation of the
definition of vector field metrics. Based on this we give an advanced and complete classification
of all first order critical points.
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1 INTRODUCTION

During the last few years the investigation of met-
rics of vector fields became an interesting and
popular research topic in the visualization com-
munity. A variety of applications like recon-
struction, compression and simplification of vec-
tor fields rely on certain metrics on them: they
are used to compare the original and the new vec-
tor field and consequently give information about
the quality of the algorithms.

The first approaches on metrics (distance mea-
sures) of vector fields consider local deviations
of direction and magnitude of the flow vectors
in a certain number of sample points ([Hecke99],
[Telea99]). These distance functions give a fast
comparison of the vector field but do not take
the complete flow behavior into consideration.

The application of topological methods is nowa-
days a popular method to visualize vector fields.
Originally introduced in [Helma89] for 2D vector
fields, topological methods have been proven to
describe the global flow behavior in a very ef-
fective and condensed way. The original work
[Helma89] considers first order critical points and
a certain number of separatrices between them.

Figure 1: Classification of first order criti-
cal points; R1, R2 denote the real parts of the
eigenvalues of the Jacobian matrix while I1, I2
denotes its imaginary parts (from [Helma89]).

This way [Helma89] yields a classification of first
order critical points which is shown in figure 1.
In the following years also higher order critical
points ([Scheu97], [Scheu98]), 3D vector fields
([Batra99a], [Chong90], [Phili97]), and more gen-
eral separatrices ([Kenwr99], [Trott00]) have been
considered. A comprehensive introduction into



the topology of 2D vector fields can be found in
[Firby82].

Since the topology of vector fields describes the
flow behavior in an efficient way, it is an obvious
approach to incorporate it into the definition of
vector field metrics: vector fields with a similar
flow behavior should have a rather small distance
to each other. A first approach to find a distance
function which is based on the topology of vec-
tor fields is introduced in [Lavin98]. There the
critical points of the vector fields to be compared
are detected and matched: for each critical point
in the first vector field a corresponding critical
point in the second vector field has to be found,
and vice versa. Then the distances between all
corresponding critical points are compared: their
summation gives the distance of the two vector
fields. This way the computation of the distance
of two vector fields is reduced to the computation
of the distance of critical points. [Batra99b] gives
an extension of [Lavin98] by considering not only
the critical points but also their connectivity. The
problem of finding suitable distance measures be-
tween critical points is highly correlated to the
problem of finding a suitable classification of all
kinds of critical points.

It is the purpose of this paper to assess the qual-
ity of the distance measures for first order critical
points in [Batra99b] and [Lavin98] and to intro-
duce a new advanced metrics of first order critical
points. Based on this metrics we obtain a com-
plete classification scheme of first order critical
points. This paper is organized in the following
way: section 2 introduces the necessary common
concepts of vector fields and critical points. Sec-
tion 3 surveys the metrics of first order critical
points in [Lavin98] which is based on an (α, β)
phase plane. The foundation of the new distance
measure to be introduced are smooth vector field
transformations which are introduced in section
4. The new distance measure which is based on
a (γ, r) phase plane is introduced in section 5.

2 VECTOR FIELDS AND CRITICAL

POINTS

Given a vector field

v : E2 → IR2 (1)

(x, y) →
(

u(x, y)
v(x, y)

)

where E2 is a closed and compact subset of IE
2,

we assume v to be continuous and differentiable.
The Jacobian matrix field

Jv(x, y) =

(

ux(x, y) uy(x, y)
vx(x, y) vy(x, y)

)

. (2)

covers all first order derivatives of v. The deter-
minant of Jv is called Jacobian of v. A point x0 ∈
E2 is called a critical point iff v(x0) = (0, 0)

T = 0

and v(x) 6= 0 for any x 6= x0 in a certain neigh-
borhood of x0. A critical point x0 in the vector
field v is called a first order critical point iff the
Jacobian does not vanish in x0; otherwise the crit-
ical point is called higher order critical point. The
divergence of the vector field is given by

div(v(x, y)) = ux(x, y) + vy(x, y). (3)

Since this paper considers only first order critical
points, we can apply a first order Taylor expan-
sion of the vector field around the critical point.
Without loss of generality we can also assume
that critical point x0 lies at 0 = (0, 0). This yields
the following simplified description of the vector
field:

v(x, y) =

(

ux uy
vx vy

)

·
(

x

y

)

. (4)

This linear vector field has one critical point at

0 and a constant Jacobian matrix

(

ux uy
vx vy

)

.

For the rest of the paper we only have to consider
the critical point of vector fields described by (4).

3 THE (α, β) PHASE PLANE

The conceptional idea of how to compute the dis-
tance of two first order critical points in [Lavin98]
is to compute the amount of work which must be
performed to transform one critical point into the
other. Based on the Jacobian matrix Jv, the crit-
ical point 0 of the vector field (4) is mapped into
an (α, β) phase plane by

p = div(v) , q = det(Jv)

α̂ = p , β̂ = sign(p2 − 4q) ·
√

‖(p2 − 4q‖
α = α̂√

α̂2+β̂2
, β = β̂√

α̂2+β̂2
. (5)

This way the first order critical point 0 is mapped
onto the unit circle in the (α, β) plane. Figure
2 shows the relation between the classification
of first order critical points in [Helma89] (shown
in figure 1) and the location in the (α, β) phase
plane. Note that the additionally introduced
classes of critical points, attracting star and re-
pelling star, correspond to the conditions

attracting star: R1 = R2 < 0 , I1 = I2 = 0

repelling star : R1 = R2 > 0 , I1 = I2 = 0

in [Helma89] where R1, R2 denote the real parts
of the eigenvalues of the Jacobian matrix while
I1, I2 denotes its imaginary parts. Now the dis-
tance of two first order critical points is simply



Figure 2: Classification of first order crit-
ical points in (α, β) phase plane (following
[Lavin98]): RS (repelling star), RN (repelling
node), D (degenerate - not a first order crit-
ical point), S (saddle), AN (attracting node),
AS (attracting star), AF (attracting focus), C
(center), RF (repelling star).

the Euclidian distance of their locations in the
(α, β) plane. This distance is called EMD (earth
mover’s distance) in [Lavin98]. There its useful-
ness has been shown by a number of examples.
However, the (α, β) phase plane also has proper-
ties which do not correspond to intuition:

• Inconsistent treatment of inverted vector
fields. Given a first order critical point x0 in
a vector field v, a certain amount of work is
necessary to convert this critical point into
the critical point of the vector field−v. Fig-
ure 31 shows an example of inverting a cen-
ter and a repelling star. The inverse of the
center is a center as well and has therefore
the same (α, β) coordinates of (0,−1). The
inversion of the repelling star (coordinates
(1, 0) in (α, β) space) is an attracting star
with the (α, β) coordinates of (−1, 0).

• Collapsing of critical points with different
flow behavior (but similar topology con-
cerning [Helma89]) into the same location
in (α, β) space. To illustrate this, figure 4
shows the critical point (0, 0) of the linear
vector field

v(x, y) =

(

cos γ − sin γ
sin γ cos γ

)

·







x

− 1−2
√
r(1−r)

1−2r y







for 18 different choices of γ and r. In par-

1The visualization technique used for this (and the fol-
lowing) illustrations is called Integrate&Draw and is de-
scribed in [Risqu98]. For here it is sufficient to mention
that the behavior of the stream lines can be detected quite
well in this visualization.

a) b) c) d)

Figure 3: Inverted vector fields in (α, β) plane;
a) center with (α, β) coordinates (0,−1); b) in-
verse vector field of a) has the same (α, β) co-
ordinates; c) repelling star with (α, β) coordi-
nates (1, 0); d) inverse vector field of c) has the
(α, β) coordinates (−1, 0).

a) b) c) d) e) f)

g) h) i) j) k) l)

m) n) o) p) q) r)

Figure 4: Different critical points with the
same (α, β) coordinates; a-f: (α, β) coordi-
nates (0,−1); g-l: (α, β) coordinates (1, 0); m-

r: (α, β) coordinates (
√

2
2
,−

√
2

2
).

ticular, γ and r have been chosen as

a) : γ = π
2 , r = 1; b) : γ = −π

2 , r = 1;
c) : γ = π

2 , r = 0.8; d) : γ = −π
2 , r = 0.8;

e) : γ = π
2 , r = 0.6; f) : γ = −π

2 , r = 0.6;

g) : γ = 0; h) : γ = −π
8 ;

i) : γ = π
8 ; j) : γ = −π

4 ;
k) : γ = π

4 ; l) : γ = − 3π
8 ;

m) : γ = π
4 ; n) : γ = −π

4 ;
o) : γ = π

3 ; p) : γ = −π
3 ;

q) : γ = 5π
12 ; r) : γ = − 5π

12 ;

g)-l) : r = 1
1+sin2 γ

; m)-r) : r = 1
2 sin2 γ

.

This way the critical points in figures 4a-f
have (α, β) coordinates of (0,−1); the crit-
ical points in figures 4g-l have (α, β) co-
ordinates of (1, 0); and the critical points
in figures 4m-r have (α, β) coordinates of

(
√

2
2 ,−

√
2

2 ). This contradicts the observa-
tion that for instance the figures 4j and 4p
are visually more similar than the figures
4m and 4p.

The disadvantages of the (α, β) phase plane men-
tioned above are mainly the motivation for intro-
ducing a new distance measure based on a new
(γ, r) phase plane. This new distance measure
will be based on the concept of smooth vector
field transformations which will be introduced in
the following section.



4 SMOOTH VECTOR FIELD TRANS-

FORMATIONS

The new distance measure to be introduced fol-
lows the approach of [Lavin98] that the distance
of two critical points is the amount of work which
is necessary to transform one into the other. The
theoretical foundation of this are smooth trans-
formations of vector fields which yield a param-
eterized set of new vector fields from an original
one. In this section we introduce 4 basic transfor-
mations which turn out to form the space of all
possible first order critical points.

4.1 Scaled vector fields

Given a vector field v by (4), we can define a
new vector field λv by choosing a certain λ > 0.
Obviously this transformation does not influence
the flow behavior and should therefore not have
any influence on the distance measure. However,
scaling a vector field changes the Jacobian and
the divergence:

det(Jλv) = λ2 det(Jv)

div(λv) = λ div(v).

This gives reason to introduce the concepts of
normalized Jacobian dnorm and normalized diver-
gence divnorm by

dnorm(v) = 2
det(Jv)

u2
x + v2

x + u2
y + v2

y

(6)

divnorm(v) =
div(v)

√

2 (u2
x + v2

x + u2
y + v2

y)
. (7)

The values dnorm and divnorm can be interpreted
as scaling independent versions of Jacobian and
divergence. For any first order critical point,
dnorm and divnorm range between -1 and 1.

4.2 Domain rotated vector fields

Given a vector field v by (4) with the critical
point x0 = 0, the domain rotated vector field
v〈δ,0〉 which is obtained by a counterclockwise do-
main rotation around x0 = 0 by the angle δ can
be written as

v〈δ,0〉 =

(

cos δ − sin δ
sin δ cos δ

)

· (8)

· v

(

(x, y) ·
(

cos δ − sin δ
sin δ cos δ

))

.

Figure 5 shows an example of domain rotated vec-
tor fields. As we can see there, the behavior of
the flow is not influenced by a domain rotation.

a) b) c) d) e)

Figure 5: Domain rotated vector fields around
a critical point x0; a) v = v

〈0,x0〉; b) v
〈π

8
,x0〉;

c) v
〈π

4
,x0〉; d) v

〈 3π
8

,x0〉; e) v
〈π

2
,x0〉.

Figure 6: Rotated vector fields; if the solid
arrows denote the vector field v, the dashed
arrows denote the vector field v

[π
4

] (from
[Theis95]).

Thus, for introducing distance measure of critical
points we should distinguish only between first
order critical points which cannot be transformed
into each other by scaling and domain rotation.
To do so, we introduce the following definitions.

Given are two vector fields v and w in the form
of (4). v and w are domain rotation equivalent
(written v ∼dre w) iff they can be transformed
to each other by scaling and domain rotation:

v ∼dre w ⇐⇒
∃ δ ∈ [0, 2π] ∃λ > 0 : v = λw〈δ,0〉. (9)

The normalized Jacobian and the normalized di-
vergence are constant for domain rotation equiv-
alent vector fields, i.e. we get

v ∼dre w =⇒ dnorm(v) = dnorm(w) (10)

v ∼dre w =⇒ divnorm(v) = divnorm(w). (11)

4.3 Rotated vector fields

The concept of rotated vector fields was intro-
duced in [Theis95]. Given a vector field v, a new
vector field v[γ] can be obtained in the follow-
ing way: for every point (x, y) in the domain,
the direction of v(x, y) is rotated counterclock-
wise by the angle γ while the magnitude remains
unchanged. Figure 6 gives an illustration of v[π

4
].

The rotated vector field v[γ] can be computed
from v by

v[γ](x, y) =

(

cos γ − sin γ
sin γ cos γ

)

· v(x, y). (12)

A special rotated vector field is the perpendicular
vector field v⊥ of v which is defined as

v⊥ = v[π
2
] =

(

−v(x, y)
u(x, y)

)

. (13)



Figure 7: Rotated vector fields; a) v
[0]; b)

v
[π
8

]; c) v
[π
4

]; d) v
[ 3π

8
]; e) v

[π
2

].

Figure 8: Domain scaling in y-direction;
a) v(x, y) = (−y, x)T ; b) v(x, 0.5 y); c)
v(x, 0.2 y); d) v(x,−0.5 y); e) v(x,−y).

Contrary to domain rotation, the rotation of a
vector field changes the flow behavior around the
critical point. Figure 7 shows the effect of vector
field rotation for different angles γ.

4.4 Domain scaling in y-direction

From a given vector field v(x, y) by (4) we can
obtain a new vector field v(x, λy) by choosing a
certain λ 6= 0. Obviously domain scaling in y-
direction changes the flow behavior around the
critical point. Note that in particular we allow
λ to be negative. Figure 8 shows the effect of
domain scaling in y-direction for different λ.

5 THE (γ, r) PHASE PLANE

In this section we introduce a new metrics of
first order critical points which is based on the
smooth vector field transformations introduced
above. The phase plane we use here to classify
first order critical points is the area inside the
unit circle where (γ, r) are the polar coordinates
(γ ∈ [0, 2π], r ∈ [0, 1]). To characterize this (γ, r)
phase plane, we define a reference critical point
for each point of it. This is the critical point
(0, 0) of the following vector field:

vγ,r(x, y) = (14)

(

cos γ − sin γ
sin γ cos γ

)

·
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.

vγ,r defines a vector field with a first order
critical point in (0, 0) for each point (γ, r) of
the phase plane (γ ∈ [0, 2π], r ∈ [0, 1]). Figure
9 gives an illustration of the reference critical
points in the (γ, r) phase plane.

The system of reference critical points in the
(γ, r) phase plane has the following properties:

• Critical points which lie on a circle r =
const in the (γ, r) plane can be transformed
into each other by rotation:

vγ+α,r = vγ,r
[α]. (15)

This follows directly from (14) and the def-
inition (12) of rotated vector fields.

• Critical points which lie on a ray through
the origin r = 0 in the (γ, r) plane can be
transformed into each other by domain scal-
ing in y-direction:

vγ,r2(x, y) = vγ,r1(x, λ y) (16)

with

λ =
(1− 2 r2)

(

1− 2
√

r1 (1− r1)
)

(1− 2 r1)
(

1− 2
√

r2 (1− r2)
) . (17)

This is a straightforward deduction from
(14).

• The critical point in the center r = 0 of the
(γ, r) plane deserves special attention. For
this point, a rotation of the corresponding
vector field gives only a domain rotated ver-
sion of itself:

vγ,0 = v0,0
〈 γ

2
,0〉. (18)

This follows as a straightforward exercise
in algebra from (14) and (8). This property
can also be written as vγ1,0 ∼dre vγ2,0 for
any γ1, γ2 ∈ [0, 2π].

• Considering the normalized Jacobian dnorm
of the reference critical points in the (γ, r)
plane , we obtain

dnorm(vγ,r) = 2 r − 1. (19)

This follows from (6) and (14). Figure 10a
illustrates the normalized Jacobian of the
reference critical point as a height field over
the (γ, r) plane.

• Considering the normalized divergence
divnorm of the reference critical points in
the (γ, r) plane, we obtain

divnorm(vγ,r) =
√
r · cos γ. (20)

This follows from (7) and (14). Figure 10b
illustrates the normalized divergence of the
reference critical point as a height field over
the (γ, r) plane.

• The normalized divergence of the perpen-
dicular vector field of vγ,r is

divnorm(vγ,r
⊥) = −

√
r · sin γ. (21)

This follows from (7), (14) and (13).



Figure 9: Reference critical points in the (γ, r) phase plane.

Figure 10: a) normalized Jacobian dnorm

of the reference critical points as height field
over the (γ, r) plane; b) normalized divergence
divnorm of the reference critical point as height
field over the (γ, r) plane.

• The reference critical points in the (γ, r)
plane yield the following classification
of first order critical points following
[Helma89] and [Lavin98]: the critical point
(0, 0) of the reference vector field vγ,r is a

– saddle point (Sa) iff (γ = π
2 and r < 1

2 )
or (γ = −π

2 and r <
1
2 ) or r = 0,

– repelling saddle (RSa) iff

−π
2 < γ < π

2 and 0 < r < 1
2 ,

– attracting saddle (ASa) iff
π
2 < γ < 3

2π and 0 < r < 1
2 ,

– degenerate (D) - not a critical point - iff
r = 1

2 ,

– center 1 (C1) iff γ = π
2 and

1
2 < r ≤ 1,

– center 2 (C2) iff γ = −π
2 and

1
2 < r ≤ 1,

– repelling focus 1 (RF1) iff
0 < γ < π

2 and
1
2 < r < 1

1+sin2 γ
,

– repelling focus 2 (RF2) iff
−π

2 < γ < 0 and 1
2 < r < 1

1+sin2 γ
,

– attracting focus 1 (AF1) iff
π
2 < γ < π and 1

2 < r < 1
1+sin2 γ

,

– attracting focus 2 (AF2) iff
π < γ < 3

2π and
1
2 < r < 1

1+sin2 γ
,

– repelling star 1 (RS1) iff
0 < γ < π

2 and r =
1

1+sin2 γ
,

– repelling star 2 (RS2) iff
−π

2 < γ < 0 and r = 1
1+sin2 γ

,



Figure 11: Classification of critical points in
the (γ, r) phase plane.

– attracting star 1 (AS1) iff
π
2 < γ < π and r = 1

1+sin2 γ
,

– attracting star 2 (AS2) iff
π < γ < 3

2π and r =
1

1+sin2 γ
,

– repelling node (RN) iff
−π

2 < γ < π
2 and

1
1+sin2 γ

< r ≤ 1,
– attracting node (AN) iff

π
2 < γ < 3

2π and
1

1+sin2 γ
< r ≤ 1.

This classification of critical points has ex-
tensions to the classifications of [Helma89]
and [Lavin98] in the following way:

– We distinguish between three kinds of
saddle points. A saddle point (in the
sense of [Helma89] and [Lavin98]) is a
first order critical point which has both
inflow and outflow. A repelling saddle
(RSa) has more outflow than inflow, i.e.
a positive divergence. An attracting sad-
dle (ASa) has more inflow than outflow
and therefore a negative divergence. A
saddle point (Sa) has a zero divergence.

– The classes of points RF, RS, C, AF, AF
are each subdivided into two subclasses 1
and 2. Subclass 1 means that in a neigh-
borhood of the critical point all tangent
curves turn to the left, i.e. they have
non-negative curvature (see [Theis95]).
In critical points of subclass 2, all tan-
gent curves in a neighborhood turn to the
right, i.e. have non-positive curvature.

Figure 11 illustrates the location of the dif-
ferent classes of critical points in the (γ, r)
phase plane. Note that the curve r =

1
1+sin2 γ

defining attracting and repelling
stars is not an ellipse.

After showing that the system of reference criti-
cal points in the (γ, r) phase plane has a number
of useful properties, we still have to show that

it describes all first order critical points uniquely
(except for domain rotation and scaling). This
means that we have to show that every vector
field v defined by (4) is domain rotation equiva-
lent to one and only one reference vector field vγ,r
defined by (14). The key idea is the observation
that the location of any first order critical point
in the vγ,r plane is uniquely determined by its
normalized Jacobian, its normalized divergence,
and the normalized divergence of its perpendicu-
lar vector field. We formulate

Theorem 1. Given is a vector field v(x, y) de-
fined by (4) with a first order critical point at
x0 = 0. Then there exists one and only one refer-
ence critical point in the (γ, r) phase plane which
is domain rotation equivalent to v. This reference
critical point is the critical point of vγ,r with

cos γ =
ux + vy

√

(ux + vy)2 + (vx − uy)2
(22)

sin γ =
vx − uy

√

(ux + vy)2 + (vx − uy)2
(23)

r =
1

2
+

ux vy − vx uy

u2
x + v2

x + u2
y + v2

y

. (24)

(22) and (23) determine γ uniquely except for the
case (ux+ vy) = (vx− uy) = 0. Since in this case
we obtain r = 0 from (24), γ is of no importance
there.

Proof: Since vγ,r has to fulfill v ∼dre vγ,r, we
obtain (24) from (6), (10) and (19). Similarly,
(22) is obtained from (7), (11) and (20). (23)
follows from (7), (11), (21) and (13). Thus the
only reference critical point which is a candidate
for being domain rotation equivalent to v is vγ,r
with γ, r described by (22)-(24). To show that
this reference critical point is indeed domain ro-
tation equivalent to v, we have to find a domain
rotation angle δ and a scaling factor λ > 0 in such
a way that

λv〈δ,0〉 = vγ,r. (25)

Choosing δ and λ as

cos (2δ) = (26)

u2
x + v2

x − u2
y − v2

y
√

(u2
x + v2

x − u2
y − v2

y)
2 + 4 (uxuy + vxvy)2

sin (2δ) = (27)

−2 (uxuy + vxvy)
√

(u2
x + v2

x − u2
y − v2

y)
2 + 4 (uxuy + vxvy)2

λ =
div(vγ,r)

div(v)
, (28)



(25) follows from (8), (22), (23), (24), (26), (27)
and (28) 2. If div(v) = 0, (28) has to be replaced

by λ =
div(vγ,r⊥)

div(v⊥)
which yields (25) as well. Thus

theorem 1 is proven.

Theorem 1 shows that the γ, r phase plane gives
a continuous one-to-one representation of all first
order critical points. Thus it can be used to com-
pute the distance of two first order critical points
by mapping them into the γ, r phase plane and
computing their Euclidian distance there.

6 RESULTS

We have introduced a new distance measure of
first order critical points which is based on a clas-
sification in a (γ, r) phase plane. This distance
measure has the following properties:

• Invariance under scaling. The vector fields
v and λv with λ > 0 fall into the same
location of the (γ, r) phase plane, i.e. have
a zero distance to each other.

• Invariance under domain rotation. v and
v〈δ,0〉 have a zero distance for all δ.

• Consistent treatment of the inverted vector
field. The average of the locations of the
vector fields v and −v in the (γ, r) phase
plane is always the point (0, 0).

• Only critical points which are domain ro-
tation equivalent to each other have a zero
distance in the (γ, r) phase plane.

As a byproduct of the distance measure, the (γ, r)
phase plane yields an advanced classification of
first order critical points. Since all domain rota-
tion equivalent critical points fall to one and only
one location in the (γ, r) phase plane, and since all
first order critical points at a certain location of
the (γ, r) phase plane are domain rotation equiv-
alent, this classification is complete in the sense
that all critical points which are not domain rota-
tion equivalent are distinguished and have a non-
zero distance. Thus further refinements of the
classification are not possible.
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