
DEVELOPMENT OF JAVA USER INTERFACE FOR
DIGITAL TELEVISION

Chengyuan Peng and Petri Vuorimaa

Telecommunication Software and Multimedia Laboratory,
Helsinki University of Technology,

P.O. Box 5400, FI-02015 HUT, Finland.
pcy@tcm.hut.fi and Petri.Vuorimaa@hut.fi

ABSTRACT

The digital television development is one of the most important events in the history of television
broadcasting. This paper highlights the user interface issue in digital television environment. We will not
discuss the usability of user interface design, but rather the implementation of user interface for interactive
television services. The background of Multimedia Home Platform (MHP) and Application Programming
Interface (API) is introduced. The paper describes how to develop a Java user interface, which includes
not only graphics but also time-based media (e.g., video). Many functions and effects behind the TV
visual image have to be implemented. The special features of digital TV user interface are presented by
giving an example (i.e., screen information service for ice hockey). Finally, the future possible research
topics are briefly addressed.

Keywords: user interface, digital television, Java, application programming interface, interactive
television service.

1. INTRODUCTION

In September 1993, European broadcasters,
manufacturers, and network operators formed the
voluntary Digital Video Broadcasting (DVB) group
for the delivery of digital television [Fox98]. DVB is
the leading standardization groups in digital
television. Their objective is to set standards for a
TV system driven by commercial market needs.
Multimedia Home Platform (MHP) is one of the
DVB projects. MHP includes set-top-boxes,
integrated TV receivers, in-home digital networks,
personal computers, network computers, etc
[Jacklin97]. A technical group called DVB-TAM
(Technical issues Associated with MHP) is working
on the specification of the DVB Application
Programming Interface (API).

Digital television brings to the TV viewers far more
than significantly improved quality of video and
audio. It also ushers in the age of true interactive
television. As the market for digital television grows,
content developers are looking for a feature-rich,

cost-effective, and reliable software platform upon
which to build the next generation of interactive
television services such as Electronic Programming
Guide, Video-On-Demand, Enhanced Broadcasting,
Multi-camera-angle sporting events, Bill-paying,
Home Shopping, Play along with the game show, TV
Chat, etc.

The goal for the DVB is to provide an open solution,
enabling multiple service providers to operate
through a compatible and cost-effective receiver at
home. The DVB has decided to use Java as the core
specification for the software of the MHP. This is
because Java aims to provide a means of
implementing applications in a platform independent
manner by providing a virtual machine. Java
technology is open, scalable, network-aware,
portable, and it also supports fast time to market
through object-oriented code-reusability [Cornell96].
Some core APIs are included in DVB-Java platform,
which is defined in MHP by DVB-TAM.

mailto:pcy@tcm.hut.fi
mailto:Petri.Vuorimaa@hut.fi

The user interface of the new interactive television is
different from the traditional desktop user interface.
Many special challenges arise. Thus our work is
aimed at studying and developing the user interface
of interactive television services. We are using Java
as the programming language of the user interface
and digital television as the multimedia home
platform.

2. TECHNICAL BACKGROUND

As mentioned in the first chapter, the DVB has
chosen Java as its software platform. Also, the DVB
has defined some core APIs. The exact meaning of
API is described in this chapter. Our Java user
interface is based on the several APIs of DVB Java
platform. Thus, we’ll give a short introduction of
Streamed Media API and Java Media Framework
(JMF). The Graphical User Interface (GUI) API will
be described in detail together with our own research
work.

2.1 Application Programming Interface (API)

DVB-TAM has defined an API as a set of high-level
functions, data structures, and protocols that
represent a standard interface for platform-
independent application software [Luetteke98]. It
uses object-oriented languages and it enhances the
flexibility and re-usability of the platform, as shown
in Fig. 1.

Fig. 1. DVB TAM Reference Model [Evain98].

The Application Programming Interface (API) is
crucial in the software architecture of digital
television. Not only must the applications be
downloaded in a standard way, but also the platform
to run these applications must have a series of
standardized software interfaces.

In fact, API is a built-in programmer's toolkit for
requesting data objects or services resident on a
particular operating system [Jacklin97]. It's an
interface to an operating system. Using the APIs, a
programmer writing an application can make

requests to the operating system. There may exist
multiple APIs depending on the system
configuration. DVB Java platform includes
Fundamental APIs, Presentation APIs, Data Access
APIs, Service Information and Selection APIs, etc.

Each application that is developed will need to
comply sufficiently with the reference model to
ensure cross-platform interoperability. Openness,
abstraction, evolution, and scalability are the main
requirements of APIs.

2.2 Streamed Media API

Streamed Media API is defined as part of the DVB
Java platform. The main purpose of Streamed Media
API is enhanced broadcasting. Enhanced
broadcasting means combining digital broadcast of
audio/video services with downloaded applications
which can enable local interactivity. It does not need
an interaction channel. Streamed Media API allows
Java applications to initiate data transfer and control
the playback of time-based media. The Java Media
Framework (JMF) [Sun98] defined by JavaSoft
forms the main part of DVB Streamed Media API
together with additional restrictions, features, and
extensions.

The JMF is an API for incorporating time-based
media into Java applications and applets to present
media such as audio and video and to allow
integration with the underlying platform's native
environment and Java's core packages, such as
java.awt. Media display encompasses local and
network playback of media.

According to JMF Player specification, the JMF
Player APIs support both pull data source and push
data source [Sun98]. In Pull Data-Source mode, the
client initiates the data transfer and controls the flow
of data from pull data-sources. Established protocols
for this type of data include Hypertext Transfer
Protocol (HTTP) and FILE. In Push Data-Source
mode, the server initiates the data transfer and
controls the flow of data from a push data-source.
Push data-sources include broadcast media, multicast
media, and video-on-demand. For broadcast data,
one protocol is the Real-time Transport Protocol
(RTP).

JMF Player APIs are designed to support most
standard media content types, including MPEG1,
MPEG2, QuickTime, AVI, WAV, AU, and MIDI.
The JMF technology allows the capability to plug
new decoders into its framework [Sun98]. If a new
media type comes along, a viewer's set-top-box
could be upgraded via software downloaded.

System Software

Hardware or Software Resources

Application Programming Interface (API)

Interoperable
Applications

Interoperable
Application

library

Central
Application

(possibly)

2.3 Graphical User Interface (GUI) API

The GUI API, which is defined in DVB Java
platform, includes functionality to draw
graphics/widgets on the output device and to input
events from the input devices. It is based on Java
Abstract Window Toolkit (AWT) with additional
TV extensions.

The java.awt package provides a user interface API
to allow applications written in Java to generate
graphical output and receive user input events. The
AWT was designed to provide a common set of tools
for GUI design that work on a variety of platforms.
Fig. 2. illustrates the inheritance relationship among
AWT widgets.

Fig. 2. Inheritance Relationship of AWT Widgets
[Cornell99].

DVB will choose some of AWT components as a
resident GUI widget set in the set-top boxes. The
possible candidates would be Button, Checkbox,
CheckboxGroup, Dialog, Label, Panel, TextArea,
TextComponent, and TextField. The main reason for
resident UI widgets in set-top boxes is to support
limited bandwidth networks. This would allow
applications to scale from limited bandwidth to
higher bandwidth without extensive re-authoring.

The GUI elements provided by the AWT are
implemented using each platform's native GUI
toolkit, therefore preserving the “look and feel” of
each platform. This is one of the AWT's strongest
points. The disadvantage of such an approach is that

a GUI designed on one TV set may look different
when displayed on another.

The GUI components supplied by AWT are called
heavyweight components [Cornell96]. A
heavyweight component means that a native GUI
component is used to display each Java component.
This technique gives Java applications the same look
and feel as other applications written for a particular
platform. These components are considered heavy
because they require twice as many classes to
implement (i.e., a Java class plus its associated
native class). They also have the unfortunate side
effect of being opaque, which means that they can't
be used to implement components with transparent
regions, or components of non-rectangular shapes.

Java Swing is a new GUI component toolkit
[Geary96]. It offers many more components, a
common appearance, and identical behavior across
platforms. One of the key factors contributing to
Swing's importance is that each GUI component in
the Swing set is a lightweight component.
Lightweight components have no native twin. They
are free to implement their own look and feel.
However, Swing has a large code size that is the
most important criteria of developing GUI in set-top
boxes. Whether or not Swing will be selected for
DVB GUI API is still an open issue.

3. IMPLEMENTATION

Based on the above technical background we
introduced, in this chapter, we will present our work
about Java user interface (i.e., the user interface of
interactive television services or applications in set-
top-boxes). The structure of Java user interface, how
to control look and feel, overlay widgets on the
video, and a case study will be discussed.

3.1 Structure of Java User Interface

Fig. 3. illustrates the basic structure of Java user
interface. The Java user interface is composed of
GUI and broadcasting content. The GUI includes
graphics and user input as so called Look and Feel.
Graphics means the visual presentation of widgets.
Remote control, keyboard or virtual keyboard are
needed for user input. Broadcasting content consists
of video, audio, subtitles, teletext, and data. In a
nutshell, Java user interface creates a visual
presentation of the information by manipulating GUI
widgets and video/audio.

Java user interface that we built is based on
presentation APIs as well as fundamental Java APIs
which are specified in the DVB Java Platform.

Object

Button

Canvas

Checkbox

CheckboxGroup

Choice

Label

Scrollbar

TextComponent

Window

Object

MenuComponent

MenuItem

MenuBar

Panel

ScrollPane

Dialog

Frame

FileDialog

CheckBoxMenuItem

Menu

PopupMenu

List

Container
Component

Fig. 3. Basic Structure of the User Interface in
Digital TV.

Presentation APIs include Graphical User Interface
(GUI) API and Streamed Media API.

3.2 Video

One of our goals of using Streamed Media API was
to present the broadcasting content (e.g., video)
coupled with GUI widgets on digital television
screen.

The Player with pull data source was successfully
created and controlled in our application. The Player
was created with a MediaLocator [Gordon99]
according to

MediaLocator mediaLocator = new
MediaLocator(URL);

Player player =
Manager.createPlayer(mediaLocator);

The URL is a source pointing to a DVB service (e.g.,
video). In our application, it is a compressed
MPEG1 file. We haven't tested push data source
because the final test platform is not ready yet.
However, it should not affect the implementation of
Java user interface. No matter what kind of data
source is used, the compressed video stream is
rendered in a Java AWT Component as discussed
later.

A Player can be in one of six states (cf. Fig. 4):
Unrealized, Realizing, Realized, Prefetching, and
Prefetched and Started [Sun98]. The first five states
correspond to a Stopped state. In normal operation, a
Player steps through each state until it reaches the
Started state.

Fig. 4. State Diagram of JMF Player [Sun98].

When the method player.realize() is called, the
player moves from the Unrealized state into the
Realizing state. The Realizing Player is in the
process of determining its resource requirements.

When the Player finishes Realizing, it moves into the
Realized state automatically. When player.prefetch()
method is called, the Player moves from the Realized
state into the Prefetching state. When the Player
finishes Prefetching, it moves into the Prefetched
state automatically. A Prefetched Player is ready to
be started.

At last the player.start() method puts the Player into
the Started state. A Started Player’s time-base time
and media time are mapped and its clock is running,
though the Player might be waiting for a particular
time to begin presenting its media data.

The method player.getVisualComponent() returns an
AWT Component that we added to our application
window to render the DVB MPEG video stream.

Scaling video and positioning it on the screen in
digital television are important requirements. We
used setBounds() and setLocation() methods
returned by player.getVisualComponent().

3.3 Overlay of GUI Widgets on the Video with
Transparency

In JMF 1.1 it is not possible to draw
graphics/widgets or text over the video directly from
the VisualComponent of the video. To circumvent
this, we added GUI widgets to front of the

Set-Top-Boxes

Java
User Interface

Broadcasting
Content

Graphical
User Interface

Graphics
(Look)

User Input
(Feel)

Video/Audio Teletext Subtitles Data

components list and set layout manager to null. This
way, one can draw whatever required in the widgets.

One of the key requirements in digital television
environment is to overlay widgets, graphics and text
over the video using transparency. This can be done
in Java. However, JMF1.1 does not provide any
lightweight component for rendering the video. The
lightweight widgets are always covered by the
heavyweight component of the video when the alpha
channel is set. In JMF2.0 beta release, a
VideoRenderer called LightWeightRenderer will be
introduced. Thus, one can program the
PlugInManager to use the LightWeightRenderer and
create a lightweight component. We will use this
method and place transparent widgets over the video.

There is an alternative way to place a transparent
component over the video. Usually, each set-top-box
has a graphics processor which supports colors with
transparency [NorDig98]. This has been specified in
GUI API in DVB Java platform as a TV extension.

3.4 Controlling Look and Feel

For the broadcasters it is very important that they
can precisely control the look and feel of their
applications and services. If they cannot control the
look and feel of the resident widget set they won't
use it.

As we know the AWT contains a Button class (cf.
Fig. 2.), but Button is implemented through
platform-dependent GUI components. Thus, one
cannot draw into a button and expect the image to
display properly. We replaced those heavyweight
components with lightweight components by
subclassing Component, Container, Canvas, or
Panel depending on widgets we used. The widgets
derived from Canvas or Panel are with rectangular
regions, while those widgets derived from
Component or Container can have any shapes. The
images we used are single colored bitmap files.
TVButton is frequently used in digital television
environment. It can readily display an image with a
label instead of just text label, and could also display
border. The border can be shaded 3D-style border.

Usually, one can override paint() method inherited
from Component class for drawing images or text to
improve the performance and to eliminate flashing.
TVButton flashing is not visible, but other widgets
with bigger size and animation in a widget do flash.
We used two techniques to eliminate flashing, one is
overriding the update() method and another is
implementing double buffering.

However, Component, Panel, Canvas, or Panel class
doesn't provide any of the typical button-press

effects. In digital television environment, it is very
important to get user input and to have focus for
navigation effects. The magic of handling user input
and focus navigation was done by the event handler
interface (i.e., derived from KeyListener interface) of
TVButton. TVButton supports two states: focused
and non_focused for navigation.

In digital television environment, the widget set must
enable the use of traditional remote control and can
not require a mouse and a computer style keyboard.
At most a virtual keyboard can be used. In practice,
we used keyboard codes to simulate remote control
codes.

There are many possibilities to change or control the
look and feel of the GUI widgets in applications.
One way is to send bitmap images of all widgets to
the TV viewer’s set-top-boxes; Another way is based
on lightweight components, every broadcaster can
write his own widget set and will not use widgets
located in set-top boxes; or replacing the look of the
widgets of the resident widget set in set-top boxes.

3.5 Demonstration

We implemented an application user interface called
Screen Information Service for ice hockey
broadcasting program, which is a typical application
for interactive television. Our experimental hardware
platform was pentium II PC and software developing
toolkits consisted of Java Development Kit (JDK1.2)
and JMF1.1 together with our user interface class
library.

Fig. 5 shows the screen shot of the application’s
main page layout. It consists of four rectangular
areas. The video is rendered on the top-right
rectangle. The bottom-left rectangle area displays a
timer and the channel logotype (YLE DTV2) of

Fig. 5. The Main User Interface of Screen
Information Service.

Finnish broadcasting company. The main menu is
listed on the top-left rectangle area. The main menu
is composed of five TVbuttons and each button
indicates one function. Navigation of the functions is
done by pressing up or down arrow of the remote
control (i.e., in this case the keyboard). The
information of user interaction is displayed on the
bottom-right part which we call interaction area.

In the following, we briefly explain the functions of
the application.

(a)

(b)

Fig. 6. The User Interface of www-links.

If the www-links button is selected, a popup menu is
displayed in the interaction area (cf. Fig. 6(a)). It
shows three buttons. The viewer can browse Finnish
national team, SM-League, or Arena Ice Hockey
Hall home page. If the viewer wants to browse Arena
Ice Hockey Hall, then a browser is loaded and the
www-page of Arena Ice Hockey Hall is displayed
(cf. Fig. 6(b)).

When the Buy tickets button is selected, the name of
the company (Lippuluukku) selling the tickets
appears in the interaction area (cf. Fig. 7.). If the
viewer selects the button, he or she can buy tickets
from the company’s web site for future games.

Fig. 7. The User Interface of Buy tickets.

If the Chat button is selected, the viewer is requested
to give his or her name. After that, the viewers can
chat during the game and give comments about the
game (cf. Fig. 8.).

Fig. 8. The User Interface of Chat.

When the Score button is selected, the score of the
game is scrolled up (cf. Fig. 9.).

Fig. 9. The User Interface of Score.

When the Advertising button is selected, a popup
menu with three choice buttons is displayed in the
interaction area (cf. Fig. 10(a)). The viewer can read
instructions, browse the advertiser’s homepage, or
participates in the contest. Thus, the viewer has a
chance to win a prize (cf. Fig. 10(b)).

(a)

(b)

Fig. 10. The User Interface of Advertising.

4. CONCLUSION

One of our goals in the Future TV project is to
implement the user interface of digital television by
using well-known APIs defined in DVB Java
platform. So far, we have successfully developed a
demonstration of user interface for interactive
television service (i.e., interactive sports program).
There remains a lot of implementation work to be
done. We plan to embed our user interface library in
set-top box for reuse of the resident functions;
replace keyboard codes by remote control codes;
implement a built-in navigator user interface
including Electronic Program Guide; solve technical
problems according to the requirements of APIs
defined in DVB Java platform, etc.

Constraints of our system are set by the hardware
and software architecture of the set-top boxes. Our
biggest goal is to integrate the user interface library
with real software system and make it work in real
digital broadcasting environment.

ACKNOWLEDGEMENTS

We would like to thank Mr. Petri Koistila from the
Future TV project for providing the example and
translating the text of the figures (i.e., Fig. 5 – Fig.
10). The work is supported by the Future TV project
which is funded by the National Technology Agency
of Finland together with major Finnish television,
telecommunications, and digital media companies.

The author would also like to acknowledge Nokia
Oyj Foundation for the financial support.

REFERENCES

[Cornell96] Cornell,G, Horstmann,C,S, Core
Java™, SunSoft press, 1996.

[Evain98] Evain,J,P, The Multimedia Home
Platform – an overview, EBU Technical
Review, Spring 1998.

[Fox98] Fox,B, Digital TV comes down to earth,
IEEE Spectrum, October 1998.

[Geary99] Geary,D,M, Graphic Java 2,
Mastering the JFC: Swing, Sun Microsystems
Press Java Series, Prentice Hall, 1999.

[Gordon99] Gordon,R, Talley,S, Essential JMF :
Java Media Framework, Prentice Hall PTR,
1999.

 [Jacklin97] Jacklin,M, The Multimedia Home
Platform: on the critical path to
convergence, IBC Show Daily, September
1997.

 [Luetteke98] Luetteke,G, The DVB Multimedia
 Home Platform, Philips Consumer
Electronics, Hamburg, November 1998.

[NorDig98] NorDig I, Digital Integrated Receiver
Decoder Specification, for use in cable,
satellite and terrestrial networks, 1998.

 [Sun98] Sun Microsystems, Inc., Java™ Media
Framework Programmer’s Guide, December
21, 1998.

	DEVELOPMENT OF JAVA USER INTERFACE FOR
	DIGITAL TELEVISION
	ABSTRACT
	1
	1. INTRODUCTION
	As mentioned in the first chapter, the DVB has chosen Java as its software platform. Also, the DVB has defined some core APIs. The exact meaning of API is described in this chapter. Our Java user interface is based on the several APIs of DVB Java platfor
	Streamed Media API is defined as part of the DVB Java platform. The main purpose of Streamed Media API is enhanced broadcasting. Enhanced broadcasting means combining digital broadcast of audio/video services with downloaded applications which can enable

	3.1 Structure of Java User Interface
	3.2 Video
	
	Fig. 4. State Diagram of JMF Player [Sun98].

	3.3 Overlay of GUI Widgets on the Video with Transparency
	3.4 Controlling Look and Feel
	3.5 Demonstration
	
	
	Fig. 5. The Main User Interface of Screen Information Service.

	4. CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES

