
Alternative protection systems
for OO Environments:

Capability-Based Protection and the SSCLI-Rotor

Darío Álvarez Gutiérrez
Dept. of Informatics,
University of Oviedo
c/ Calvo Sotelo s/n

 33007, Oviedo, Spain

darioa@uniovi.es

María Ángeles Díaz Fondón
Dept. of Informatics,
University of Oviedo
c/ Calvo Sotelo s/n

 33007, Oviedo, Spain

fondon@uniovi.es

Iván Suárez Rodríguez
Dept. of Informatics,
University of Oviedo
c/ Calvo Sotelo s/n

 33007, Oviedo, Spain

banisr@telecable.es

ABSTRACT
Protection (access control) is a crucial issue in modern software systems. There are many different protection
mechanisms, including Access Control Lists and the Code Access Security included in .NET. Capabilities are
other well-known protection mechanism that has many merits. This paper describes a form of capability-based
protection specially suited for Object-Oriented environments based on OO Virtual Machines that compares
favorably with the .NET CAS mechanism in many contexts. The implementation of this protection model into
the Microsoft SSCLI-Rotor implementation of the .NET platform is shown (RotorCapa), involving modification
of core VM structures and behaviour of instructions. Besides other benefits, the early performance results of the
RotorCapa system compared with .NET CAS protection are very encouraging, as it does not suffer from the
exponential degradation of performance imposed by the security stack walking mechanism of .NET.

Keywords
Security, protection, access control, capabilities, performance, virtual machine, code access security, SSCLI,
Rotor, .NET security.

1. INTRODUCTION
A protection mechanism (access control mechanism)
is a security measure in computer systems that
restricts access from a piece of code (subject) to a
resource (object). An example is the well-known
Access Control List protection mechanism: its
variants are used in operating systems such as Unix.

Object-Oriented environments based on OO Virtual
Machines (Java and .NET being prominent
examples) need a protection mechanism, too.
Subjects are here objects (instances of a class), and
the resource to protect is also an object (calls to a
method of an instance of other class). .NET is
shipped with a protection mechanism called Code
Access Security [Wat02], part of a more

comprehensive security system. The mechanism is
based on a form of stack introspection [Wal97]
(stack walking of the internal VM stack holding
security information).

But there are other protection mechanism, such as
capabilities. Our research focus on the application of
capability-based protection to object-oriented
environments. We have implanted capability-based
protection into the SSCLI-Rotor (the RotorCapa
system1). SSCLI-Rotor [Stu03] is Microsoft’s Shared
Source implementation of the Common Language
Infrastructure (.NET).

This paper describes briefly our model of capability-
based protection and its advantages (in general and
compared to the .NET CAS mechanism). Then, the
implementation of this model into the SSCLI-Rotor
is presented with more detail, involving
modifications to the core of the Rotor VM (Just in
Time Compiler, object layout, addition and

1 RotorCapa development was supported by Microsoft

Research through the RFP Rotor Awards. Home page is
at http://www.di.uniovi.es/~darioa/rotorcapa/ and at the
SSCLI Community Site http://rotorcapa.sscli.net/

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

.NET Technologies’2004 workshop proceedings,
ISBN 80-903100-4-4
Copyright UNION Agency – Science Press, Plzen, Czech Republic

modification of instructions, etc.). Some early and
encouraging performance results are presented in the
next section. Another section draws some
conclusions about the SSCLI-Rotor as a research
platform gained while developing the
implementation. The paper ends with a comparison
with related work, and the conclusions and future
work section.

2. CAPABILITY-BASED
PROTECTION
Pure Capabilities [Den66] are a well-known
protection mechanism that can be used to implement
a comprehensive set of flexible security policies. A
capability is basically a ticket which names an object
(resource) and a set of permitted operations on that
object (permissions) (Figure 1). The only
requirement for an object (subject or client) in order
to use another object (object or server) is to hold a
capability pointing to the server object with adequate
permission to use the intended operation.
Consequently, an object will hold just the minimum
protection information relevant to it: the rights to just
the objects it will use.

Capabilities for OO Environments based
on OO Virtual Machines
A big advantage of capabilities over other protection
mechanisms such as the before mentioned access
control lists, stack introspection, etc. [Wal97] is that
they can be smoothly and easily integrated with the
object model.

In our version of capabilities [Dia99], the protection
information (permissions) can be integrated with
object references in the machine, and the mechanism

for testing the permissions can be integrated with the
method call process (Figure 2. If the reference does
not hold a permission for the method called in the
destination object, the call fails, and an exception is
raised).

Modifications to instructions (and structures)
dealing with references must be also done
accordingly. Just a new instruction to restrict the
permissions a given capability is holding (to follow
the principle of least privilege) is needed.

In fact, there are no conceptual changes to the Object
Model, and the protection can be (and should be)
seen as another property of the Object Model
(encapsulation, inheritance, ...and protection).

We have previously worked with this model with our
own OO environment with OO VM [Alv98] and
have found advantages [Dia99] such as:

• Flexibility and adaptability

• High performance

• Integration with the object model

• Fine granularity of protection

• Reduced Trusted Computing Base, as a
simple mechanism is implemented with a
small code.

• More Hardened Systems, as the principle of
least privilege can be followed with no
restrictions.

• Compatibility with existing applications, as
capabilities are used as normal references in
applications.

• Scalability. Managing capabilities for
thousands of objects is not a problem, as
they are managed and stored as normal
references in the objects themselves.

Capabilities have some drawbacks, most notably
revocation problems, although there are solutions
such as facades and reference monitors in case they
were needed.

1 0 0 1

Protection mechanism
ObjectX.op1+ capability

(1)
(2)

(3)

ObjectX.op1
ObjectXObjectY

Figure 2. Checking permissions in a capability.

Object

Op1

Op2

Op3

...

Opn

Ca
pa
bi
lit
y

Figure 1. A capability.

3. WHY CAPABILITIES FOR .NET?
The .NET security model is very complete and has
many advantages. It includes a Code Access Security
mechanism. So, why using other protection
mechanism?

Capabilities in general have its own merits. They are
clearly superior to Access Control Lists in terms of
confinement [Har02]. Besides, there are some points
in .NET security for some applications where our
model of capabilities is a best fit:

• Complexity. The .NET security system is
comprehensive and thus complex: evidence,
policies, permission sets, stack walking
mechanisms... For many applications that just
need the base form of protection (such as the one
provided by capabilities) this is overkill:

• Footprint and overhead. The code, data,
and runtime overhead needed by the .NET
security system is present, although just a
fraction of its power is used.

• Big Trusted Computing Base. For the
same reason, the trusted computing base of
the system is big, and the probability of
security bugs increases.

• Access to source code needed. To add
protection to a given class, access to the source
code of the class (to demand permissions) is
needed, and the code to represent the
permissions has to be created, too. With
capabilities, any binary object can be protected
anytime without effort (it just requires setting
permission bits in the references).

• Protection at the level of the class, not at the
level of individual instances. Since permissions
are assigned based (roughly speaking) on the
class of a client instance, not on an instance-by-
instance basis. With capabilities, permissions are
assigned on a reference-by-reference basis. Two
objects of the same class can hold different
permissions when calling a third object.

And finally, another reason is that .NET can be used
just as a platform to research on other protection
mechanism.

4. SSCLI-ROTOR
IMPLEMENTATION OF
CAPABILITIES: STRUCTURAL
CHANGES
Since we had previous experience implementing
capabilities in a VM, we expected to follow a similar
path to implement capabilities into the SSCLI-Rotor
1.0. However, due to the constraints and the
architecture of SSCLI-Rotor, we had to resort to a
different approach, which is described in this and the
following section.

Representation of capabilities in objects
Each (reference) attribute in an object can have a

set of access permissions attached. A capabilities
table holding these permissions is attached to every
object (in the OBJECT structure), with an entry for
each reference held in the object (Figure 3). A lazy-
creation strategy is used so that objects that do not
use protection (i.e. do not apply the operation to
restrict permissions to a reference) do not have this
necessary protection overhead.

The same is done for array references.

Figure 3. Representating capabilities in objects
and arrays.

class ExampleClass {

0 1 0 0 0

Permissions
(a capability)

CapabilitiesTable

A capability for
each reference

in the array

CapabilitiesTable

A capability for
each attribute in

the object

CapabilitiesTable
Attribute 1
Attribute 2

...

Attribute n

Attribute 3

CapabilitiesTable
a. reference 1
a. reference 2

...

a. reference n

a. reference 3

void Method1() {...}
void Method2() {...}

...
void Methodk() {...}

}

OBJECT

ARRAY

Support in behavioural structures
Implementing capabilities also needs support in
structures used for behavioural purposes (execution):
the execution stack (activation records) and the
operation (evaluation) stack.
An activation record (stack frame) for a method can
have references to other objects in local variables and
method attributes (parameters). These references can
have an associated set of permissions. A scheme
using capabilities tables similar to the one used with
objects is applied.
The permissions for these references are stored using
one capabilities table for variables and one for
attributes. These tables are organized into stacks that
grow in parallel with the activation records (main
stack).
The operation stack also holds references that can
have permissions (for example, a reference to an
object and references to object parameters are
stacked prior to a method call to the first object.
These references have associated permissions. A
capabilities stack that mimics this operation stack
holds the permissions for the references.

5. SSCLI-ROTOR
IMPLEMENTATION OF
CAPABILITIES: BEHAVIOURAL
CHANGES

New instruction: Restrict <method>
This new instruction acts upon a reference (top of the
stack), and denies access to the method specified,
restricting the set of methods that can be called using
the reference.

This is the primitive operation for security. Initially,
the creator of an object holds a reference with all the
permissions. The creator object can duplicate this
reference, restrict some methods, and then pass the
reference to others for secure computation (the set of
available operations for these objects is restricted).

Call and callvirt now check permissions
The other pillar of capability-based protection is that
method calls to an object should only be allowed if
the reference (capability) used for making the call
has the permission (bit) for the method set active.

Thus, call and callvirt instructions are modified
accordingly. The instruction check that the reference
to the object called (top of stack) has an asserted
permission for the method being called (the bit for
the method is “1” in the implementation). If the
reference does not hold a permission (bit “0”) a
protection exception is raised.

Modifications to many other instructions
Although capabilities only affect the semantics

of the “call” instruction (now a security exception
might be thrown), MANY other instructions are
indirectly affected. With capability-based protection,
ALL references, including local variables, references
in the stack, etc., have an attached set of permissions
(conceptually, that is the philosophy of capability-
based protection). The behaviour of the instructions
that deal with references must take this into account,
“manually” copying, deleting, etc. the set of
permissions when dealing with references, as
represented in structural and behavioural structures
as shown before.

Figure 4. Representing capabilities in
behavioural structures.

Grow in parallel
with the stack
frames

Capabilities Stack

Permissions for
elements in the
operation stack (one
entry per elemen)

Permissions for
local variables (one
entry per method in the
stack)

Permissions for
attributes (one entry
per method in the
stack)

Grow in parallel
with the
operation stack

Local Variables Stack

Method Attributes Stack

Local Variables Stack

CapabilitiesTableStack
CapabilitiesTable

Method Attributes Stack

CapabilitiesTableStack
CapabilitiesTable

Capabilities Stack

CapabilitiesStack
Capabilities 0
Capabilities 1

Capabilities N

Permissions (a capability)
...

Some of the instructions that had to be modified are:

• Creation of new objects: newobj (when a
new object is created a reference is returned.
This reference has an associated set of
permissions, initially set to “1” for the
creator).

• Storing from the stack: starg, stlocs, stfld,
stsfld (when storing a reference from the
stack, the permissions associated to the
reference must also be copied to the
destination reference)

• Loading: ldarg, ldloc, ldnull, ldelem.x,
ldelem.ref, ldfld, ldsfld, ldsflda, ldstr
(symmetrically, permissions associated to a
reference must be copied when the reference
is pushed in the operation stack)

• Various: dup, isinst, box, unbox

Example of CLI code with capabilities
The following is a small example of the use of
capabilities in the SSCLI (the restrict instruction):
...

// An object is created and a reference
// (capability) is left on the stack

newobj instance

void Test::.ctor()

// A method is restricted in the
// capability in the top of the stack

restrict instance

void Test::Message()

// Now the method is invoked using the
// reference in the top of the stack

// The reference can be stored, cloned,
// passed as an argument to other
// objects, etc.

callvirt instance

void Test::Message()

// The call will not succeed and an
// exception is raised at this point,
// as the reference used has not the
// permission to call “Message” set

...

6. PERFORMANCE
Preliminary tests were made, comparing the SSCLI-
Rotor capabilities system (RotorCapa) with a
“normal” SSCLI-Rotor with the security system
active. Access control to a method was checked by a
very simple test program.

The test program involved a class with a given
method. An instance of the class was created and
then the method was repeatedly called using the
reference

to the object created. To protect the call in SSCLI-
Rotor, a .NET permission protecting the method was
created and granted to the original class. In
RotorCapa, the permission for the method in the
reference remained set to achieve the same effect.

The same test program was run with different stack
depths before calling the method.

As the .NET security mechanism relies on stack
walking, it was expected that the time taken by
SSCLI-Rotor to execute the same program would
increase with the stack size, as and domain
intersections and stack walks are getting longer. The
exponential degradation of performance shown in
figure 5 confirms this.

RotorCapa, on the other hand, does not rely on stack
walks. The mechanism always checks that a given
permission is set on a reference or not, and this,
ideally, is independent of stack size, and the number
of permissions needed in the system. Thus, ideally,
the time taken by RotorCapa should be constant.
Actually, the figures show a linear increase of the
time (much better than exponential). This can be
related to the way method calls are handled and a
non-optimal implementation of capabilities in this
first version.

With modest stack sizes, RotorCapa performance is
very similar to SSCLI-Rotor performance.

These performance results are very encouraging. On
the one hand performance is equal or better than
SSCLI-Rotor, and our implementation is barely
optimized in this version. The test program was very
simple. In fact, there is only one domain and one
custom permission used. With more domains, and
more custom permissions (as would be the case with
real applications), the burden of stack walks, domain
intersections and searches of permissions should be
more apparent, and the performance of the
capabilities system would become even more
obvious.

Figure 5. Performance of RotorCapa and
SSCLI-Rotor (simple test).

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0 200 400 600 800 1000

Number of frames in the Stack

To
ta

l t
im

e
of

 e
xe

cu
tio

n
(s

.)

Base Rotor

Capabilities

7. PROS AND CONS OF THE SSCLI-
ROTOR AS A RESEARCH PLATFORM
A very important bonus of working with SSCLI-
Rotor is that we can now make further research on
capabilities without having to resort build a complete
VM to test the mechanism.
.NET is a system that has many “real” applications
already done, and these applications can be directly
used in SSCLI-Rotor (and therefore in RotorCapa).
Thus, we can use real applications to research the
cost of capability-based protection. To build similar
applications in number and complexity for a custom
system is something that is out of the picture.
Obviously, the code to use capabilities must be added
to the applications, but this is an incremental and
relatively small process.
However, the implementation of capabilities in the
SSCLI-Rotor source code was not as easy as we
would have liked. Base Rotor security structures and
code are deeply intermingled with the core of the
Rotor VM. We did not try (yet) to delete them and
avoid its overload. The nature of our project and the
architecture of Rotor obliged us to “touch” almost
every part of the Rotor VM: JIT, dozens of helpers
for the JIT (assembly generation), memory layout,
stack, threads, metadata, etc.

8. RELATED WORK
Capabilities as a protection mechanism are almost as
old as computers, and many projects have used this
protection mechanism, especially in the OS area.
With the recent spread of security breaches in
commercial Access Control List-based Operating
Systems, there is a renewed interest in them, as
shown in the EROS operating system [Har02], or the
JX [Gol02] Operating System.
Capabilities were also used in object-oriented
systems, for example in the Hidden Capabilities
model [Hag96]. They were also used in OO systems
based in Virtual Machines, such as the J-Kernel
[Haw98] project for the Java platform.
All these projects use the basic philosophy of
capabilities for protection. However, the specific
variants differ in many aspects with our approach,
mainly in how protection is smoothly integrated with
the object model and the virtual machine structures
and mechanisms in our system.
With respect to .NET and the SSCLI-Rotor, there are
some projects that use the SSCLI to test or
implement different protection mechanisms, such as

the implementation of the Delegent authorisation
system for SSCLI-Rotor [Ris03], but none (as far as
we now) related to capabilities.

9. CONCLUSIONS AND FUTURE
WORK
Protection (access control) is a crucial issue in
modern software systems. There are many different
protection mechanisms, including Access Control
Lists and the Code Access Security included in
.NET.

Capabilities are other well-known protection
mechanism that has many merits. We have developed
a form of capability-based protection specially suited
for Object-Oriented environments based on OO
Virtual Machines. Our system compares favorably
with the .NET CAS mechanism in many contexts, as
it is much simpler, with a smaller overhead,
footprint, and trusted computing base, does not
require access to the source code of a class (or
additional coding) in order to protect it, and grants
protection at the level of individual instances instead
of at the level of classes.

We have successfully implanted this capability-based
protection mechanism into the Microsoft SSCLI-
Rotor implementation of the CLI (.NET) standard
(the RotorCapa system). This involved modifications
to structural and behavioural structures of the VM to
represent the permissions associated to the
capabilities, as well as modifications to the
implementation of instructions that deal with
references.

As expected, one advantage of capability-based
protection is visible in the early performance results
of the RotorCapa system. The performance is at least
as good or much better than the .NET CAS figures,
that show an exponential degradation of performance
with stack size. Since the test program was very
simple and the RotorCapa version in not much
optimized, it is expected that the results would be
better with test conditions similar to the ones had
with real applications.

SSCLI-Rotor has proved to be a good platform for
research, as we did not have to build a complete
commercial-like VM to test our protection
mechanism. Besides, we had a direct access to the
vast array of existing applications created for the
.NET platform. However, the nature of our work, and
because of the Rotor architecture, involved
modifying the source code of the many of the parts
of the core Rotor system (and that was not as easy as
expected).

Future work will be precisely in the area of
performance testing. In a first phase, we will develop
a more comprehensive benchmark of test programs,
to exercise different elements of the system, and to
represent conditions more similar to actual
applications. In a second phase, we will instrument
real .NET applications that are readily ported to
Rotor, to measure the performance of the capability-
based protection mechanism in real production
conditions.

10. REFERENCES
[Alv98] Álvarez Gutiérrez, D., Tajes Martínez, L.,

Álvarez García, F., Díaz Fondón, M.A., Izquierdo
Castanedo, R., and Cueva Lovelle, J.M. An
Object-Oriented Abstract Machine as the
Substrate for an Object-Oriented Operating
System. Lecture Notes in Computer Science,
1357, pp. 537-544, 1998.

[Den66] Dennis, J., and van Horn, E. Programming
Semantics for Multiprogrammed Computations,
Comm. of ACM 9, No 3, 1966.

[Dia99] Díaz Fondón, M.A., Álvarez Gutiérrez, D.,
García-Mendoza Sánchez, A., Álvarez García, F.,
Tajes Martínez, L., and Cueva Lovelle, J.M.
Integrating Capabilities into the Object Model to
Protect Distributed Object Systems. Proceedings
of the International Symposium on Distributed
Objects and Applications (DOA’99), IEEE
Computer Society Press, pp. 374-383, 1999.

[Gol02] Golm, M., Felser, M., Wawersich, C.,
Kleinöder, J. A Java Operating System as the
Foundation of a Secure Network Operating
System. Technical Report TR-I4-02-05,
University of Erlangen-Nuremberg, 2002.

[Hag96] Hagimont, D., Mosière, J., Rousset de Pina,
X., and Saunier, F. Hidden Capabilities. 16th
International Conference on Distributed
Computing Systems, May 1996.

[Har02] Hardy, N., and Shapiro, J. EROS: A
Principle-Driven Operating System from the
Ground Up. IEEE Software, pp 26-33, January
2002.

[Haw98] Hawblitzel, C., Chang, C., Czajkowski, G.,
Hu, D., and von Eicken, T. Implementing
Multiple Protection Domains in Java. 1998
Usenix Ann. Tech. Conf., Louisiana, June 1998.

[Ris03] Rissanen, E. Server based application level
authorisation for Rotor. IEE Proceedings
Software, 150(5), pp 291-295, October 2003.

 [Stu03] Stutz, D., Neward, T., and Shilling, G.
Shared Source CLI Essentials. O’Reilly, 2003.

[Wal97] Wallach, D.S., D. Balfanz, D. Dean, and
Felten, E.W. Extensible Security Architecures for
Java. 16th Symp. on Operating Systems
Principles, Saint-Malo, France, 1997.

[Wat02] Watkins, D. An Overview of Security in the
.NET Framework. January 2002.
http://msdn.microsoft.com/library/default.asp?url
=/library/en-
us/dnnetsec/html/netframesecover.asp

