Genetic Algorithms and Image Search
Pavel Mrazek

Department of Computer Science, Faculty of Electrical Engineering,
Czech Technical University (CVUT),
Karlovo ndm. 13, 12135 Praha 2, Czech Republic
e-mail: xmrazek @sun.felk.cvut.cz

Abstract: This article is intended to provide an introduction to Genetic Algorithms
(GAs), concentrating on their abilities of function optimization. Basic features of
GA:ss are presented in the first part. The second part describes one application: GAs
are employed to search images for instances of known objects.

Keywords: genetic algorithms, function optimization, model-based image search

1. Introduction

If we are to optimize a function, we have various methods to choose from to accomplish the
task. The traditional techniques include calculus-based, enumerative, and random search
algorithms.

Calculus-based methods make often use of function derivatives and thus are restricted to
smooth functions. Although highly efficient on a specific problem domain, they cannot be used
generally, because in many real-world problems the function to be optimized is noisy and
discontinuous, and so unsuitable for calculus-based algorithms.

Enumerative and random walk techniques have one common advantage, but also one common
drawback: they are simple, but desperately inefficient, and therefore inappropriate for larger
search space.

We would like to have an optimization method suitable for a wide problem domain, for
complex and large scale space, insensitive to noise and discontinuities. We are willing to
sacrifice the peak single-problem performance of a calculus-based procedure, but demand
generality and robustness. Genetic Algorithms are suggested as a method which meets these
requirements (e.g. [1], [2]).

2. What are Genetic Algorithms

2.1 Basic Features

As D. Goldberg states in his book [1], GAs are different from traditional techniques in four

ways:

e “GAs work with a coding of the parameter set, not the parameters themselves.” Parameters
are encoded as bit strings. This encoding makes GAs independent of a particular problem
and allows for employing principally the same technique to solve problems of different
complexity. The bit strings are often called chromosomes, an analogy with the information-
carrying objects in living cells. GAs draw much inspiration from the world of natural
genetics.

e “GAs search from a population of points, not a single point.” A population of N
chromosomes is maintained. Since each chromosome represents one solution, we process N
possible solutions at a time. This makes GAs more resistant to false peaks (local extreme) of
the objective function. \

t

278 v

e “GAs use objective function information, not derivatives or other auxiliary knowledge.”
Relying only on the function value, the method gains generality. Unlike the above
mentioned calculus-based techniques, GAs do not require the existence of a gradient, and
are therefore not limited to continuous or smooth functions.

“GAs use probabilistic transition rules, not deterministic rules.” Last but not least, this
difference is inherent in the mechanism of creating a new generation. As mentioned before,
GAs maintain a population of N chromosomes. The solution is obtained iteratively,
imitating the behavior of a natural system, and creating new generations from the precedent

using genetic operators crossover and
mutation. Crossover takes two parent
chromosomes (chosen from the parent

population), chooses a random crossing site
and swaps parts of the chromosomes (see
Figure 1). Mutation switches a bit of a
chromosome. Which two chromosomes should
mate and why these operators lead to a solution

is explained below.

If we said before that probabilistic transition rules

[Chrdimosomelj crossover LCRTOMOSOME2|
[Chrdmosome?] [Chromosomel]
crtlssingsite

Figure 1: Pair of chromosomes before
and after crossover. Crossing site is
chosen at random and parts of the
chromosomes are exchanged.

are used and the crossing site for crossover is chosen at random, we must distinguish between
the random techniques criticized in the introduction, and the randomized operators of GAs.
The latter work very well and yield good results thanks to the strategy called figuratively
selective breeding. This means that the higher value of the objective function an individual had
in the parent generation, the more descendants it will have in the next generation. Below
average members will likely have less then the average number of children, and so bad
solutions will gradually die off. Then, crossover assures an exchange of information between
the individuals, takes parts of the parents to combine and possibly create fitter children.
Mutation serves as an insurance against loss of information. Analogy of this process to natural
selection is clear: the fittest members of a population mate to bear strong children.

Tnitial population

Population k

=
=

=

=

=
Eé
=

=

| ’ selective breeding,
\/crossover, mutation

Population k+1

=
=

=

= BB
= =
=B =

o,
Population N

Figure 2: Draft of the Genetic Algorithms - populations evolve from the initial through
selective breeding and genetic operators, parameter decoding and objective function
evaluation link the mechanism to a specific task.

parameters
chromosome =
fimess
objective
function
value

279

_—

Chromosome Initial p_selection Actually
No. population x value f(x) =x"3 flsum(f) selected
1 00101 5 125 0,00 0
2 10001 17 4913 0,17 1
3 11000 24 13824 047 2
4 10110 22 10648 0,36 1
Sum 29510 1,00 4
Average 7378 0,25 1
Max 13824 0,47 2

Table 1: GAs at work. Initial population, objective function
values and selection of chromosomes to form the next

generation.

Selected Mate ICrossover site New

chromosomes (randomly selected) population X value f(x) = x*3
1000;1 2 4 10000 16 4096
11000 1 4 11001 25 15625
110200 4 3 11010 26 17576
101i1 0 3 3 10100 20 8000
Sum 45297
Average 11324
Max 17576
Table 2: GAs at work. Chromosomes selected for mating,

crossover and the new population. (Note: probability of
crossover was set to 1.0, probability of mutation was 0.05 and
didn’t occur.)

2.2 GAs at work

Let’s try a very simple simulation to clarify how GAs work. Imagine we have to optimize the
function f(x) = x°, for x being from the interval <0, 31>. First, we must choose the encoding of
the parameter. Here the solution is straightforward, x will be stored as a five-bit unsigned
integer. /

The optimization process starts with the initial population, randomly generated. At the
beginning we simply fill the chromosomes (bit strings) with 0’s and 1’s at random. Then, to
link the population to a specific problem, objective function values are computed for the
chromosomes. Note that chromosome decoding and the objective function are the only
elements specific for a problem. The rest of the mechanism stays generally the same for every
task (see Figure 2).

When each member of the population has its fitness (objective function) value assigned, we can
move on to create the next generation. To do this, we have first to decide which individuals are
going to take part in the process of creation. We employ the strategy of selective breeding in
this way: probability of selection is computed for every chromosome based on its relative
fitness value. Then a weighted coin toss is performed for each chromosome in turn. If the coin
shows ‘yes’ (it does it with the corresponding probability of selection), the chromosome is
reproduced into a group of prospective parents. The selection procedure is repeated until the
size of the group is equal to the size of the generation. Best individuals are likely to have more
than one copy in the group. Table 1 gives an example: initial population, fitness values,
probability of selection and actual number of selected chromosomes.

Having selected the parents for the following generation, crossover is the next step to come.
Individuals mate randomly and crossover swaps parts of their bit strings to create a new
generation. The result with the corresponding decoded parameters and the objective function
values is shown in Table 2.

If you compare the populations in Table 1 and Table 2, an important observation emerges: only
by applying the selective breeding strategy and by swapping parts of the chromosomes, were

280

we able to improve the maximum, as well as the average objective function values. This is the
principle of Genetic Algorithms. Repeat this selection and mating N times for a population of a
reasonable size, and you have a fair chance of obtaining the optimal result.

2.3 Why do GAs work so well?

How is it possible, that we should get something valuable only by combining parts of strings?
Well, if we imagine that substrings of the chromosomes can represent solutions to subproblems
of our task, it becomes quite natural to match these substrings to find a global solution. In [1]
again, a quotation from mathematician J. Hadamard is found:

“_.. it is obvious that invention or discovery, be it in mathematics or anywhere else, takes place
by combining ideas.”

But it is not only this feeling that somewhat humanlike behavior should lead to success, subtle
mathematics lies in the foundations of Genetic Algorithms as well. Probably the most important
notion is that of schemata and building blocks. Detailed explanation is beyond the scope of this
article and can be found in Goldberg’s book [1]. The principal idea is that the number of highly
fit, short substrings (building blocks) will increase exponentially, because better individuals get
more trials and short blocks are not likely to be cut by crossover (because the crossing site is
chosen at random, short building blocks have a better chance to be missed and survive than
longer strings).

3. Genetic Algorithms Applied to Image Search

When searching for an instance of a known object in an image, a model of the object may be
used profitably. Then we have to find such a position of the model in an image, where the
object appearance stored for the model best matches the image data. If this model-to-data
fitness is expressed in terms of an objective function, the task is transformed into a problem of
optimizing the function. This fitness function is likely to be noisy and discontinuous, and
therefore suitable for GAs.
Various models are found in literature. Some of them, applicable to the field of magnetic
resonance image segmentation (the problem we are tackling), have been summarized in [3].
We tried to implement a model similar to the one presented in [4].
To mention the basic features of the model:
The shape of an object is modelled as a set of connected points, forming the model boundary.
The grey-level appearance of the model is stored for the boundary points. Both shape and
appearance are trained on examples of the object. The model is parametrical, and is allowed to
change position, scale, rotation and shape, being limited by constraints learnt during the
training.
The objective (fitness) function of the model projected into the image data is computed as a
sum of fitnesses of individual model points. For each point, we look in its neighbourhood to
find the location, where the appearance stored for the point best corresponds to the image.
Then the fitness is directly proportional to quality of the fit (weight), and inversely proportional
to the distance between the current and the best fit position (displacement). The algebraic form
follows:

obj_ function = 2 p_ fitness,

Jor_all_p.

const2)

1+displacement

We chose const1=30 and const2=70, to have the maximum possible fitness equal to 100. The
member constl was placed into the expression after empirical experiments, so that the

where p_ fitness = weight * (constl +

281

Figure 3: Genetic Algorithms used for model-based image search. The objects in the scene
are shown in grey, instances of the model in white. Bold white line shows the instance with
highest fitness value of the generation. Pictures show various stages of the solution: a)
several members of the initial generation; b), c), d), e) above average individuals of
generations 10, 20, 35 and 50, respectively; f) final solution.

contribution of points, where good fit was encountered, is not so dramatically decreased by the
displacement member.

Up to now, functionality of the algorithm has been tested on artificial data (such as the scene in
Figure 3), with a model of four parameters - x and y position, scale and rotation.

In the experiment being described here, the model was trained to represent a rectangle with
side ratio 2:3, lighter than background. The scene was 512x512 pixels, the x and y coordinates
of the model center were limited to the interval <100, 400>. The scale of the model could vary
between 0.6 and 1.5 of the original size, no constraints were put on the rotation parameter. We
used 25 bits to encode these model parameters. Concerning the GAs’ settings, the probability
of crossover was 0.6, and the probability of mutation 0.03. Size of the populations varied
between 40 and 150 individuals (see graphs below), number of generations was limited to 50.
A typical run can be seen in Figure 3. At the beginning (a), individuals are spread randomly in
the search space. As new generations are created, chromosomes are combined and
combinations of parameters investigated (b to e). Gradually, more individuals concentrate in
the area of main interest (i.e. of higher values of objective function. The question of choosing a
good objective function is crucial.)

Note that the globally best solution, even if discovered in a generation, is not guaranteed to
propagate through the generations to the final one. It may be easily destroyed by crossover or
mutation. Compare pictures d) and e) in Figure 3 - a very good estimate of the best solution
appeared in the 35th generation, but didn’t survive till generation 50. This has one advantage:

]
o0
(]

the algorithms resist false peaks of local maxima, and keep trying to locate a better solution.
The remedy is simple, we have to store the best result over generations.

Another remark: we declared above that GAs use only the objective function value, no other
information (gradient etc.), and are therefore not limited to smooth functions. However, if we
are able to exploit more information from the function, it is advisable to do so. This is the case;
if a good match between the model and the data is encountered, an even better match is likely
to be found by finely tuning the model parameters. A description of how to improve the
model-to-data fit locally, and how to link this technique to the mechanisms of GAs has been
published (see [5] and [6], respectively). Similar hybrid schemes were mentioned in [1], and we
can quote: “... genetic algorithm finds a hill and the hill-climber (a local technique) goes and
climbs it.” Picture f) of Figure 3 shows the result of such an approach: the approximate
solution found by GAs was refined by a local technique. Our model located the rectangle in the

fitness
7000 T

6000 1
50.00 +
4000 1

3000 1 /’_/
average /-
2000 T -
e N
000 e
creoNwe g INBRBBYES

Figure 4: Development of maximum and average fitness
values for the image search problem. Each generation in

generations

this experiment consisted of 50 individuals.

successful / total trials [%]

100

90

80

707
a0 +
50 +
40 +
30 +
20 +
10+

0 + " 4
40 50 70 90 120 150

Figure 5: Success ratio for populations of different sizes.

Number of generations was kept to 50.

size of a population

28

image data, even though the
rectangle was partially occluded
by a circle.

Figure 4 shows an example of
how maximum and average
fitness values behave during the
generations evolution for our
image search problem. The
maximum fitness jumps up and
down as highly fit members are
created and destroyed. The
average fitness value of a
population grows steadily, and
also pushes the maximum value
up.

We have to say that Genetic
Algorithms are not guaranteed
to find the optimal result. We
conducted an experiment,
varying the size of the
populations for our image search
problem between 40 and 150
individuals. The number of
iterations was limited to 50. The
success ratio was from 75 to 90
percent. The Dbigger the
population, the higher the
probability of success should be;
however, it didn’t appear to be
so. The larger populations
would probably need more
generations to try more
combinations of the members.

4. Conclusion

In this text we tried to provide an introduction to Genetic Algorithms, a powerful method of
function optimization. We described the basic features, the mechanism and elementary
operators - crossover and mutation. A very simple example was presented to show how new
generations are created.

In the second part, application of GAs to the domain of image search was introduced. We
mentioned that this specific task is linked to the genetic mechanism through parameter
encoding and objective function evaluation. Results of our implementation were presented and
discussed.

5. Acknowledgments

The author would like to thank his colleagues Ruda Lecjaks for his help with implementing the
graphical output in the GL library and Petr Felkel for technical and organizational support.

6. References

[1] D. Goldberg: Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley 1989

[2] A. Hill, C. J. Taylor: Model-Based Image Interpretation Using Genetic Algorithms, Proc.
British Machine Vision Conference, Springer-Verlag 1991

[3] P. Mréazek, P. Felkel, L. Sykora: Model-Based Segmentation of Medical Images, 11.
Spring Conference on Computer Graphics, SCCG'95, Bratislava, Proceedings

[4] Cootes, Hill, Taylor, Haslam: The Use of Active Shape Models For Locating Structures in
Medical Images. Barrett, Gmitro (Eds.): Information Processing in Medical Imaging.
Springer-Verlag, Lecture Notes in Computer Science 1993

[5] T. F. Cootes, C. J. Taylor: Active Shape Models - ‘Smart Snakes’, Proc. British Machine
Vision Conference, Springer-Verlag 1992

[6] A. Hill, T. F. Cootes, C. J. Taylor: A Generic System for Image Interpretation Using
Flexible Templates, Proc. British Machine Vision Conference, Springer-Verlag 1992

This research has been conducted as a part of the “VirtMed” project and has been supported
by CVUT grant No. 10038280.

. 284

