
Experience Integrating a New Compiler and a
New Garbage Collector Into Rotor

Todd Anderson Marsha Eng Neal Glew
Brian Lewis Vijay Menon James Stichnoth

Microprocessor Technology Lab, Intel Corporation
2200 Mission College Blvd., Santa Clara, CA, 95054, U.S.A.

james.m.stichnoth@intel.com

ABSTRACT
Microsoft’s Rotor is a shared-source CLI implemen-
tation intended for use as a research platform. It is
particularly attractive for research because of its com-
plete implementation and extensive libraries, and be-
cause its modular design allows different implementa-
tions of certain components (e.g., just-in-time compil-
ers). Our group has independently developed a high-
performance just-in-time (JIT) compiler and garbage
collector, and wanted to take advantage of Rotor as
a platform for experimenting with these components.
In this paper, we describe our experiences integrating
these components into Rotor, and evaluate the flex-
ibility of Rotor’s modular design toward this goal.

We found the just-in-time (JIT) compiler easier to
integrate than the garbage collector because Rotor
has a well defined interface for the former but not the
latter. However, the JIT integration required changes
to Rotor to support multiple JITs, which included
implementing a new code manager and supporting a
second JIT manager. We detail the changes to our
just-in-time compiler to support Rotor’s calling con-
ventions, helper functions, and exception model. The
garbage collector integration was complicated by the
many places in Rotor where components make as-
sumptions about the garbage collector’s implementa-
tion. It was also necessary to reconcile the different
assumptions made by our garbage collector and Ro-
tor about object layout, virtual-method table layout,
and thread structures.

Keywords
CLI, Java, virtual machine, just-in-time compilation,
dynamic compilation, garbage collection, calling con-
ventions, software interfaces

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the
first page. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
.NET Technologies’2004 workshop proceedings,
ISBN 80-903100-4-4
Copyright UNION Agency - Science Press, Plzen, Czech Republic.

1. INTRODUCTION
Rotor, Microsoft’s Shared Source Common Lan-

guage Infrastructure [7, 9], is an implementation of
CLI (the Common Language Infrastructure [6]) and
C# [5]. It includes a CLI execution engine, a C# com-
piler, various tools, and a set of libraries suitable for
research purposes (it omits a few security and other
commercially important libraries). As such, it pro-
vides a basis for doing research in CLI implementa-
tion, and Microsoft is encouraging this use of Rotor.

Our group has been doing research for a number of
years on the implementation of managed runtime envi-
ronments for Java and CLI on Intel platforms. As part
of this effort, we developed a high-performance just-
in-time compiler (JIT), called StarJit [1], that can
compile both Java and CLI applications, and a high-
performance garbage collector (GC), called GcV4. Be-
cause Rotor provides a complete platform for CLI
experimentation, we set out to integrate StarJit and
GcV4 with Rotor on the IA-32 architecture. This
paper describes our experience and presents our ob-
servations on the suitability of Rotor as a research
platform.

StarJit and GcV4 were originally developed for
use with our virtual machine, ORP (the Open Run-
time Platform [3]). ORP was originally designed for
Java and later adapted to support CLI as well. One of
ORP’s key characteristics is its modularity: ORP in-
teracts with JITs and GCs almost exclusively through
well-defined interfaces.1 We hoped the use of these
interfaces by StarJit and GcV4 would simplify our
integration. Rotor also has a well-defined JIT inter-
face, but not one for GCs. Some of Rotor’s inter-
faces are defined directly in terms of internal details
of the VM, but others are more abstract, using struc-
tures like handles and separating the VM cleanly from
other components. Using these abstract interfaces,
JITs such as StarJit can be built independently of
Rotor itself, and loaded as DLLs (dynamically-linked
libraries) at runtime.

Our ultimate goal is to see how well StarJit’s and
GcV4’s optimizations apply to CLI and what further

1The only exceptions to ORP’s well-defined interfaces
are its assumptions about the layouts of performance-
critical data structures including object headers, vta-
bles (virtual-method tables), and some GC informa-
tion stored in vtables.



optimizations for CLI can be developed. StarJit in-
cludes advanced optimizations such as guarded devir-
tualization, synchronization optimization, Class Hier-
archy Analysis (CHA [4]), runtime-check elimination
(null pointer, array index, and array-store checks), and
dynamic profile-guided optimization (DPGO). GcV4
performs parallel sliding compaction to maximize ap-
plication throughput. StarJit and GcV4 can collab-
orate to insert prefetching based on dynamic profiles
of cache misses [2]. All these optimizations are impor-
tant to managed languages like Java and C#.

Overall, we found the JIT integration more straight-
forward because the Rotor JIT interface is well de-
fined. In contrast, integrating the collector required
many intricate changes, and these are interspersed
throughout the Rotor source code. In both cases,
however, we found our work complicated by missing
functionality. We begin with some background about
the integration effort, then describe in detail what was
required for the JIT and the GC.

2. INTEGRATION OVERVIEW
A key goal of our JIT and GC integration efforts

was to minimize changes to Rotor’s code base. We
also wanted to avoid making extensive changes to our
own StarJit and GcV4 code bases.

2.1 JIT-Related Modifications
Rotor divides the compilation and management of

compiled code into three components: JITs, JIT man-
agers, and code managers. JITs compile CLI byte-
codes into native code. JIT managers allocate and
manage space for compiled code, data, exception-hand-
ler information, and garbage-collection information.
Code managers are responsible for stack operations
involving the frames of compiled code that they man-
age. The Rotor design is general, and there is no
reason why it cannot support multiple JITs, multi-
ple JIT managers, multiple code managers, JITs that
share JIT and code managers, et cetera. Currently,
Rotor has one JIT, two JIT managers, and one code
manager.

To implement a JIT, JIT manager, or code manager,
one writes a class that implements the appropriate in-
terface. The JIT interface is designed for implemen-
tation in DLLs. It also hides the details of Rotor’s
types for classes, methods, fields, et cetera, with the
use of handles such as CORINFO CLASS HANDLE, COR-

INFO METHOD HANDLE, and CORINFO FIELD HANDLE. On
the other hand, Rotor’s JIT manager and code man-
ager interfaces use Rotor’s internal data structures
directly and so are difficult to place in DLLs.

We found that most of the StarJit integration ef-
fort centered around the JIT interface, which is de-
fined in corjit.h and corinfo.h. These files define a
number of interface classes, all of whose names begin
with the letter I (e.g., ICorClassInfo). The JIT must
implement the interface class in corjit.h and can
communicate with the VM using the interface classes
in corinfo.h. To date, we have succeeded in using
only these interface functions for method compilation,
and Rotor modifications have not yet been necessary.

However, certain StarJit optimizations will require
extensions to this interface. For example, CHA re-

quires the JIT to examine the currently loaded class
hierarchy to detect whether a particular method in a
class has been overridden by a subclass. While Ro-
tor’s JIT interface allows exploration up the class hi-
erarchy, it currently does not allow exploration down
the class hierarchy, precluding CHA.

Because of our past experience building new JITs,
we implemented support for multiple JITs in Rotor.
This approach allows several different JITs to be pres-
ent in the system at the same time. For each new
method, the VM calls the first JIT to compile the
method. If the JIT is unsuccessful the VM calls the
next JIT and so on until one JIT reports success. In
our implementation, we give StarJit the first oppor-
tunity to compile a method. StarJit has “method ta-
ble” code that allows the user to specify which meth-
ods StarJit should compile; other methods are re-
jected, and compiled by FJIT. As a result, if a bug is
encountered, we can gradually reduce the set of meth-
ods compiled by StarJit until we locate the single
method that caused the problem. This technique of
debugging a new JIT with the use of a robust backup
JIT proved invaluable in our integration effort.

2.2 GC-Related Modifications
Unlike for JITs, there is no clean interface in Rotor

for a garbage collector to communicate with the rest
of the system. The Rotor GC is responsible for both
object allocation and garbage collection, and also in-
teracts with the threading subsystem. As such, more
extensive modifications of Rotor were required for
integrating GcV4.

Garbage collection problems can be notoriously dif-
ficult to debug, since a problem introduced during a
collection may not manifest itself until much later. For
debugging such problems, we found it useful to use
built-in Rotor functionality for forcing collections at
more regular intervals. Rotor has a GCStress param-
eter that can be given various settings. One setting we
found especially useful forces a collection every time an
object is allocated. This setting often causes garbage
collection problems to show up soon after they occur,
when the information needed to debug them is still
available.

3. JIT COMPILE-TIME INTERFACE
As previously mentioned, a major part of the Star-

Jit integration is adapting StarJit to Rotor’s JIT
interface. This adaptation includes providing the func-
tion to compile a method for Rotor and adapting
StarJit to use the set of functions that Rotor pro-
vides for querying classes, fields, methods, et cetera.

While the StarJit integration is still under devel-
opment, we have successfully compiled and run enough
programs that we believe the integration is nearly com-
plete. Despite some initial difficulty understanding
the semantics of a few of Rotor’s JIT interface func-
tions, our experience has been predominantly positive.
This section discusses our experience and notes the few
problems we found.



3.1 Supporting the JIT Compile-Time In-
terface

StarJit already includes an internal interface, VM-
Interface, that it uses to isolate itself from any par-
ticular VM. The ORP version of StarJit, for ex-
ample, is built with an ORP-specific implementation
of this interface. The main part of our effort was
spent implementing a Rotor-specific implementation
of VMInterface.
VMInterface includes about 160 methods. The ma-

jority of these methods resolve classes and get infor-
mation about methods, fields, and other items dur-
ing compilation. One VMInterface method returns
the address of the different runtime helpers, and is
described in detail in the next section. Various Star-
Jit optimizations are supported by other VMInterface
methods that, for instance, return a method’s “heat”
(an indication of the amount of execution time spent
in the method) for profile-based recompilation.

Most of the VMInterface implementation for Ro-
tor was straightforward. However, the VMInterface

implementation is not yet complete—we have not im-
plemented specialized support for optimizations that
are not presently enabled.

To support StarJit’s requirements, we found two
cases where it was necessary to define new data struc-
tures in the VMInterface implementation to augment
the corresponding Rotor information. In the first
case, Rotor does not provide a way for JITs to get
a handle (CorInfoHandle) for a primitive class. Since
StarJit preloads the primitive classes at startup, we
defined a new RotorTypeInfo data structure to rep-
resent types that include enough information to de-
scribe primitive types. When, for example, StarJit
passes a RotorTypeInfo to the VMInterface method
typeHandleIsUnboxed, the latter can recognize if the
RotorTypeInfo represents a primitive class, and in
that case return true. In the second case, StarJit
needs the type of the this argument for many meth-
ods. In Rotor, this type is not derivable from the sig-
nature information (CORINFO SIG INFO) for a method.
Our solution is to represent a method’s signature us-
ing a structure that contains both a CORINFO SIG INFO

and a CORINFO METHOD HANDLE. This technique is sim-
ilar to the OpType tuple class used in Rotor’s built-in
FJIT.

3.2 Experience
In summary, we found Rotor’s compile-time JIT

interface (ICorJitInfo) generally well-designed. How-
ever, some information needed for optimizations is
missing. It was also necessary to work around some
limitations such as the inability of a JIT to get han-
dles for primitive classes. We have the impression that
ICorJitInfo is narrowly defined to provide just the
functionality needed for FJIT. While this makes the
interface simple, it complicates adding new, more op-
timizing JITs to Rotor.

The ICorJitInfo class inherits from a number of
abstract superclasses that each define functions in var-
ious areas of compile-time information (e.g., meth-
ods, modules, fields) and areas of runtime information
(e.g., helper functions and profiling data). We expect
to add support for our optimizations by adding a new

superclass. This will contain, for example, methods
to get class hierarchy and profile-based recompilation
information.

The lack of documentation about Rotor’s internals
was another obstacle. While the book, Shared Source
CLI Essentials [9], is a great help, too often we resorted
to experimentation to discover what Rotor functions
to use. To be more widely successful as a VM intended
for research, Rotor needs better documentation.

4. JIT RUNTIME INTERFACE
This section describes the runtime support needed

to integrate StarJit into Rotor. Besides the compile-
time cooperation described earlier, StarJit and Ro-
tor must also cooperate at runtime. For example,
although StarJit generates code for managed meth-
ods, StarJit relies on Rotor for such VM-specific
issues as object allocation. Similarly, the Rotor VM
handles stack unwinding and root-set enumeration but
it relies on the JIT to interpret a given stack frame.

4.1 Helper Calls
The JIT-compiled code of StarJit and Rotor’s

FJIT both rely on helper calls to perform VM-specific
operations (e.g., to allocate objects, throw exceptions,
do castclass or isinst operations, and acquire or
release locks) and, in some cases, to perform common
complex operations (e.g., 64-bit operations on a 32-
bit architecture). Rotor provides a mechanism to
query for helpers in its ICorInfo interface. StarJit’s
Rotor-specific VMInterface, in turn, maps StarJit
helpers to Rotor ones. During our integration work,
we encountered several issues specific to helper calls.
In most cases, we were able to solve these issues within
the Rotor-specific VMInterface layer.

The first issue we encountered involved the different
calling conventions used by ORP and Rotor. Star-
Jit had been hardwired to use the ORP conventions
when calling VM helper functions as well as other
managed code. To modify StarJit to use Rotor’s
calling conventions, an #ifdef was used to control the
conventions it employs.

A second issue we discovered involved differences in
both the required parameters and their order for dif-
ferent helpers. For example, ORP’s rethrow helper
requires the exception as a parameter but Rotor’s
does not. In addition, ORP and Rotor’s castclass

helpers have the object and type descriptor in differ-
ent orders. We considered the use of wrapper stubs to
convert between one set of conventions and the others.
However, these wrappers complicate stack unwinding
and incur additional performance overheads. We in-
stead modified StarJit to use Rotor’s conventions.

There are a couple of differences between Rotor
and StarJit related to type-specific helpers. A num-
ber of helpers, including the ones for object alloca-
tion, type checks, and interface table lookups, involve
types that are known at compile time. In these cases,
Rotor returns different helpers for different types,
based on a type passed in at compile time. Accord-
ingly, we modified the helper function lookup in Star-
Jit’s VMInterface to require a type for all type-related
helpers. For any VM (e.g., ORP) where the type is
not required, that VM’s StarJitVMInterface imple-



mentation ignores the type. There are also differences
in exactly which of several type-related data struc-
tures are passed at compile time or runtime to these
helpers. We abstracted this detail into VMInterface

so that the VM-specific code can give StarJit the
correct data structure to pass.

Another challenge involved helpers that StarJit
expected that were not provided by Rotor. In most
cases, these were helpers for 64-bit integer operations
(e.g., shifts) not provided by Rotor. In these cases,
the helper could easily be implemented within the
Rotor-specific VMInterface. Some other cases reflect
a more serious mismatch between StarJit and Ro-
tor. For example, Rotor provides an unbox helper
that performs the necessary type check on a reference
and then unboxes it. In StarJit, however, the type
check and the actual unbox are broken into separate
operations at an early point with the hope of statically
removing the type check via optimization. StarJit
expects a helper to perform the unbox-specific type
check but generates a simple address calculation to do
the actual unboxing. Rotor, on the other hand, only
provides a helper to perform the entire unbox. For
now, we use the castclass helper instead to perform
the unbox type check. However, this approach fails
when the unboxed reference is a boxed enumeration
type and will have to be corrected.

Finally, there are a number of helpers that Ro-
tor provides that are not currently invoked by Star-
Jit. Some of these additional helpers are provided
only to simplify portability (without them, Rotor’s
FJIT would need IA-32-specific and PowerPC-specific
assembly sequences). Other helpers assist in debug-
ging, while still more support additional functionality
such as remoting. Up to this point, none of the ap-
plications that we have tried to execute with StarJit
have needed the additional functionality provided by
these helpers. However, in the future, we plan to ex-
tend ORP’s VMInterface to enable StarJit to query
the VM and discover which of these additional helper
functions must be called.

4.2 Code and JIT Managers
As part of our implementation of multiple JIT sup-

port, we found we needed to use the other JIT man-
ager in Rotor. We could not use a second instance
of FJIT’s JIT manager because its implementation
uses global variables to, for example, map program
counters to methods and to manage memory. Two in-
stances would have conflicting uses of these variables.

Another part of the runtime interface concerns stack
walking activities such as root-set enumeration, excep-
tion propagation, and stack inspection. The Rotor
design, like many other VMs, divides this task into
one part that loops over the stack as a whole and
another part that deals with individual stack frames.
The loop part is in the VM proper and rightly so. Con-
versely, processing an individual stack frame depends
upon the JIT’s stack conventions (e.g., the location of
callee saves registers and where local and temporary
variables of reference type are located) and therefore
requires the JIT’s cooperation. In Rotor, all pro-
cessing of individual stack frames is done by the code
manager.

The code manager that comes with Rotor makes
many assumptions about JIT-compiled code:

• The code for each method is expected to consist
of a prologue, followed by the body, followed by
an epilogue.

• Multiple epilogues and epilogues interspersed in
the body are not allowed.

• The prologue and epilogue are precisely defined
code sequences, no deviations are allowed.

• Only ebp and esi are saved and available for
use; ebp is used as a frame pointer, while esi

is always a valid object reference (but possibly
NULL). Registers ebx and edi may not be used.

• The security object is at address ebp-8.

• JITs give root-set information to the JIT man-
ager in the form of an info block, which the JIT
manager then passes to the code manager dur-
ing root-set enumeration. This information is
expected to match the particular structure of
Rotor’s JIT.

These assumptions of Rotor’s code manager funda-
mentally conflict with those of StarJit. We therefore
decided to write our own code manager. This code
manager has to be part of the VM, but we decided
to try emulating Rotor’s interaction with the JIT by
having this new code manager simply convert all its
calls into calls to a runtime manager placed in the
same DLL as the matching JIT. We defined an in-
terface along the lines of corjit.h, and allow a DLL
to export a runtime manager as well as a JIT. This
approach was mostly straightforward.

However, the parameters passed to different code
manager methods are inconsistent. For example, the
method UnwindStackFrame gets an ICodeInfo object,
which can be used to identify the method and some of
its attributes, but FixContext does not. Also, these
methods need to know the current values of registers
for the frame that they are unwinding, fixing up, or
enumerating the roots of, and there are different types
of contexts for FixContext versus UnwindStackFrame

and most of the other methods. We decided to reflect
these inconsistencies in the external interface. Since
StarJit’s runtime interface is more uniform and re-
quires the method handle for the method of the frame,
we used the info block to pass the missing information
from compile time to run time.

Another minor point is that UnwindStackFrame is
sometimes called with the context esp equal to the
address just above the arguments of the out-going call
and sometimes equal to the lowest address of the out-
going arguments. In general, there is no way to tell
which of the two cases holds. This situation is fine if
frame pointers are used; the context ebp can be used
to find everything in the frame. However, requiring
frame pointers on IA-32 reduces the number of us-
able registers from 7 to 6. For now, we have modified
StarJit to use frame pointers.



4.3 Exception Handling
Another significant difference between Rotor and

StarJit concerns the details of exception propaga-
tion. Here, the differences stem directly from the char-
acteristics of CLI and Java. In CLI, there are excep-
tion handlers, filters, finally blocks, and fault blocks.
Each of these is a separate block of bytecode from the
region being protected, and control cannot enter these
blocks except through the exception mechanism. Con-
versely, in Java, there are only exception handlers and
these protect a region of bytecode. When an excep-
tion is caught in Java, control is transfered to a han-
dler address which can be anywhere in the method’s
bytecode.

Since StarJit was developed against the interfaces
of ORP, which originally supported Java and was later
adapted to also support CLI, StarJit’s design reflects
the Java exception mechanism. First, StarJit imple-
ments finally and fault blocks by catching all excep-
tions and then rethrowing them. This behavior is close
to but not exactly that required by the CLI specifi-
cation, although it is correct for code compiled from
C#. Second, there is a particular bytecode for leav-
ing an exception handler and returning to the “main”
code (a leave). Rotor requires the JIT at such a
bytecode to call the runtime helper EndCatch. This
helper cleans up stack state generated by the VM for
exception handling and ensures that finally blocks are
called. We modified StarJit to call this helper since
ORP does not have a corresponding helper. Finally,
Rotor needs an exception handler to be compiled to a
contiguous region of native code and it needs to know
the start and end addresses of that region. StarJit
knows the start address, but not the end address, and
might rearrange blocks so that a handler is no longer
contiguous. We do not have a solution for this prob-
lem yet. For now, we give a zero end address—this
causes Rotor to compute incorrect handler nesting
depths, but otherwise seems to have no ill effect.

4.4 Experience
Rotor should include better support for multiple

JITs. We had to modify Rotor to try more than one
JIT. We also had to add a second JIT manager, and to
write our own code manager. Rotor would be better
if JIT managers and code managers could be packaged
with JITs in a separate DLL, and if these could inter-
act with the VM through an abstract interface such
as those in corjit.h and corinfo.h. Furthermore,
the code manager functions should have a more con-
sistent set of parameters to make for a more uniform
interface.

Our experience integrating StarJit with Rotor
also led to changes in StarJit. For example, Star-
Jit’s VMInterface had to be generalized to better sup-
port requests for type-specific helpers. We also found
that StarJit should allow calling conventions to be
specified by the VM. Currently, we use #ifdefs in
StarJit’s source code to control calling conventions,
but this makes the code hard to maintain and the re-
sulting code less flexible. If StarJit queried the VM
about the calling conventions to use, it could adapt
itself dynamically to the needs of the VM. Also, the
design of a clean and flexible runtime helper interface

is an interesting problem, and one we would like to
address.

5. GC INTEGRATION
Rotor does not have an explicit, cleanly-defined

GC interface that resembles its JIT interface. Rotor
also does not support the dynamic loading of garbage
collectors from DLLs. As a result, to integrate our
GcV4 garbage collector into Rotor, we added GcV4
directly to the Rotor VM code base. Much of our
effort involved adapting GcV4 to run in Rotor and
reconciling the different assumptions made by Rotor
and GcV4. This section discusses our experience inte-
grating this collector, including the issues we encoun-
tered and our solutions.

Probably the most significant issue we found was
that Rotor exposes the implementation of its collec-
tor to other components in the system. For example,
Rotor’s GCHeap class reveals that Rotor uses a gen-
erational collector that treats large objects differently
than small ones, and allows clients to query whether
an object is part of the ephemeral generation. Much
of this is likely to change if Rotor’s GC is replaced
with another GC. As another example, the Rotor
VM uses knowledge about the collector’s implementa-
tion to allow JITs to emit optimized code. The VM’s
function JIT TrialAlloc::EmitCore can be called by
JITs to emit code for the allocation fast path for many
types of objects. That code assumes intimate knowl-
edge of the GC’s data structures and object-allocation
strategies.

The Rotor VM requires that the garbage collector
export a number of functions. We modified Rotor to
invoke GcV4’s functions instead of the corresponding
Rotor ones. The Rotor VM now calls the GcV4 ini-
tialization function and object allocator instead of the
Rotor equivalents. We also modified Rotor’s thread
constructors and destructors to keep GcV4 up-to-date
with respect to thread existence. Finally, we modi-
fied JIT TrialAlloc::EmitCore to no longer make as-
sumptions about the collector’s data structures. The
code it generates currently directly invokes the “slow”
allocation function, which we modified to call GcV4’s
allocator. We intend to add fastpath allocation back
into the generated code, but we hope to develop an
interface that will allow this to happen in a generic
way to support other collectors in the future.

Similarly, GcV4 expects the VM to supply a num-
ber of functions. One especially important function,
used at the start of a garbage collection, requests that
the VM stop all threads and enumerate all roots. Since
stopping (and restarting) threads in Rotor requires
a very specific sequence of events, we reused much
of the existing Rotor code for this purpose. We also
reused the two CNameSpace methods GcScanRoots and
GcScanHandles to do root-set enumeration by passing
them our own GcV4 callback function instead of Ro-
tor’s one.2

2In fact, CNameSpace::GcScanHandles ignores its call-
back parameter, but we modified the two functions it
calls to invoke our callback function instead.



5.1 Integration Issues and Solutions
In the course of our integration, we found a number

of conflicts between the assumptions made by GcV4
and Rotor about the layout of several key data struc-
tures. These are listed below along with our solutions.

• Object Layout. Since GcV4 was originally de-
veloped for ORP, GcV4 expected objects to use
ORP’s memory layout. Moreover, GcV4 as-
sumed that each object began with a pointer
to the vtable, followed immediately by ORP’s
multi-use obj info field. This field holds syn-
chronization, hash code, and garbage collection
state, and so resembles Rotor’s “sync block in-
dex.” However, Rotor places other object data
at a four byte offset while Rotor expects the
sync block index to be at a four byte negative
offset from the start of an object. Realistically,
too many parts of Rotor depend on this lay-
out to change it. Also too many parts of Rotor
use the sync block index in ways incompatible
with GcV4’s use of the obj info field, so map-
ping obj info to the sync block index is not a
solution.

Our solution was to place the ORP obj info

field before each object, at a negative eight off-
set from the object’s vtable pointer. This offset
does not conflict with any part of Rotor’s ob-
ject layout. As a result, no Rotor component
is aware of the extra field.

• Vtable Layout. GcV4 assumed that the first
4 bytes of each vtable is a pointer to a struc-
ture containing GC-related information that in-
dicates, for example, whether the object contains
pointers and if so, the offset of each pointer. The
start of Rotor’s MethodTable structure contains
the component size (for array objects and value
classes), the base size of each instance of this
class, and a pointer to the corresponding class
structure (EEClass). There are many places in
Rotor that assume specific offsets to these fields,
so changing the field layout would raise many
problems.

We also could not store the pointer at a neg-
ative offset from the start of the vtable. That
would interfere with Rotor’s CGCDesc and CGC-

DescSeries structures, which are stored before
the vtable if the class contains pointers. These
structures are used by FJIT as well as Rotor’s
collector, so we could not use that space for our
pointer.

We solved this by reserving space in Rotor’s
MethodTable class at a sufficiently high offset to
avoid conflicts with Rotor’s fields.

• Thread Layout. GcV4 assumed that a portion of
each thread’s data structure is storage reserved
for its use, which is is an essential part of ORP’s
object allocation and garbage collection strate-
gies. However, Rotor does not have an analo-
gous field in its thread data structure. Our solu-
tion was to add the extra storage at the end of
the thread objects.

5.2 Experience
Rotor should include a GC interface that resembles

its JIT interface. That is, Rotor should use functions
to abstract the interactions between the collector and
other Rotor components. These functions would hide
details about the collector’s implementation and help
to make explicit the assumptions it makes. Such an
interface would make it easier to modify the collector
and to experiment with new implementations without
affecting other components. For example, Rotor’s
GC interface could include a function that returns the
offset of its sync block index. This would avoid other
components assuming a fixed constant for that value.
Our experience with ORP’s GC interface has been
strongly positive, and it has allowed us to use several
different collector implementations without changing
its VM or JITs.

To enable easier GC experimentation, it would help
if Rotor’s GC could be dynamically loaded like its
JITs. New collectors could be plugged in to Rotor
including ones tailored for particular needs, such as
when an application needs high throughput more than
short GC pause times. Changing Rotor to dynami-
cally load its GC would also help to minimize assump-
tions made by the VM or other components.

6. STATUS AND FUTURE WORK
When we started our integration work, we wondered

how suitable Rotor would be as a research platform,
that is, how difficult would it be to add our optimiza-
tions and what changes to Rotor would be needed
to support them. Our plans were initially to add
StarJit and GcV4, then later implement in Rotor a
number of optimizations such as our synchronization
techniques, prefetching, and DPGO. This paper de-
scribed the approaches we took to integrate StarJit
and GcV4, and our experience with that effort.

The StarJit integration was straightforward except
for a few issues. While most of the needed changes
were within StarJit, we found that we had to modify
Rotor to add support for multiple JITs and to add
a new code manager for StarJit. We also needed
to support another JIT manager in Rotor. This
is because we could not create another instance of
FJIT’s JIT manager since its implementation depends
on global variables. Although Rotor allows JITs to
be loaded dynamically, and communicates with those
JITs using its abstract JIT interface, Rotor does not
allow JIT or code managers to be loaded dynamically.
Adding new code or JIT managers requires modifying
Rotor itself, although abstract interfaces for these
managers could be added to Rotor without much
trouble. Later, we expect to add support for some
of the more sophisticated StarJit optimizations such
as DPGO by augmenting Rotor’s JIT interface with
a new abstract superclass that defines the required
functions.

We found that adding a new garbage collector to
Rotor was much more difficult than integrating a new
JIT. Rotor does not have a clean interface for GCs
that resembles its JIT interface. Its GCHeap class, for
example, exposes details about the GC’s implementa-
tion that are used by several other parts of the system



including FJIT, so adding a different implementation
required changing those parts. We tried to minimize
the changes to Rotor, but a number of changes were
needed, for example, to have Rotor call functions in
the GC interface that GcV4 exports. Both Rotor
and GcV4 make assumptions about the layout of ob-
jects and virtual-method tables, so it was necessary to
modify our GcV4 implementation to place the fields
that GcV4 needs (such as one used to hold a forward-
ing pointer during collections) in locations that do not
conflict with fields required by Rotor.

Our work integrating StarJit and GcV4 with Ro-
tor is ongoing. We can run a number of test programs
and are currently getting our modified Rotor to work
with the C# version of the SPEC JBB2000 [8] bench-
mark. Our plans for StarJit include adding support
for pinned objects and full support for CLI excep-
tions (such as filters), as well as support for our opti-
mization technologies such as DPGO and prefetching.
Similarly, we will add support to GcV4 for managed
pointers. We are optimistic about being able to com-
plete this work and look forward to exploring other
opportunities for improving Rotor’s performance.

7. REFERENCES
[1] A.-R. Adl-Tabatabai, J. Bharadwaj, D.-Y. Chen,

A. Ghuloum, V. Menon, B. Murphy, M. Serrano,
and T. Shpeisman. The StarJIT Compiler: A
Dynamic Compiler for Managed Runtime
Environments. Intel Technology Journal, 7(1),
February 2003. Available at
http://intel.com/technology/itj/2003/

volume07issue01/art02 starjit/

p01 abstract.htm.

[2] A.-R. Adl-Tabatabai, R. Hudson, M. Serrano,
and S. Subramoney. Prefetch injection based on
hardware monitoring and object metadata. In
SIGPLAN Conference on Programming Language
Design and Implementation, Washington, DC,
USA, June 2004.

[3] M. Cierniak, M. Eng, N. Glew, B. Lewis, and
J. Stichnoth. Open Runtime Platform: A Flexible
High-Performance Managed Runtime
Environment. Intel Technology Journal, 7(1),
February 2003. Available at http://intel.com/

technology/itj/2003/volume07issue01/

art01 orp/p01 abstract.htm.

[4] J. Dean, D. Grove, and C. Chambers.
Optimization of object-oriented programs using
static class hierarchy analysis. In Proceedings of
European Conference on Object-Oriented
Programming, pages 77–101, Aarhus, Denmark,
Aug. 1995. Springer-Verlag (LNCS 952).

[5] ISO/IEC 23270 (C#). ISO/IEC standard, 2003.

[6] ISO/IEC 23271 (CLI). ISO/IEC standard, 2003.

[7] Microsoft. Shared source common language
infrastructure. Published as a Web page, 2002.
See http://msdn.microsoft.com/net/sscli.

[8] Standard Performance Evaluation Corporation.
SPEC JBB2000, 2000. See http://www.spec.

org/jbb2000.

[9] D. Stutz, T. Neward, and G. Shilling. Shared
Source CLI Essentials. O’Reilly, Mar. 2003.


