
INTERACTIVE MODIFYING THE METHOD SET OF A GEOMETRIC
CONSTRAINT

David Podgorelec, Borut Žalik, Simon Kolmanič

University of Maribor
Faculty of Electrical Engineering and Computer Science

Smetanova 17, SI-2000 MARIBOR, SLOVENIA
tel: ++386 62 221-112, fax: ++386 62 225-013

e-mails: david.podgorelec@uni-mb.si, zalik@uni-mb.si, simon.kolmanic@uni-mb.si

Abstract: In the paper, a way of making geometric constraints more flexible is described. This approach is
employed in our new interactive 2D constraint-based drawing system. Multidirectional constraints should be very
powerful to find exactly the results expected by a user when more than one solution is possible. By defining
constraint method priorities, we can satisfy some designer's intents but not all of them. So we leave a possibility
to reorder method lists of particular constraints to the user. Two new terms: parallel and alternative methods are
also introduced. Finally, we present some basic characteristics of two our geometric constraint solving systems.

Keywords: geometric constraints, geometry, geometric modelling, CAD, constraint solving, graphs.

1 INTRODUCTION

CAD systems were intended to realise a support of a
whole design process so that a designer could
concentrate on a really creative part of the design, but
conventional geometric modellers were/are actually
used only for activities that occur near the end of the
design process: detailing the geometry of artefacts,
analysis of such artefacts, generating production
drawings, etc. In the early phases of the design which
include all the creative work, a designer still depends
exclusively on himself. The system only accepts
solutions, presents and analyses them. This is the
most serious drawback of conventional CAD systems
- they have no intelligence. Really efficient assistant
of designers should be able to perform automatically
all well-defined, but boring, awkward and time-
consuming tasks instead of the designers. A user only
specifies object’s shape and size in a declarative way,
and the system takes care of making the drawing in
accordance to the specification. The user specifies
what to draw, not how to draw it [Pabon92],
[Sunde87], [Žalik95], [Žalik96a].

Recently, new approaches to offer a designer more
efficient support were proposed. They include
methods of artificial intelligence, hierarchical and
variational modelling, object-oriented programming,
and fast prototyping. Their common goal is to
improve communication between a user and a
modeller by giving to the latter an intelligence to
conceive what the former intends. One of these
concepts is introducinggeometric constraints.

A geometric constraint is a relation among geometric

objects that should be satisfied. Explicit dimensions
of distances and angles, constraints of parallelism,
perpendicularity, collinearity, tangency, concentricity,
and prescribed radii can be included. The constraint's
solving mechanism consists of methods that
recalculate values of one or more object's parameters
to achieve consistency of all inserted constraints. The
system is not intended to have any knowledge of what
is drawn or designed. It should provide a mechanism
to solve or at least try to solve any configuration of
geometric objects and relations among them, and the
solution should be independent of the order in which
the constraints are written down. Such a constraint
solver is calledvariational. Unfortunately, general
techniques are weak, so the solving system is
application-dependent and hardly adaptable to other
applications [Bouma95], [Žalik96a].

It is usually difficult for human designers to specify
exactly geometric constraints needed to define an
object unambiguously. Awell constrainedproblem
has a finite number of solutions. If there exist an
infinitive number of solutions, a problem is
underconstrained, and if there are not solutions, it is
overconstrained. In such cases, the system should be
able to show the designer the set of conflicting
constraints. Specifications that are impossible to solve
because the values of object parameters are contrary
to some mathematical theorems should also be
recognised. For example, a triangle with one side
longer than the sum of the two others does not exist.

Coupled with the fact that a well constrained problem
has, in general, exponentially many solutions, only
one of which satisfies the user's intent, constraint
solvers have to address two distinct tasks:

• Determine whether the problem can be solved
and, if so, how.

• Among the possible solutions, identify the one
that the user intends [Bouma95].

A wide variety of geometric constraint solvers coping
more or less successfully with the first task were
developed, but the second one was passed over in
silence by the majority of authors. More than just
giving to a user an ability to choose among several
offered solutions should be done. If the system was
developed to assist a designer during all the design
process, then it must be at least able to suggest him
one of the computed solutions. In this paper, we shall
concern ourselves with this task among all. But we
still do not believe it will ever be solved satisfactory
without any interaction of the user. Only the user
knows exactly what he needs. Some heuristics can be
used by a system but they cannot always assure
exactly the solution intended by the user. Especially
because different designers design in different ways.

Both our constraint solving systems described in this
paper belong to propagation methods discussed in the
next chapter. Some properties of both systems will be
compared in the third chapter. In the fourth chapter,
our interactive method for adaptation of constraints to
different users intents is described. We shall try to
confirm the usefulness of this tool by some examples.

2 PROPAGATION METHODS

Different approaches to geometric constraint solving
were proposed. Rather detailed classifications are
given in [Bouma95], [Lee96], and [Žalik96a], for
example, but they differ from one author to other.
Both, our new system and the older one called Basic
Font Feature Design (BFoFD) are representatives of
the propagation methods, so we shall describe this
approach a bit more precisely.

Propagation methodswere a popular approach in
early constraint solving systems. Both geometric
entities and geometric constraints are presented by an
undirected constraint graph. Each entity node
contains momentary values of entity parameters
(variables), and a constraint node stores a set of
methods capable to solve the constraint. Each graph
edge represents whether an entity is directly affected
by a constraint. The constraint graph is bipartite,
while there are not direct connections between two
distinct constraint nodes or between two entity nodes.
Known values of variables propagate through edges
of the graph. When a node receives enough
information, it fires, calculates one or more values
and offers them to adjacent nodes. The process
terminates when there is no node that can fire. The
graph is undirected, so each edge can either supply a

node with needed information or return the results of
the calculations. This principle enables the use of
multidirectional constraints. More than one method
should be present in the method set of such a
constraint. For example, a constraintOn(p, l) involved
in our systems requires that a pointp lies on a linel.
This can be achieved either by moving the point or by
moving the line, so the constraint contains at least
two methods. The choice of a method depends on the
presence of the data on the edges of a node. But this
holds only for systems which userefinement model
where variables are initially unconstrained and their
values are progressively refined after each edit step.
In contrast, in theperturbation model, variables have
some default values associated with them that satisfy
all the constraints. After each edit operation, a value
of one or more variables is perturbed and the
constraint solver has to adjust values so that the
constraints are again satisfied. This model enables
better interactiveness and implies implementation of
incrementalconstraint satisfaction algorithms able to
take advantages of previous computations rather than
starting over each time there is a change in the set of
constraints [Sanne93]. While in such a system all the
values are present at the node's arcs all the time, the
presence of the data on edges cannot be used to
determine the order of choosing methods. Methods
are therefore used in some predefined order or some
supplementary rules are introduced to decide which
method to use.

The propagation techniques remain the simplest and
the basic mechanism for the derivation of solutions
that satisfy given constraints, but they suffer from
some serious drawbacks. None of them can guarantee
that an existing solution will be derived, and the
majority of them fail to solve cyclic constraint
situations. But these methods are still the nearest to
the human way of thinking, what preserves their
popularity even today, although the knowledge-based
and symbolic constraint solvers are supposed to be
much more powerful and efficient [Bouma95].

3 BFoFD AND OUR NEW
CONSTRAINT SOLVING SYSTEM

Generally, BFoFD enables definition of any 2D
geometric objects, but it is first of all intended for a
font design. The constraint set is adapted for this task,
and the method sets of particular constraints are just
sufficient, not containing too complicated, time-
consuming and numerically unstable algorithms. This
is supported by introducing a rule ofminimal
disturbance: the constraint solver always searches for
a solution that causes minimal changes of entity
parameters. Such a system is naturally based on a
perturbation model. All these insure satisfactory speed
of constraint solving and completely interactive input

of geometric entities and constraints. Unfortunately,
the system is only partially incremental in sense it
does not require the insertion of the whole sketch at
once. But after each edit operation, it still checks all
the parameters of entities forming a connected figure.

BFoFD uses a special data structure called the
biconnected constraint description graph(BCDG).
Graph nodes coincide with geometric entities, and
constraints are presented by oriented graph arcs. Two
entities connected with a multidirectional constraint
require a pair of contrary oriented arcs. While a
constraint can also affect only one entity, or connect
more than two entities as well, the arc connecting
exactly two entities cannot suffice for any
presentation. An arc with a free end is used in the
first case, and a structure containing three arcs is
employed for a constraint connecting three entities.
Constraints directly affecting more than three entities
are not incorporated yet.

BFoFD cannot handle cyclic constraint configurations.
The problem appears because only the information
local to the observed graph node is used at each step.
A node can fire only if the needed data is received
from its adjacent nodes, but some of these neighbours

can also expect some information from the observed
node. Even in this case, some configurations can be
solved successfully if particular variables are fixed by
other constraints. But such a solution depends on an
order of solving constraints, and therefore cannot be
treated as a general approach to solving cyclic
constraint situations. This fact also implies that we
did not manage to create a completely variational
constraint solver with BFoFD. Trying to increase a
number of solvable configurations is the main goal of
our recent researches. Although the statement that the
propagation methods are inappropriate for handling
cyclic situations has been seen in numerous papers,
especially those written by the authors of methods
based on some other principle, the proof is still
missing, and therefore, we do not see any reason to
give up our attempts. Especially because our
experience with BFoFD was not bad at all.

Once a constraint graph is chosen, an order of visiting
its nodes has to be determined. These two things
together form the solving algorithm. Different
propagation methods vary the most in the graph
structure and the way of choosing graph nodes.

On(p2, l2)
On(p3, l3)
Distance(p2, p3, a)
On(p2, l3)
On(p3, l2)
On(p1, l3)
On(p1, l2)
Distance(p2, p1, c)
Distance(p3, p1, b)

Figure 1: BCDG and the bipartite constraint graph for a triangle constrained by its side lengths

In the graph used in our new method, both entities
and constraints are presented as nodes. An edge
exists between an entity node and a constraint node if
and only if the entity is directly affected by the
constraint. This bipartite constraint graph was
described in the section about propagation methods
already. In Fig. 1, we can compare it with the BCDG.
An example of constraining a triangle by its side
lengths is used. Levels of the bipartite graph will be
described together with the mechanism providing
incrementality. They are assigned considering the
sequence of adding constraints listed at the left side
of the figure. What makes our method different from
general propagation approach and from BFoFD?

All the actions are done in constraint nodes, and they
immediately update values stored in adjacent entity
nodes. In BFoFD, the principle was just the opposite.
Values stored in a particular entity node were
calculated by using the data describing other entities,
and the constraints affecting the observed entity.

A mechanism providing some kind of incrementality
has been developed. Levels corresponding to
distances between the beginning node and observed
nodes are used for this task. While the influence of
any change decreases with a distance from the node
involving this change, it is easy to prove the
following sentence:Once an entity level is reached

where all the variable values are unchanged after an
edit operation, then all the following entity levels
remain unchanged, too.This holds only if actions
defined by the last edit operation are grouped at the
top level of the graph. Once this level is established,
levels of all nodes are determined. There are five
types of edit operations that activate the solving
procedure:

1. Inserting a new entity.The new entity is not
affected by any constraint yet, and therefore not
connected with other parts of the graph. The
solver need not be activated after this operation.

2. Deleting the entity.All the constraints affecting
the deleted entity directly are deleted, too. All the
solutions still hold, but the solution set is usually
extended. A well-constrained problem can
become underconstrained, and an overconstrained
problem can change to well-constrained.
Incrementality is preserved by grouping the
constraints affecting entities that used to share
some deleted constraints with the deleted entity at
the top level.

3. Adding a new constraint.A constraint node is
created and connections to affected entity nodes
are established. The new node is the beginning
node (the only node at level one) of the graph.

4. Deleting the constraint.Constraints that used to
share some entities (they are not deleted) with the
deleted one form the top level of the graph.

5. Modifying numerical parameters of a particular
constraint.A constraint with modified parameters
becomes the beginning node.

The graph is passed twice. During the first pass, the
topology and dimensions are established. The graph
is also decomposed to subgraphs presenting
topologically connected entities. In the second pass,
particular objects are positioned and oriented
according to the inserted positioning constraints
Point, AngleValue, HLineand VLine. What are the
benefits of such approach?

A designer is usually interested in a shape and size of
a product only, and absolute coordinates mean
nothing to him. There is an option that enables him to
simply exclude the second pass. The same can be
achieved by disabling all the methods of the
positioning constraints in our interactive tool.

Subgraphs presenting connected components can be
solved independently. Once a decomposition is done,
it is not necessary to observe all the graph after a
single edit operation. The decomposition also
facilitates the detection of overconstrained and
underconstrained parts of the graph. Finally, an
integration of constraint-based design and form

feature modelling is facilitated.

Normally, the connected component is positioned and
oriented by a point and a slope of a line. If two points
were determined or two lines were oriented, the
component was usually identified as overconstrained,
or in the best case, a redundant constraint was
detected. Obviously, the positioning constraints
solved too early usually render the solver's work
more difficult. If the method sets of particular
constraints are not powerful enough, the problem can
even become unsolvable. The following example is
very persuasive. We have two parallel lines and want
them to be at the requested distance from each other.
There are two points also, each lying on one of the
lines. If at least one of the points is not fixed by the
Point constraint, then it suffices to move parallely the
line together with this point to the required distance
from the other line. But if both of the points are fixed,
then both of the lines have to be rotated. This task is
much harder to solve and requires much more
powerful method sets of particular constraints.

Described edit operations (1-5) preserve
incrementality. They define an unique order of
visiting graph nodes, and form a general part of the
constraint solver. Its application is not restricted to
design 2D drawings, not even to the geometry or
mathematics only. On the other hand, it seems that we
loose this generality by distinguishing between
positioning and other constraints. For this reason, the
classification is done by assigning priorities to the
constraints rather than by implementing two
separated classes. Actually, such implementation
enables us to group constraints to even more than two
classes and to solve them in more than two passes. In
addition to this, the user can mark pass(es) where a
decomposition and/or uniting are done.

Here we start to discuss another part of the system:
the constraint set. This feature is application-
dependent. We managed to develop the constraint
solver which is not under its influence, but a user is
only interested to get the solution as good and as soon
as possible, no matter if some constraint
particularities are built in the solver. Constraints used
in BFoFD enable a user to draw a 2D scene in a
simple, natural way. Therefore, we have kept them in
our new system, too. But our recent studies have
confirmed that many problems thought to originate in
cyclic constraint configurations, actually arise from
weaknesses of particular constraints. If the constraint
Through(l, p) is only capable to move the linel
parallely to pass through the pointp, and if the
constraintDistance(p1, p2, D)only moves one of the
pointsp1 andp2 along the line determined by them,
then they surely do not suffice for all kinds of ruler-
compass problems.

Figure 2: Different ways of constraining a triangle

In Fig. 2, six ways of defining a triangle by its sides
and angles only are presented. BFoFD is only able to
solve configurations a and c. Some rotations have to
be performed in cases b, d and e. A triangle in the
picture f is of course underconstrained because three
angles are not presenting three independent
parameters. The surprisingly bad result restricts some
users in using their own designing style. Obviously,
several constraints need more powerful method sets
for designing general geometric scenes in 2D space.

3.1 Visible and Auxiliary Geometry

An important feature of BFoFD is a division of the
geometry into visible and auxiliary part. The auxiliary
lines, arcs and points are widely used in hand-made
technical drawings, and also supported in classical
drawing systems where geometric entities are placed
onto several layers that can be independently
displayed or turned-off, so the most of the designers
are used to enjoy the benefits of this approach. In
BFoFD, each entity of the visible geometry has its
equivalent (or more of them) in the auxiliary part, and
the opposite is not necessary. When the auxiliary
geometry is constrained, the visible part is
constrained, too. Therefore, it suffices to employ
constraints that operate on the auxiliary geometry
only. While the entities of the visible geometry could
be pretty sophisticated, it would be rather difficult to
constrain them efficiently by using a constraint set
affecting them directly. On the other hand,
components of the auxiliary geometry need not be too
complex, while they were introduced only to simplify
manipulation of the visible entities, and will not be
presented in the final drawing. An ellipse is
constrained by its axis, and a Bézier curve by its
control points. Handling with a variety of complex
objects is efficiently reduced to manipulation of
points and lines only. By constraining only two types
of entities, the required constraint set is importantly
reduced, too. The implementation is much easier and
quicker, although the entities of the same complexity
are still available in the final drawing as the part of
the visible geometry, of course.

A requirement of additional data describing the
auxiliary geometry can be considered as the only
disadvantage of this principle. But the reader should

be informed that the majority of the auxiliary
geometry is created by the system when the visible
objects are inserted into the sketch. All self-
understandable constraints are also added
automatically [Žalik96b].

3.2 A Constraint Set for 2D Drawings

A result of introducing the auxiliary geometry is that
only two types of entities (points and lines) have to
be constrained. In consequence of this, the number of
necessary constraint types has also been considerably
reduced. According to the classification made by
Aldefeld [Aldef88], predicates defining constraints in
BFoFD are divided into two groups:

• Dimensional constraintsdetermine positions,
distances, coordinates, and angles. Their
constituent parts are variables which can be
considered as parameters of a geometric object.

• Structural constraints determine spatial
relationships between geometric elements which
do not change. If we require, for example, that
two lines are parallel, they have to stay parallel
permanently.

In Fig. 3, the constraint set employed in both our
drawing systems is shown. The picture is presenting
the main window of our incremental tool Method
Tree 1.0 described later. ConstraintsPoint, Distance,
AngleValue, PosXYand Angle are dimensional, and
all the others are structural constraints. The detailed
description of actions provided by particular
constraints can be found in [Žalik96a], for example.

Figure 3: The constraint set of our 2D
constraint-based drawing system

4 MODIFYABLE METHOD SETS OF
PARTICULAR CONSTRAINTS

While different designers design in different ways, a

particular drawing system is not capable to satisfy all
their requests. Nowadays, all professional software
products offer to a user an ability to use and save his
own settings. Not only the appearance of a user
interface can be configured. Different decision ways
through a program or even different algorithms can
be chosen. Therefore, our idea to enable a user to
interactively modify constraint method sets is not
wholly innovative but rather an adaptation of this
widely used approach.

Solutions found by a variational constraint solver
should not depend on order of inserting constraints.
But such constraints should provide very powerful
method sets able to find really all the solutions what
is extremely difficult to implement. In many cases,
only a small subset of all possible solutions (or in the
worst case, none of them) is found. The user should
be aware of these drawbacks of propagation methods.
If the CAD system is intended to give an intelligent
support to the user, then the user is also expected to
help the system by providing it the input data as good
as possible. This is particularly important if the rule
of minimal disturbance is used. If a line should be
vertical in the final drawing then do not draw it
horizontal! If the user respects such instructions, a
probability that the desired solution is included in the
found solution subset increases importantly. But this
does not suffice to the user. If more than one solution
is found then it is desired that exactly the one that
user intends is displayed immediately. Just suppose
that after each edit operation, five or six solutions are
displayed before the right one. If the system has to
protect a user from such stresses then it should
receive some additional information on user's intents.
Some users might be used to measure angles in the
negative direction rather then in positive, or they
were maybe using some constraint of the name that
occurs in our constraint set, in some other drawing
system already and want that the same action is
provided by this constraint. Our tool enables them to
configure the constraints in the way they want.

Both objects in Fig. 4 are constrained by the same set
of constraints. The only difference originates from
direction of angle measurements. The constraint
Angle(alpha, l1, l2)can be solved by four methods.
Two of them move the linel1 to establish the
required anglealphabetween it and the linel2. Once,
alpha is measured clockwise, and in another method
counter-clockwise. The other two methods move the
line l2. Therefore, four different solutions are
obtained. Are they really different? The topology is
obviously not changing, but according to the shape,
the solutions can be grouped into two subsets only. It
depends on the user, whether rotated or mirrored
objects are thought to present the same solution or the
different ones.

Figure 4: Change of shape as a consequence of the
reverse angle orientation

4.1 Parallel and Alternative Methods

There are two reasons why a particular constraint
needs more than one method:

• Constraints are multidirectional. If more than one
entity is involved in a constraint equation, then
theoretically, each of these entities can be moved
to satisfy the constraint. In practise, this is not
always possible because the degrees of freedom
of some entities can be restricted by other
constraints. At the moment, methods that
simultaneously move more than one entity are not
involved in our system yet.

• The constraint equation has multiple solutions. An
entity can be moved to several positions that all
satisfy the constraint requirements.

Methods originating in the fact that the constraints
are multidirectional are chosen sequentially until the
successful method is found or all such methods are
employed. An order of these methods is of great
importance while some methods will probably never
or very rarely be executed. If the constraintOn
successfully moves the point, there is no need to
move the line, too. Such methods therefore exclude
each other, and will be namedalternative methods. If,
on the other hand, the same entity can be moved in
different ways to satisfy the constraint, then all
successfully obtained configurations have to be
stored in a set of eventual solutions. Methods
organised in this way are calledparallel.

The majority of constraints contain both, parallel and
alternative methods. Different solutions can be found
and several methods are available for calculating a
particular solution. Therefore, the organisation of
methods of a particular constraint is two-dimensional,
and can be implemented as a binary tree. The
methods are presented as the tree nodes. The left son
of a particular node is the next alternative method,
and the right son presents one of the adjacent parallel
methods. Such a structure is included in each
constraint node of our bipartite constraint graph. In

Fig. 5, the procedure which provides all actions
required at a particular method node during the
process of constraint solving is listed. The procedure
is recursive and has to be called with the parameter
presenting the root node of the method tree.

void Method::Visit_Node(void)
{ if (!Calculate_The_Solution())

if (alternative != NULL)
alternative->Visit_Node();

if (parallel != NULL)
parallel->Visit_Node()

}

Figure 5: Procedure for constraint satisfaction

Only the function "Calculate_The_Solution" which
extends the solution set with eventual new results
depends on the constraint equation. Eventual
conflicts with other constraints are also treated there.
While the procedureVisit_Method_Nodeis the only
point where the constraint solver meets application-
dependent operations, and while these latter can be
assigned to the corresponding objects outside this
procedure, our solver is completely general and can
be built-in any user interface regardless of the area of
using the constraints. This shell also enables that the
method tree can be reorganised in a simple and
efficient way. An interactive tool was developed to
support this task.

4.2 Implementation

The tool titled Method Tree 1.0is implemented in
C++ programming language and runs on personal
computers under Windows operating system. Let us
first describe its behaviour from the user's point of

view.

A constraint is selected from the constraint list first,
and the window presenting its methods is opened
then. The methods are presented by rectangular
buttons. The client area is divided into three parts.
Upper section contains buttons of the method tree
presenting active methods. These are the methods
available to the constraint solver during execution of
the algorithm from Fig. 5. The method tree is a binary
tree. Each node except the root one has its unique
father and maximally two sons: the alternative and
the parallel method. The alternative subtree is
displayed immediately below its root node indented
some columns to the right. The parallel son is
displayed then with the same indent from the left
margin as its father. The middle section of the
window involves buttons presenting the list of
disabled methods. The bottom part is reserved for
displaying the information about the action currently
executed. Actions are activated by selecting two
buttons: the origin and destination method. An active
method (origin) can be moved to any position in the
method tree or to the top of the list of disabled
methods. In the similar way, a disabled method can
be reactivated. There are also two clickable labels
which offer an ability to move the method into an
empty method tree or disabled list. Both, an origin
and destination can be selected either with the left or
right mouse button while four different adjacency
relations can be established between two nodes in the
method tree: father - alternative son, alternative son -
father, father - parallel son, and parallel son - father.
In Fig. 6, an example of using our interactive tool is
presented. An active method 3 is being disabled.

Figure 6: Example of using our interactive tool - disabling a method: a) before action, b) after it.

Of course, any of the actions causes an appropriate
reorganisation of the pointers in the data structure.
Saving and loading operations are also provided. The
tool can be used as an independent project or as a
part of the constraint solver's environment. A file that
contains method trees of all the constraints is used for
communication between the tool and the constraint-
based drawing system. After these data are loaded to
the drawing program, appropriate procedures have to
be assigned to each of the methods, and the solver is
ready for its work.

5 CONCLUSIONS

In the first part of the paper, the idea of our new
propagation method for the geometric constraint
solving is presented. The method is intended to
overcome or at least facilitate some difficulties with
our another constraint-based drawing system called
BFoFD. These problems originate in cyclic constraint
configurations and in too weak constraint method
sets. We also wanted to generalise some principles.
Namely, BFoFD was first of all designed for a special
purpose: the font design, and the new method is
completely application independent while the
constraint set has no influence to the solver's
behaviour. Both, BFoFD and the new method are
based on the perturbation model, but BFoFD uses the
rule of minimal disturbance which builds the solution
by minimal changes at each step (and fails if this
sequence is leading into a dead-lock). Our new
method on the other hand offers to the user more than
one solution, but still not all of them. It can still fail
although a solution exists. This is the common
problem of all propagation methods. The
improvement is achieved by organising the methods
of particular constraints into parallel groups always
employed and not into the groups of reciprocally
excluding alternative methods only. Therefore,
methods of a particular constraint form a binary tree.
Its data structure is initialised by the data stored in a
configuration file. Positions of particular methods in
the tree are therefore not fixed what enables an
interactive modifying of the tree structure. An
incremental tool described in the second part of the
paper was developed to support this task.

The main goal of introducing ourMethod Treetool is
to enable a user to use his own designing style. Our
constraint solver generally calculates more than one
solution. A user-friendly system should always try to
display the solution desired by the user first. Only if
the user is not satisfied, other solutions are displayed.
While the sequence of storing the solutions depends
on order of methods in constraint method sets, the
user is enabled to modify this order according to his
designing style and other requests. The tool is also an
indispensable assistant of us, the system developers.
Although the behaviour of the solver is fully

determined, it is still difficult to predict all the
actions. Usually, it is almost impossible to identify
the method which causes some change. The tool
enables to exclude particular methods. This operation
is very useful during debugging the system. We all
know that the method sets are not closed yet. When
some new method will be added or some existing one
will be changed, the observation and analysis of
effects caused by it will be facilitated by ability to
isolate it from other methods of the same constraint.

6 REFERENCES

[Aldef88] Aldefeld, B., Variation of Geometries
Based on a Geometric-Reasoning
Method. Computer-Aided Design, vol. 20,
no.3, pp. 117-126, 1988.

[Bouma95] Bouma, W., I. Fudos, C. Hoffmann, J.
Cai, R. Paige, Geometric Constraint
Solver. Computer-Aided Design, Vol. 27,
No. 6, pp. 487-501, 1995.

[Lee96] Lee, J. Y., K. Kim,Geometric reasoning
for knowledge-based parametric design
using graph representation. Computer-
Aided Design, Vol. 28, No. 10, pp. 431-
841, 1996.

[Pabon92] Pabon, J., R. Young, W. Keirouz,
Integrating Parametric Geometry,
Features, and Variational Modeling for
Conceptual Design. International Journal
of Systems Automation: Research and
Applications (SARA) 2, pp. 17-36, 1992.

[Sanne93] Sannella, M., J. Maloney, B. Freeman-
Benson, A. Borning,Multi-way versus
One-way Constraints in User Interfaces:
Experience with the DeltaBlue Algorithm.
Software-Practice and Experience, Vol.
23(5), 529-566, 1993.

[Sunde87] Sunde, G., A CAD System with
Declarative Specification of Shape.
Eurographics workshop on Intelligent
CAD Systems. Noordwijkerhout, The
Nederlands, 1987.

[Žalik95] Žalik, B., Font Design with Incompletely
Constrained Font Features. Proceedings
of the Third Pacific Conference on
Computer Graphics and Applications,
Pacific Graphics '95, Seoul, Korea, 1995.

[Žalik96a] Žalik, B., N. Guid, G. Clapworthy,
Constraint-based Object Modelling,
Journal of Engineering Design, Vol. 7,
No,. 2, pp. 209-232, 1996.

[Žalik96b] Žalik, B., S. Kolmanič, D. Podgorelec,A
Drawing System Based on Separated
Visible and Auxiliary Geometry,
Advances in Computer-Aided Design,
Proceedings of CADEX’96, Hagenberg,
Austria, 1996, pp. 151 - 160.

