
1. INTRODUCTION
The emerging capabilities of modern mobile devices
with respect to CPU power, wireless communication
facilities, and battery capacity are the foundation of
future multihop ad-hoc networks. The frequent as
well as unreliable and anonymous communication
between accidental neighbors observed in these
mobile networks makes their successful deployment a
challenging task. With the absence of any reliable
backbone network, all mobile devices have to partici-
pate altruistically in a distributed execution environ-
ment with some kind of epidemic message delivery.
Self-organization is the most promising design princi-
ple in order to manage these networks successfully
and efficiently. As a consequence, any decision of a
mobile device must be based on local as well as on
current neighborhood knowledge and common goals
must be achieved by means of synergy.

Any fundamental communication pattern in such a
network exhibits an en passant characteristic. Two
devices are within communication range for a short

period of time and while they pass each other, they
might cooperate and exchange certain data. In most
cases, being within communication range with a
given device is purely accidental and the probability
to meet this device again in the near future is fairly
low. During this en passant communication, applica-
tions and middleware must agree fast on which enti-
ties should change the hosting device in order to get
closer to their final destination. The required deci-
sions depend on a number of factors, among others
the importance of the moving entity, the size of the
entity compared to an estimation of the remaining
interaction period, and the future direction of the
neighbor with respect to the final destination.

These stringent conditions for distributed applications
in multihop ad-hoc networks aggravate the need for
the continuous adaption to a dynamically changing
environment. As a consequence, this requires a very
tight coupling between the mobile applications and
the middleware. Many high-level mechanisms that
are common in traditional system software and mid-
dleware that trade transparency vs. performance are
therefore inadequate. The goal of the GecGo middle-
ware (Geographic Gizmos) is to offer this tight inter-
action with application components and to provide all
the necessary services required by self-organizing
systems running on multihop ad-hoc networks. The
first prototype of this middleware has been imple-
mented on Microsoft Windows CE 4.2 .NET using
the .NET Compact Framework.

In the next section, the fundamental concepts and the
basic functionality of the GecGo middleware are

The .NET CF Implementation of GecGo
- A middleware for multihop ad-hoc networks -

Peter Sturm, Daniel Fischer, Volker Fusenig, Thomas Scherer
University of Trier

Department of Computer Science
D-54286 Trier, Germany

{sturm,fischer,fusenig,scherer}@syssoft.uni-trier.de

ABSTRACT

The goal of the GecGo middleware is to provide all the services required by self-organizing distributed applications
running on multihop ad-hoc networks. Because of the frequent as well as unreliable and anonymous communica-
tion between accidental neighbors observed in these networks, applications have to adapt continuously to changes
in the mobile environment and the GecGo middleware offers the required tight coupling. Additionally, GecGo
addresses specifically the issue of “en passant” communication, where moving neighbor devices may interact only
for short periods of time. In this paper, the architecture and basic concepts of the GecGo middleware are discussed
and a prototype implementation of GecGo using the Microsoft Windows CE 4.2 .NET operating system for mobile
devices and the .NET Compact Framework is presented.

Keywords
Middleware, Mobile Networks, Multihop Ad-Hoc Networks (MANET), Mobile Applications, Self-Organization



introduced. The functionality of the GecGo middle-
ware is discussed in section 3. The architecture and
implementation issues of the .NET prototype are dis-
cussed in section 4. The paper ends with an overview
on related work and a conclusion.

2. GECGO CONCEPTS
The conceptional structure of the middleware and its
four basic abstractions are depicted in figure 1. Any
mobile or stationary device participating in the
GecGo runtime environment is represented by a
DeviceGizmo and the code of GecGo applications is
derived from the base class CodeGizmo. Every code
has its residence in form of a device. Depending on
the distributed execution model, this residence
remains fixed or it might change over time (mobile
agents). For application code with a fixed residence,
GecGo provides the abstraction of mobile state
(StateGizmo) that might change the hosting device
instead of the code. Since end-to-end messages
between devices may remain on a device for a longer
period of time in case no suitable neighbor is found,
they also exhibit a more state-like nature. As a conse-
quence, messages are represented in GecGo as special
cases of a StateGizmo.

The fourth abstraction is defined by the VenueGizmo
which ties a logical place or an event to a well-
defined set of geographic coordinates and time slots,
e.g. a several week long lecture on distributed sys-
tems with changing rooms and time slots. Venue-
Gizmos are virtual in the sense, that they bear no
computational resources per se. Instead they rely on
the devices that are within a given distance from the
venue center. Entities with a venue as their destination
will first try to reach a device at the venue. As long as
they have no other destination, they will try to remain
at the venue possibly by changing the hosting device.

GeoTraces
All major abstractions in GecGo are derived from a
fundamental data type TraceableGizmo (see figure
2). Any subtype of this class is traceable in time and
space by means of a GeoTrace. These traces keep
accounts on events in the past, they reflect the present
situation, and they store estimates about future events.
The actual information stored in the trace of a gizmo
is defined by its type and consists of a set of so-called

Gepots (pieces of time and geographic data). Also
the depth and the level of detail of the GeoTrace
depends on resource considerations and the actual
type of gizmo. For example, DeviceGizmos keep
track about where they have been in the past, at what
time as well as why and they may also store informa-
tion about previous neighbor devices. The present
informs about the current position of the device and
the actual neighborhood. The future trace might con-
tain estimates where the device will be in the future,
e.g. students will be in certain future lectures with a
high probability.

Traces of StateGizmos will be more resource-lim-
ited. They will store at least the final destination as
part of the future trace. VenueGizmos are even more
restricted, since they represent only virtual entities
within the GecGo environment. As such, the trace of
the venue is identical to the time schedule of the event
associated with this venue. Additional data that might
be important to run the venue must be stored by the
hosting devices that are currently within the vicinity
of the venue center.

All devices are required to update their traces contin-
uously over time. With the goal to keep the number of
Gepots in the past to a reasonable minimum, the
information stored in the present of the trace will be
shifted into the past, e.g. when a mobile device starts
moving again. The traces of devices are also the pri-
mary source for changes in the traces of other cur-
rently hosted state and code gizmos.

From a conceptual point of view, the main function of
the GecGo middleware enables traceable gizmos to
move towards new destinations. The most common
type of movement allows for mobile state to reach a
given mobile device or to get into the vicinity of a
certain venue, e.g. to implement the marketplace
communication pattern for multihop ad-hoc networks
as presented in [2]. In this context, a marketplace is a
application-defined geographic area with an expected

Figure 1: Main GecGo Abstractions

Device Code

Traceable
Gizmo

Message Venue

knows others >

residence: 1

n n < knows others

< resides at
Device Code

Traceable
Gizmo

Message Venue

knows others >

residence: 1

n n < knows others

< resides at

Figure 2: Basic Type “Traceable Gizmo”

Traceable
G izmo

GeoTrace

1

Present

1

Past Future

1 1

Gepot

n

Gepot

1

Gepot

n

Traceable
G izmo

GeoTrace

1

Present

1

Past Future

1 1

Gepot

n

Gepot

1

Gepot

n



high density of mobile devices (e.g. a lecture hall).
Entities of a mobile application move between mobile
devices of the users and the marketplace using a geo-
graphic routing protocol. By concentrating applica-
tions on specific geographic areas, marketplaces
increase the probability that corresponding entities of
the application get in contact with each other.

Covered by the concepts of GecGo are also the move-
ment of mobile devices to reach a given venue (the
special case of a navigation system, of course with the
physical help of the human device owner) and move-
ment of mobile code between devices as a means to
implement mobile agent systems.

3. GECGO ARCHITECTURE

The basic architecture of the GecGo middleware con-
sists of two gizmo management domains (see also fig-
ure 3):

• the Lobby for all the gizmos that are in transit
and haven‘t reached their final destination yet

• the Residence, with gizmos that are intended
to stay at this device for a longer period of
time

Movement of gizmos from the lobby to the residence
and vice versa will be performed with the aid of the
porter service. Primarily, the porter is responsible for
securing the identity of incoming gizmos and for pro-
viding the resources requested.

The Directory Service
A central directory service keeps track on any
changes in both management domains. The directory
itself has a hierarchical structure with leaves at the
gizmo level (see figure 4). Applications may query
the directory with wildcards to locate the required
information. Most of the attributes of a gizmo entry
are application-specific. For this purpose, the direc-
tory allows the definition of arbitrary key/value pairs
as part of a gizmo leave. Additional attributes inside

the directory tree are defined by the GecGo middle-
ware and primarily serve infrastructure purposes such
as the number of gizmos actually stored in the lobby
or the list of neighbor devices moving in a southern
direction.

As depicted in figure 4, the directory tree consists of
three major branches. The branch named Gizmo con-
tains all the information and attributes about any
gizmo located on the given mobile device. Addition-
ally, entries about specific gizmo types that are known
by a mobile application but where no instance is
available on the device yet can be inserted by applica-
tion components. In conjunction with the asynchro-
nous notification mechanism described below,
applications can react appropriately on future events.

The remaining two branches below the root of the tree
keep track on the gizmos located in the residence or
the lobby. Primarily, these branches contain refer-
ences to specific gizmos that are part of these
domains. The residence branch holds references to
code gizmos that are installed on the mobile device or
that entered the device via the porter in case of a
mobile agent environment. The lobby has references
to the gizmos awaiting a device change in order to
reach their final destination. Most of these gizmos are
of type StateGizmo, although again in a mobile
agent environment, the lobby could also be occupied
by code gizmos that might change the host or enter
the residence through the porter. Also part of the
lobby branch are references to device gizmos that
represent the current neighborhood of the mobile
device. This information about the current neighbor-
hood is also available as part of the device’ present
GeoTrace.

L o b b y

R e s i d e n c e

P o r t e r D i r e c t o r y

L o b b y

R e s i d e n c e

P o r t e r D i r e c t o r y

Figure 3: GecGo Device Architecture

L o b b y

R e s i d e n c e

P o r t e r D i r e c t o r y

L o b b y

R e s i d e n c e

P o r t e r D i r e c t o r y

L o b b y

R e s i d e n c e

P o r t e r D i r e c t o r y

L o b b y

R e s i d e n c e

P o r t e r D i r e c t o r y

G i z m o

/

R e s id e n c e

L o b b y

D e v ic e

S ta te

V e n u e

C o d e

r

r

r

r

g

g

g

g

g

g

g

g

G iz m o

/

R e s id e n c e

L o b b y

D e v ic e

S ta te

V e n u e

C o d e

r

r

r

r

r

r

r

r

g

g

g

g

g

g

g

g

g

g

g

g

g

g

g

g

Figure 4: The Directory Tree



Gizmos in the lobby and the residence may query for
the existence of certain gizmos and they may register
a callback to be informed about specific events. For
this purpose, every gizmo has an application defined
unique name that serves as the key for the directory
service. Possible events supported by the middleware
are:

• arrival of a new gizmo with a specified type in
the lobby of a device

• departure of a gizmo from the lobby
• movement of gizmos between the lobby and

the residence
• instantiation and deletion of new gizmos by

means of code gizmos in the residence

Communication with direct Neighbors
Singlehop communication services for gizmos with
devices in the immediate neighborhood are provided
by the middleware kernel. Therefore the middleware
has to know all available devices within singlehop
communication range. Information about these
devices are periodically updated in the lobby branch
of the directory tree as references to device gizmos.
These entries store the following attributes:

• an unique device id, which is used to resolve
the current ip address of the device

• the port which is used for gizmo transmissions
• a flag indicating if the device currently accepts

incoming gizmos
• the future GeoTrace of the mobile device in

order to ease the decision which gizmos to
move during the en passant communication

The required information is exchanged among mobile
devices by broadcasting a beacon in regular time
intervals using an UDP based communication proto-
col. These beacons contain all the aforementioned
information to ease gizmo exchange. The protocol is
also being used to transmit other kinds of messages
such as termination signals or requesting a certain
gizmo. With the device information—containing ip
address and port of a potential communication
partner—the middleware is able to establish a TCP
connection to transfer a gizmo.

Mobile State vs. Mobile Code
A central decision in mobile ad-hoc networks
addresses the issues on mobile code vs. mobile state.
Mobile agents are an interesting technology for wire-
less and mobile networks with far reaching implica-
tions on system security and code integrity. The
GecGo middleware covers mobile agents in its model
by accepting a changing residence for mobile code.
This functionality is currently not part of the .NET
implementation of the GecGo middleware platform.
Besides technical reasons, this decision is primarily
driven by a number of unsolved problems with
respect to the limited resources on a mobile device,
the larger amount of data required to move mobile
code including its execution state transparently from

one device to another, and the need to authenticate
and secure code execution.

Instead of mobile code, the GecGo middleware actu-
ally offers so-called mobile state, which requires the
application components to cooperate non-transpar-
ently in packaging and unpacking execution state into
and from mobile state gizmos. The middleware offers
several functions and services to ease this task for the
application code. In contrast to mobile code, applica-
tions must be installed explicitly by the user of a
device, before state gizmos for a given application
can be received and processed on their final destina-
tion. Of course no application code must be installed
on devices that are only intermediate hosts for state
gizmos.

An Routing Gizmo Example
To illustrate the dynamics inside the GecGo middle-
ware, an example for a multihop routing service is
elaborated in more detail. In this scenario, a routing
gizmo—a subclass of a code gizmo—implementing a
version of a geographic routing protocol is available
as a pre-installed GecGo application. In this constella-
tion, the routing gizmo is responsible for the end-to-
end communication in the ad-hoc network on the
basis of exchanging state gizmos between neighbor-
ing devices as provided my the middleware.

The routing gizmo registers a callback with the event
that will be invoked in case a new neighbor device is
within communication range. The event causes the
routing gizmo to examine the beacon information of
this neighbor in order to decide which state gizmo to
transfer. As mentioned above, part of the beacon
information are geographical coordinates about future
positions of the neighbor device. This position infor-
mation is the primary source for the routing decision,
e.g. if a venue in the future trace of the neighbor
device is identical to the future venue of a candidate
state gizmo or if the trajectory of the neighbor device
is targeting towards the destination of the state gizmo.

In a first scenario we assume that a state gizmo g,
which is currently part of the lobby on a device d1,
wants to reach a venue gizmo v. Each time such a new
state gizmo with different destination enters the lobby
of a device, the enter-event triggers the execution of
specific callback in the routing gizmo in order to store
its destination venue. Suppose now that another
device d2 is passing by d1. In that case the routing
gizmo decides with respect to the used routing proto-
col (e.g. greedy routing) whether g moves from d1 to
d2 or not. This procedure is repeated on different
devices until g arrives on a device close to its destina-
tion venue. 

In another routing scenario, gizmos residing on two
different mobile devices want to exchange informa-
tion directly, for example a mobile application on
device d1 wants to send a state gizmo g to another
application on a specific device d2. Since a routing
path from d1 to d2 among multiple mobile devices



cannot be maintained because of the dynamics in
multihop ad-hoc networks, d1 must determine the
position of d2 in some other way. One solution to this
problem is, to hash the identification of d2 to a spe-
cific geographic position within a given area (e.g. the
university campus). This hash function is identical on
every participating device and consists of a classical
cryptographic hash to achieve a statistically unified
distribution and a subsequent mapping of this ran-
domized identifier to a geographic position. The cal-
culated geographic position will be the target for the
state gizmo in the same manner as in the example
above. In return the device d2 itself is able to compute
the same geographic position and it might issue addi-
tional requests to collect the information or to period-
ically send updates about its position to this venue. 

4. .NET IMPLEMENTATION
A first prototype version of GecGo has been imple-
mented using the Microsoft Windows CE 4.2 .NET
operation system and the .NET Compact Framework.
The middleware has been written in C#. At the time
of writing, the middleware has a size of approxi-
mately 3000 lines of C# source code. The GecGo exe-
cutable itself has a size of 84 KBytes at runtime
without any mobile applications installed. The target
mobile devices are Compaq IPAQs H5550 with 128
MByte main memory and integrated WLAN commu-
nication facilities. The middleware can also be exe-
cuted on ordinary notebooks supporting the full
version of the .NET framework. The porter service as
described in section 3 is not part of the current imple-
mentation. The main reason for this is the concentra-
tion on mobile state instead of mobile code. As a
consequence, all mobile applications are currently
installed explicitly on any participating mobile device
with no need for the porter services.

The GecGo middleware architecture consists of five
major classes:

• Middleware: This class serves as the main
access point for mobile applications. The class
also handles incoming state gizmos and
enables the execution of new applications.

• Beacon: The UDP beacon required for the
discovery of devices within communication
range is sent periodically by an instance of this
class.

• UDPListener: Primarily, this class handles
incoming beacons of other devices. It also acts
on the receipt of UDP-based requests by
neighbor devices to prepare for the transmis-
sion of another gizmo.

• TCPServer: This class is used on the receiv-
ing side to transmit complete gizmos from one
device to another. The device willing to send a
gizmo takes up the client role.

• GecGoDirectory: This class defines the
interface to all directory-related functions of
GecGo.

The single instance of class Middleware imple-
ments the graphical user interface of GecGo. The user
can browse the mobile applications installed on the
device and select individual applications to be exe-
cuted. For this purpose, the Middleware maintains a
hash table to derive the reference to the corresponding
assembly via its name. Each time an application is
started, the entry point of the assembly—a public
static method called run(IMiddleware mid)—
is executed. In this call, the argument mid of type
IMiddleware defines all the functions that are
available to mobile applications. In the prototype
version of GecGo, the following methods and
properties are provided:

• SendToAllNeighbors(Gizmo g)
• SendGizmo(Gizmo g, Device r)
• RegisterApplication(Assembly a)
• IGecGoDirectory gd

The property gd returns a reference to the directory
service of the middleware through the interface
IGecGoDirectory. This interface encapsulates all
the directory functions available to the mobile appli-
cation. Among others, the directory service currently
defines the following methods:

• InsertGizmo(Gizmo g)
• DeleteGizmo(Gizmo g)
• RegisterEvent

(Delegate f, string regExp)
• UnregisterEvent(Delegate f)
• GetGizmos(string regExp)

The delegate mechanism of C# is used to implement
the asynchronous callback mechanism of the GecGo
directory service. For example, if a gizmo inside the
residence wants to be notified upon the arrival of giz-
mos of a given type T in the lobby, it registers a dele-
gate with the event /Lobby/T/<Enter> and the
middleware will call back each time such a gizmo
enters the device. The .NET events may also be used
to implement asynchronous notifications between dif-
ferent gizmos.

The different communication tasks of the middleware
are handled by 3 dedicated threads, which are created
through instances of the classes Beacon, TCP-
Server, and UDPListener. Any device maintains
information about its current neighborhood through
the listening UDP thread which receives any beacon
messages issued by the Beacon thread of nearby
devices. The detailed information about the neighbor
will be continuously reflected by the structure of the
directory service and may—for example—trigger the
transmission of state gizmos in the lobby of a device.
In this case, an UDP request is sent to the potential
next host. If this device is willing to act as a host, a
TCP connection will be established and the selected
gizmo will be transmitted. The decision to rely on
TCP connections for the transmission of gizmos even
if the size of the gizmo would fit into a single WLAN
frame only holds for the prototype version of GecGo.



While implementing the thread-based communication
part of the middleware, several limitations of the
.NET compact framework became obvious. Several
management functions of the full .NET framework
such as asynchronous thread termination are missed
in the compact version of .NET. As a consequence,
more complex synchronization techniques must be
implemented to manage the active number of threads.
Also the interaction between beaconing and dealing
with the receipt of UDP messages would benefit from
additional functionality around UDP sockets, e.g. to
add a time-out value to a blocking receive on an UDP
socket.

Before sending, any gizmos are serialized. The binary
format of a serialized gizmo follows the TLV princi-
ple (Type, Length, Value). In the current version of
GecGo it is assumed that a gizmo is defined by the
values of the non-static class members, so that there
are no interface implementations needed to marshall
objects. Thus, the serialized form is a sequence of
these values. Each member is described by a type, a
name and a value triple. Non-primitive values are
marshalled recursively in the same way and arrays are
characterized by the enumeration of their values. By
using the reflection mechanisms of the .NET Com-
pact Framework the member informations and values
are queried independently from their visibility. The
reason for the explicit implementation of a gizmo
serialization is the missing support of the Binary-
Formatter and the SoapFormatter classes of
the .NET framework in the compact version. The
main reason for this were size and performance con-
siderations which might hold for today’s mobile
devices. But in anticipation of future heterogeneous
and mobile computing environments, there will be a
increasing need for a standardized serialization mech-
anism besides accessing web services.

Threads in GecGo
A first set of experiments was targeted towards the
Microsoft system software in order to determine the
costs induced in a multi-threaded implementation of
the middleware running on top of Windows. Observa-
tions at the beginning of the implementation phase
lead to the initial decision, to implement a first mid-
dleware version with a limited number of threads
only, because thread instantiations, deletions, and
context switches appeared to be to costly on the IPAQ
devices. In order to verify this observation, a simple
C# test program has been implemented which instan-
tiates a variable number of threads. Each of these
threads yields the CPU in a while loop for a given
period of time (2 minutes). The calculated time for a
single context switch is depicted in figure 5 for 2 to
256 threads in a single address space (application
domain). The same source code has been compiled
for 2 different release platforms: (1) a Windows con-
sole application with the full support of the .NET
foundation classes (Version 1.1) and (2) a smart
device application using the .NET compact frame-

work only. Both executables have been executed on a
1900 MHz mobile Intel Pentium 4. As the graphs in
figure 5 indicate, the time for a single context switch
increases slowly with the number of threads, starting
with 937 ns (.NET CF executable) and 915 ns (full
.NET executable) for two threads. The absolute num-
ber for 256 threads are 3361 ns (.NET CF executable)
and 3438 ns (full .NET executable).

The absolute times for the iPAQ .NET CF executable
running on a 400 MHz Intel Xscale processor are
16.28 microseconds for 2 threads and again 16.889
microseconds for 256 threads. A little surprising was
a significant minimum of 4.99 microseconds for 8
threads. Provided that the time of a single context
switch with no required change in address space is
determined primarily by the CPU speed, there is a
factor of 4.75 in CPU speed (1900 MHz to 400 MHz),
compared to a factor of 17.38 (worst case) and 5.17
(best case) in context switch time.

Measuring Gizmo Exchange
It is crucial for the successful execution of distributed
applications in multihop ad-hoc networks, that a suffi-
ciently large number of gizmos can be exchanged dur-
ing en passant communication. In another set of
experiments, this number of transferred gizmos
between mobile devices within communication range
is determined. The test programs for these experi-
ments are written in C# as mobile applications using
the functionality of the GecGo prototype. Varying
parameters are the size of state gizmos, the number of
participating devices, and the average mobility of spe-
cific devices.

The number of gizmos with increasing size trans-
ferred successfully between two iPAQs using the first
prototype version of GecGo are depicted in table 1.
As expected, the number of gizmos transmitted
decreases with increasing gizmo size. Obviously,
these numbers are still fairly low compared to the
available throughput of nominal 11 Mbps offered by
the WLAN adapters of the mobile devices. But since

Figure 5: Duration of context switches



the prototype version of GecGo has not yet been opti-
mized and performance tuned, hopefully there will be
space left for improvements. Especially, the fre-
quency of beacon messages, the impact on power
consumption, as well as the fine tuning of execution
paths during the exchange of gizmos has not been
investigated in more detail yet. In order to estimate
the possible increase in throughput, it is also intended
to measure the achievable number of bytes transmit-
ted over a plain TCP connection in an identical sce-
nario between several iPAQs in an accompanying
experiment.

Nevertheless, this version of the GecGo prototype can
already be used for first experiments with mobile
applications: assuming that two devices are within
communication distance for at least 50 seconds—pro-
vided that two mobile devices with a communication
range of 50 meters travel with a speed of about 1
meter per second—they can exchange e.g. about 100
gizmos of size 512 bytes.

The same experimental program can also be used for
more than two devices in order to determine the influ-
ence of neighboring devices on gizmo exchange. Due
to the spread spectrum modulation of wireless com-
munication, the interference between pairs of commu-
nicating devices appears to be fairly low. With 4
iPAQs, where gizmos are exchanged among pairs of
mobile devices, the number of successfully transmit-
ted gizmos is identical to the 2 iPAQ scenario (2.12
and 2.13 gizmos per second in case of 512 byte size).

First GecGo Applications
The GecGo middleware platform is currently used to
implement several example applications, to gain
experience with the abstractions provided by the mid-
dleware and to improve the platform architecture and
functionality. We started with the development of a

simple e-learning application: a peer-to-peer quiz for
students to assist in the preparation of examinations.
The basic idea is to enable participating students to
issue interesting examination questions. These ques-
tions are propagated by the GecGo middleware to the
corresponding venue that has been assigned to the
specific course. Participants interested in examination
questions for a given course will issue a request that
too will be propagated to the corresponding venue
where it remains for some period of time to collect
new items. This collection of new questions will be
realized by means of additions to the initial mobile
state gizmo. Eventually, the request will move back to
the sending owner and any results will be presented to
the user. Additionally, the application enables stu-
dents to rate and to order a set of questions from a
didactical point of view. Rates and orders are again
sent to the venue to be accessible to other participants.

The implementation of additional mobile applications
for ad-hoc networks using GecGo is planned for the
next 9 months: a mobile auction system and a self-
organizing electronic rideboard in an university envi-
ronment [1,5]. These applications have been investi-
gated already on a simulated basis [3,6] and as
prototypes running on a java-based middleware called
SELMA [4], the predecessor of GecGo.

5. RELATED WORK
Traditional middleware systems such as CORBA,
Microsoft DCOM or Java RMI are not suitable for
mobile ad-hoc networks because they rely on central
infrastructure like naming services and assume the
reachability of all network nodes. These assumptions
cannot be matched by mobile multihop ad-hoc net-
works. Additionally, traditional middleware
approaches are too heavyweight for mobile devices.
Many adaptions have been made to apply them in
mobile settings such as OpenCORBA [7] or Next-
GenerationMiddleware [8]. These extensions provide
mechanisms for context awareness, but cover mainly
infrastructure networks and one-hop mobile commu-
nications.

An increasing number of middleware systems is
developed specifically for mobile ad-hoc networks.
XMIDDLE [9] allows the sharing of XML documents
between mobile nodes. Lime [10] and L2imbo [11]
are based on the idea of tuple-spaces [12], which they
share between neighbored nodes. But due to the cou-
pling of nodes, these approaches are not well-suited
for highly mobile multihop ad-hoc networks. MESH-
Mdl [13] employs the idea of tuple-spaces as well, but
avoids coupling of nodes by using mobile agents,
which communicate with each other using the local
tuple-space of the agent platform. Proem [14] pro-
vides a peer-to-peer computing platform for mobile
ad-hoc networks. STEAM [15] limits the delivery of
events to geographic regions around the sender which
is similar to the geographically bound communication
at marketplaces. STEAM provides no long distance

Size of
state 

gizmo
(Bytes)

Transmitted
gizmos per

second

Throughput
(Bytes/s)

0 11.3 -

512 2.12 1083

1024 1.6 1638

2048 0.87 1774

4096 0.45 1843

8192 0.22 1775

16384 0.11 1757

Table 1: Transmitted gizmos between 2 devices



communication, it is only possible to receive events
over a distance of a few hops.

Mobile agent frameworks exist in numerous varia-
tions, Aglets [16] or MARS [17] may serve as exam-
ples. These frameworks were designed for fixed
networks and thus the above mentioned problems of
traditional middleware approaches apply to them as
well. The SWAT infrastructure [18] provides a secure
platform for mobile agents in mobile ad-hoc net-
works. This infrastructure requires a permanent link-
based routing connection between all hosts and thus
limits the ad-hoc network to a few hops and it is
therefore not applicable to en passant communication
pattern.

6. CONCLUSIONS
The specific nature of multihop ad-hoc networks
enforces a tight coupling between the middleware and
any mobile application. The sole dependence on
information local to the mobile device leads to new
programming and execution models, that favor self-
organization and adaption to a continuously changing
environment. The specific architecture of the GecGo
middleware as presented in this paper is trying to
address these issues by supporting mobile application
components and by providing flexible interaction
mechanisms between entities on a single device as
well as entities on mobile devices that are within
communication range for short period of times.

One of the major goals of this project is to verify that
the system software offered by Microsoft, which
addresses wireless infrastructures and mobile applica-
tions, also suits application needs in multihop ad-hoc
networks. At the time of writing, only preliminary
results are available. The successful implementation
of the GecGo middleware indicates, that in principle
no arguments prohibit the usage of the .NET Compact
Framework in such an environment. But in many situ-
ations, it was obvious that the current version of the
Compact Framework addresses issues in singlehop
networks only. In such an environment, the wireless
communication facilities are primarily substitutes for
a physical wire with the traditional protocol stack on
top of it. This is no disadvantage, since it is meant to
support exactly this environment. But questions to be
answered in the future of this project will address
issues on additional support for multihop ad-hoc net-
works and how to integrate these required functions
into existing system software such as the .NET Com-
pact Framework.

7. FUNDING
This work is funded in parts by the german science
foundation DFG as part of the Schwerpunktpro-
gramm SPP1140 „Basissoftware für selbstorganisier-
ende Infrastrukturen für vernetzte mobile Systeme“.
The Microsoft Windows CE and Microsoft .NET
Compact Framework implementation of GecGo is

funded by an Microsoft Research Embedded Systems
IFP Grant (Contract 2003-210).

8. REFERENCES
[1] H. Frey, J.K. Lehnert, and P. Sturm. “Ubibay: An auction 

system for mobile multihop ad-hoc networks,” Workshop on 
Ad hoc Communications and Collaboration in Ubiquitous 
Computing Environments (AdHocCCUCE'02), New Orleans, 
Louisiana, USA, 2002

[2] D. Görgen, H. Frey, J. Lehnert, and P. Sturm, “Marketplaces 
as communication patterns in mobile ad-hoc networks," in 
Kommunikation in Verteilten Systemen (KiVS), Leipzig, 
Germany, 2003

[3] J. K. Lehnert, D. Görgen, H. Frey, and P. Sturm. “A Scalable 
Workbench for Implementing and Evaluating Distributed 
Applications in Mobile Ad Hoc Networks,” Western 
Simulation MultiConference WMC'04, San Diego, California, 
USA , 2004

[4] D. Görgen, J. K. Lehnert, H. Frey, and P. Sturm. “SELMA: A 
Middleware Platform for Self-Organzing Distributed 
Applications in Mobile Multihop Ad-hoc Networks;” Western 
Simulation MultiConference WMC'04, San Diego, California, 
USA, 2004

[5] H. Frey, D. Görgen, J. K. Lehnert, and P. Sturm. “Auctions in 
mobile multihop ad-hoc networks following the marketplace 
communication pattern,” submitted to 6th International 
Conference on Enterprise Information Systems ICEIS'04, 
Porto, Portugal, 2004

[6] H. Frey, D. Görgen, J. K. Lehnert, and P. Sturm. “A Java-
based uniform workbench for simulating and executing 
distributed mobile applications,” FIDJI 2003 International 
Workshop on Scientific Engineering of Distributed Java 
Applications, Luxembourg, Luxembourg, 2003 (to appear in 
Springer LNCS)

[7] T. Ledoux. “OpenCorba: A reactive open broker," Springer 
LNCS, Volume 1616, pp. 197ff, 1999

[8] G. S. Blair, G. Coulson, P. Robin, and M. Papathomas. “An 
architecture for next generation middleware," in Proceedings 
of the IFIP International Conference on Distributed Systems 
Platforms and Open Distributed Processing, Springer-Verlag, 
London, UK, 1998

[9] S. Zachariadis, L. Capra, C. Mascolo, and W. Emmerich. 
“XMIDDLE: Information sharing middleware for a mobile 
environment," in ACM Proc. Int. Conf. Software Engineering 
(ICSE02). Demo Presentation, Orlando, Forida, USA, 2002

[10] G. P. Picco, A. L. Murphy, and G.-C. Roman. “LIME: Linda 
meets mobility," in International Conference on Software 
Engineering, pp. 368-377, 1999

[11] N. Davies, A. Friday, S. P. Wade, and G. S. Blair. “L2imbo: A 
distributed systems platform for mobile computing," ACM 
Mobile Networks and Applications (MONET) - Special Issue 
on Protocols and Software Paradigms of Mobile Networks, 
Volume 3, pp. 143-156, Aug. 1998

[12] S. Ahuja, N. Carriero, and D. Gelernter. “Linda and friends," 
IEEE Computer, Volume 19, pp. 26-34, Aug. 1986.

[13] K. Herrmann,. “MESHMdl - A Middleware for Self-
Organization in Ad hoc Networks," in Proceedings of the 1st 
International Workshop on Mobile Distributed Computing 
(MDC'03), 2003

[14] G. Kortuem. “Proem: a middleware platform for mobile peer-
to-peer computing," ACM SIGMOBILE Mobile Computing 
and Communications Review, Volume 6, Number 4, pp. 62-
64, 2002

[15] R. Meier and V. Cahill. “STEAM: Event-based middleware for 
wireless ad hoc networks," in 22nd International Conference 
on Distributed Computing Systems Workshops (ICDCSW 
'02), Vienna, Austria, 2002

[16] D. Lange and M. Oshima. “Programming and Deploying Java 
Mobile Agents with Aglets,” Addison-Wesley, 1998

[17] G. Cabri, L. Leonardi, and F. Zambonelli. “MARS: A 
programmable coordination architecture for mobile agents," 
IEEE Internet Computing, Volume 4, Numer 4, pp. 26-35, 
2000

[18] E. Sultanik, D. Artz, G. Anderson, M. Kam, W. Regli, M. 
Peysakhov, J. Sevy, N. Belov, N. Morizio, and A. 
Mroczkowski. “Secure mobile agents on ad hoc wireless 
networks," in The 15th Innovative Applications of Articial 
Intelligence Conference, American Association for Articial 
Intelligence, 2003


