
An Agent Oriented Programming Language
Targeting the Microsoft Common Language Runtime

C. Vecchiola, A. Gozzi, M. Coccoli, A. Boccalatte

University of Genova, DIST

Via Opera Pia, 13 – 16145 Genova, Italy

capsule@email.it {gozzi,coccoli,nino}@dist.unige

ABSTRACT

In the last decades, a significant growth of agent oriented systems has been observed, which has stimulated a
more precise formalism for the definition of both agent and multi-agent systems, as well as the release of a huge
number of agent development environment. In this work a new programming paradigm is proposed, that is agent
oriented programming instead of object oriented programming. The guidelines for the realization of a suited
agent programming language, that is an agent oriented language, can be derived according to the basic
characteristics that software agents must have. As well as object oriented programming fully exploits the
structured programming basic concepts, agent oriented programming will strongly benefit of both the object
oriented model and logic programming theoretical basis. A project for the development of a novel architecture
has been presented for software agents’ development in an agent based system that is an Agent Programming
Framework based on the Microsoft Common Language Runtime (CLR).

Keywords
“Agent Programming Language”, “Microsoft CLR”, ".NET Reflection".

1. INTRODUCTION
Agent and multi-agent systems are a widespread
research topic. Agent based technology has been
proposed as an effective solution to common
requirements of information systems applied to
manufacturing, communication, workflow
management and many other subjects [Oli99a]. In
this paper, the reader is assumed to be familiar with
the basic concepts of software agents [Woo95a] and
multi-agent systems [Woo99a].

Since the introduction of agent technologies, a large
number of agent framework have been proposed.
Most of them are based on the object oriented
languages and are a class library offering facilities for
the common agents’ tasks i.e. agent life cycle

management, message communication and directory
service.

Up to now, the activity of programming agents has
been writing code in an object oriented language
(typically Java) taking into account that the final
result should be an agent rather then a simple piece of
code or a process. In such a way an agent can be
trivially considered as a set of classes or libraries to
be used in an agent based solution. The novel concept
that the authors are going to promote is a new
programming paradigm that is an agent oriented
programming technique. Agent-thinking instead of
Object-thinking can help the programmer to better
understand agents and their philosophy so that he/she
can design and implement the best abilities that each
agent should have to better operate.

The proposed work is part of a project aiming to
develop an Agent Programming Environment and its
complete integration within the Microsoft .NET
framework.

The design and development of the Agent
Programming Framework were carried on based on
the Common Language Runtime (CLR) and the C#
language [Wil02a], hence on the .NET Platform
[Pla01a]. Adopting .NET as the platform on which
develop the agent framework, the authors aim to
make the framework able to benefit from the
numerous services offered by the platform.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

1st Int.Workshop on C# and .NET Technologies on
Algorithms, Computer Graphics, Visualization, Computer
Vision and Distributed Computing

February 6-8, 2003, Plzen, Czech Republic.
Copyright UNION Agency – Science Press
ISBN 80-903100-3-6

The Framework was built-up with the following
components:

1. Templates for agents programming

2. Interaction modeler for cooperation among
agents in the system

3. Agent oriented programming language

In particular, in this framework, much attention was
dedicated to the software architecture of agent
themselves rather then to the architecture of agent
systems to be developed. Merely speaking, agents in
an object oriented language are just objects. By
means of the .NET platform capabilities one step
ahead is possible, that is driving programmers to
agent-thinking instead of object-thinking.

Despite the framework architecture being agent
oriented, it can not make the programmer use its
software components in the best way. Due to the
programmer uses an object oriented language in order
to access the framework library (any language
targeting the .NET platform), non agent oriented
patterns are still possible. So, some common mistakes
related with concurrent and distributed computation
are possible.

In order to avoid such a disadvantage a specialized
programming language is necessary. An agent
oriented language with its related compiler can make
the programmer access the framework in the correct
way and signal every mistake at compiling time.

The third part of the project, that is this paper topic,
aimed to develop a compiler of a new agent oriented
language derived from the C# grammar, targeting the
agent framework class library and hence the CLR.
The proposed language offers to the programmer the
possibility of writing his/her agent oriented code with
a strong agent architecture and avoids common
difficulties arising in the programming agent with
other tools.

Different approaches to the development of a
compiler targeting the CLR and the solution adopted
within this work are fully detailed.

2. AGENT PROGRAMMING
LANGUAGES
In the last decades, a significant growth of agent
oriented systems has been observed, which has
stimulated a more precise formalism for the definition
of both agent and multi-agent systems, as well as the
release of a huge number of agent development
environment. The major interest for such discipline
came from Artificial Intelligence and Software
Engineering which have both given complementary
contribution to the creation and the evolution of a
new agent oriented programming paradigm. From
traditional logic programming, a methodology for

specification of both the structure and the behavior of
software agents can be derived. Moreover, in the
meanwhile, agent platforms and development
environments have become very common tools,
easily available and usable.

By means of agent-based techniques, problems
can be solved and solutions implemented; as long as
they can be represented as the interaction of a number
of agents, then a suited multi-agent system can be
designed, representing that particular problem.
Existing development tools for multi-agent systems
are entirely based on object oriented programming
then an agent becomes an object which can be,
sometimes, reductive [Cha02a]. The development of
agent systems by means of existing tools is possible
yet not so easy! In a few words related problems can
be listed as follows:

• Agent platforms based on a specific set of classes
that implement agents and their behaviors allow
designing agent systems only based on those
classes and must be programmed by adding
specific libraries in a specific object oriented
language (Java in most cases). They provide an
agent environment and an infrastructure for
communication then it is up to the programmer
to keep in mind that an agent system is being
realized, and hence to write code according to
the definition of agent (e.g. autonomous,
proactive, and collaborative).

• Agent models based on the classical AI logic
programming (e.g., FOPC, multimodal logic)
[Par01a] can easily express the agents’ behavior
and the interaction model among agents, yet are
not supported by development platform in such a
way that integration and interaction with other
systems can become very hard.

3. AN AGENT FRAMEWORK BASED
ON THE CLI
Common features offered by agent-programming
framework are a support for the concurrent
programming, emerging from the multi-behaviors
characteristic of the agent paradigm, a
communication layer providing a messaging service
for the agents, and a platform able to host the active
agents and to manage them.

Basic functions of an agent-platform are standardized
by FIPA (Foundation for Intelligent Physical Agents)
[FIPA, http://www.fipa.org]. In particular, FIPA
provides specifications about agent life cycle
management, communication protocols and directory
facilities to locate agents on the network.

Many agent-programming frameworks are available
as commercial or academic products and most of
them are based on the Java platform as well as the

scientific community is strongly Java-oriented. For a
complete survey of agent frameworks and tools see
[Age02a].

Even if Java could be an excellent platform on which
develop an agent framework, adopting the Java
technology make the integration of the agent based
applications with other technologies software
difficult. In particular, the authors felt the necessity of
an agent framework able to cope easily with
application targeting the Microsoft Windows
operating system, without using the Java platform.
So, one year ago a new project was launched whose
aim is developing a novel agent-programming
framework entirely based on the .NET platform. The
result is a framework with all the necessary classes to
help the programmer in developing his/her agents,
behaviors, and messages plus a Windows Service
acting as agent platform. All the software is written in
C# language. Agents can use any .NET class and any
.NET program can access the agent-platform and use
the hosted agents. Thanks to the adoption of the .NET
technology for the development of the agent
programming framework, a strict interaction is
possible with both the operating system and the run-
time environment; integration can be easily achieved
towards the vast suite of Microsoft server products,
from which agents can take advantage for
development of enterprise applications such as e-
commerce, workflow management, and application
interoperability.

Agent Framework Software Architecture
Main difficulties in design an agent framework
concern with the necessity to give the agents
autonomous activity and make the agent software
component protected by other software entities.
Moreover agent should be characterized by multi-
behaviors activity. That means concurrent
programming issues arise among various agents and
within each single agent.

In the proposed framework each agent is activated in
a separate Application Domain. Thanks to the
Application Domain feature provided by the CLI,
agents can have different rights/denials or privileges
within the same processes and an easy management
for life-cycle of the agent has been achieved.

In order to make the agent able to act with many
behaviors a novel solution has been adopted. It aims
to avoid the necessity of using synchronization
primitives of the adopted object oriented language
whereas guarantee the correct functionality of the
software architecture.

The proposed solution is based on an agent model
that is characterized by two separated set of data.
Data that specify the agent state and should be
accessible from every behavior are collected in a

particular software component of the agent called
knowledge. Other data that do not compose the agent
state and are used only by a particular behavior in
order to perform some local activity, are bounded in
the behavior software component.

The knowledge component lets the behavior
components access the data it contains in a
concurrent way, but it performs all the necessary
tasks to protect the data from the risk of race-
conditions and dead-lock.

The solution, in fact, imposes the use of the specific
methods for the access to the knowledge objects and
the knowledge cares about synchronization
transparently. Should a programmer try to access a
knowledge item without using properly the
specialized methods, an exception will be raised.

The disadvantage of this solution is that each item
contained in the knowledge objects is accessed in a
late binding mode. That means the C# compiler
cannot do the necessary checks to avoid a variety of
errors as wrong typed names, implicit type cast or
missing methods or parameters calls for every
instruction that enroll object of the agent knowledge.
Moreover the programmer have to explicitly cast the
objects accessed from the knowledge in the right type
each time they are used, and the possibly errors in
using the methods which allow the access to the
knowledge objects are discovered at run-time instead
of compilation time. Obviously, the framework does
every necessary check and raise an exception for each
error should occur but no compiling warnings and
errors are possible at this stage.

The project of a new agent oriented language aims to
avoid such disadvantage. Its objective is defining a
grammar for the definition of an agent template and
give the programmer the possibility of define his/her
agent with a specialized agent oriented language. A
translator, targeting the programming framework and
hence the CLI, will use the framework classes in
order to create the necessary objects to implements an
agent defined with such a language. Obviously, the
translator will be able to perform any necessary check
during the compilation phase and will provide the
possibility of using strong typed object instead of a
late binding access.

4. THE PROPOSED AGENT
PROGRAMMING LANGUAGE
In a programming language that support a certain
paradigm, the key-abstractions of the latter are
normally translated in native constructs of the former.
This mapping leverages the work of the programmer
since it permits the modeling of the solution directly
using at code level the elements of the paradigm.

There is no effort in casting the solution into the
elements offered by programming language.

A clear example are the object oriented languages:
the starting point in creating a program are objects
and classes as in the object oriented model the
programmer has objects and classes to structure a
solution. Since object oriented programming is now
of common use, the benefits of this mapping against
previous programming paradigms do not immediately
appear. This is also the main design objective for the
proposed agent oriented programming language: the
language will offer basic building block to develop
applications agent constructs, that will be modeled
adding them behaviors and data for its internal state.

Such a language should simplify the implementation
of the basic characteristics that software agents must
have. Software agents must be:

• Autonomous

• Strongly oriented to social activity

• Cooperative with other agents to reach common
objectives

• Able to share common resources

Following these guidelines the new language main
features should be:

• A structure that represent an agent;

• A structure for the knowledge of the agent;

• A structure that models the behavior;

These are all high-level structures, and the agent is
the starting point for the creation of a programming
module. Like all programming languages the agent
oriented one should offer the most common features
as expressions and control structures. Expressions
and control structures will model the core agent’s
computation inside behaviors elements, so it is
necessary to have high expressiveness. The grammar
for expressions and control structures recalls the
grammar for object oriented languages, with slight
modifications that permit access control to shared
objects.

There is another reason to introduce some elements
of the object oriented model: agent programming
normally deals with complexity, and until now the
most powerful way to express and organize complex
structures has been the object oriented model. So
agent programming will still be based on object
oriented programming, even better, it can be
considered an extension of object oriented paradigm.
As well as object oriented programming fully exploits
the structured programming basic concepts, agent
oriented programming will strongly benefit of both
the object oriented model and logic programming
theoretical basis.

A former step in this way has been already done by
some researchers [Bus99a] that extended the Java
language with some new keywords and structures to
model agents. The solution will consider the C#
language, will relay on the agent programming
framework previously discussed to implement the
specific features of agency. Only the previously
discussed elements will be added to the C# grammar,
and some modifications, as said before, will be
necessary to enforce the agent programming model.
The key point is that, even if all the structures
introduced will have a counterpart in a legal C#
program (and this mapping will be automatic), what
sees the programmer as basic building blocks are
agents, and behaviors. The programmer is obliged to
cast the solutions in terms of these blocks, and the
authors think that where the agent model is suited and
useful this is an advantage rather then a lack.

5. WHY C#
C# is a simple, modern, object oriented, and type safe
programming language derived from C and C++. It is
the main language in the .NET framework, and
combines the raw power of C++ with the high
productivity of Visual Basic. Like Java, C# supports
completely the entire object oriented paradigm and
integrates some useful features that leverage
programming at language level such as events and
indexers. C# is also the language that mostly
embodies the different possibilities of the IL, among
the ones offered with the .NET platform. It is a very
powerful language by which can be implemented a
wide range of applications.

C# has been considered as reference point during the
project of the agent programming language not only
for its support of the object oriented paradigm, but
also for the following reasons:

• Seamless integration capabilities with the
Microsoft Windows and .NET platforms

• C# is now an ECMA standard, and that restricts
the changes that can be made to its grammar and
semantics, differently Visual Basic is not a
subject of standard

• Similarity with C, C++ and Java: C# has a
grammar that is really similar to the mentioned
languages. There are a lot of Java and C++
programmers that can easily take confidence with
C#.

All these aspects have made C# the basis for the
agent oriented programming language.

6. IMPLEMENTATION ISSUES
The tasks to be achieved are the following:

• The definition of a new grammar, extending the
C# language, providing the programmer with
new keywords and new programming
constraints. Such constraints will drive the
programmer to an agent-view of the problems to
be solved, allowing only agent oriented actions
to be implemented and programmed.

• The development of a parser able to process the
newly defined language, thus giving all of the
information relevant the generation of the
equivalent C# code to be “used” in the agent
programming platform.

• The development of a semantic analyzer that
performs all the additional semantic checks such
as internal state data access, proper
synchronization.

• A code generator that produces IL assembly for
the Common Language Runtime.

In a few words, a compiler is needed. Relaying on the
common organization of today’s compiler, the huge
task of compiler construction can be leveraged.
Normally a compiler is built by two components that
are [Aho86a] :

• Front-end: including modules for scanning,
lexical analysis, and parsing, its outcome is an
intermediate representation of the program,
subsequently used for target code generation.

• Back-end: operating on intermediate code,
eventually optimizing it, its outcome is machine
code customized to the target architecture.

Since the target code is known and it is the
intermediate language, it is not necessary to create
from scratch all the entire compiler, but just the front-
end has to be designed accordingly to characteristics
of the new language. Front-end, in fact relays mostly
on syntactic and semantic aspects of a programming
language that are the means by which a paradigm is
supported.

Different solutions have been evaluated:

• Lex [Les75a] and yacc [Joh75a] : these are the
most used tools to build lexical analyzers, and
parsers. Many other tools extend the original
functionalities provided with this programs.

• CSTools [http://cis.paisley.ac.uk/crow-ci0/]:
compiler writing tools in the tradition of lex and
yacc, but using C# as an implementation
language. The tools are written using object
oriented techniques that are natural to C# and are
provided in source form to assist an
understanding of the standard algorithms used.

• Microsoft Code Document Object Model
(CodeDOM) : composed by the two namespaces

System.CodeDom, System.CodeDom.Compiler,
provided inside the Framework Class Library.
These libraries provide a useful support in
creating compilers for small languages

• Possibly joining the VSIP which would strongly
leverage the full integration of the new language
within the Microsoft .NET platform, and provide
facilities for language implementation and
advanced features management.

A first implementation of the main features of the
parser has been realized using the Jay parser
generator [http://www.cs.rit.edu/~ats/], to build an
abstract syntax tree of the program using CodeDOM.
Despite the easy and rapid development obtained
using this solution, the lacks of CodeDOM in
representing all the elements of a program, for further
analysis, has convinced the authors to change the
implementation model. Assuming C# as reference, it
is possible to note that CodeDOM does not cover
many elements of its grammar as postfix operators,
and other features. These lacks are supplied
providing a set of CodeSnippet elements that can
represent expressions or statements that are not
covered by native classes of CodeDOM. Clearly this
solution works in embedding automatic code
generation features inside an application, but turns
out to be not powerful enough in performing
exhaustive program analysis, that occurs during
semantic analysis. Another pitfall of CodeDOM is
that it binds the “compiler” to a specific language, in
the project case to C#, so it is necessary to have a C#
compiler to create the IL for the run-time. The new
implementation model will provide a complete
representation of all the elements of the grammar and
will exploit the facilities of .NET framework as
Reflection.Emit. A final note on implementation
should be done. Since the project is based on the
.NET framework it is possible to fully exploit its
features to leverage the front-end construction task.
The explicit construction of an intermediate
representation can be avoided using the code
generator classes. A smart solution could be the
creation of a full featured abstract syntax tree and
then use code generation facilities to create the
assembly. In this case only the scanner, the parser and
the different tree-walkers that perform semantic
analysis have to be implemented.

7. CONCLUSIONS
A project for the development of a novel architecture
has been presented for software agents’ development
in an agent based system that is an Agent
Programming Framework. The work has up to now
demonstrated good quality of .NET programming
platform applied to agent technology and is looking
forward to developing a new agent oriented language

targeted to the IL. An agent oriented programming
paradigm has also been introduced within this agent
programming framework. Different possible
architectures for the design and development of a
compiler targeting the new agent oriented language to
the CLR have been exposed.

8. REFERENCES
[Age02a] Review of software products for Multi-

Agent Systems by Applied Intelligence (UK) Ltd.
on behalf of AgentLink, the European Network of
Excellence for Agent-Based Computing (IST-
1999-29003), June 2002.

[Aho86a] A.V. Aho, R. Seti, J. D. Ullman,
Compilers: Principles, Technicques and Tools,
Addison Wesley, Reading, Massachussets, 1986.

[Bus99a]. P. Busetta, R. Ronquist, A. Hodgson, A.
Lucas, JACK Intelligent Agents - Component for
Intelligent Agents in Java, Technical Report 1,
Agent Oriented Software Pty. Ltd, Melbourne,
Australia, 1999.

[Cha02a] Chaib-draa, B., Dignum, F., “Trends in
Agent Communication Language”, Computational
Intelligence, vol. 18, n.2, 89-101, May, 2002.

[Joh75a] S. C. Johnson, YACC – Yet Another
Compiler Compiler, Computing Science
Technical Report 32, AT&T Bell Laboratories,
Murray Hill, New Jersey, 1975.

[Les75a] M. E. Lesk, Lex – a lexical analyzer
generator, Computing Science Technical Report
39, AT&T Bell Laboratories, Murray Hill, New
Jersey, 1975.

[Oli99a] Oliveira E., Fischer K. and Stepankova O.:
Multi-agent systems: which research for which
applications. Robotics and Autonomous Systems
27, 91-106, 1999.

[Par97a] Parks, D.,“Agent Oriented Programming
Languages: a Practical Evaluation”, available on
the web at www.cs.berkeley.edu/~davidp/cs263/,
December, 1997.

[Pla01a] Platt, D.S., “Introducing Microsoft .NET”,
Microsoft Press, Redmond, Washington, 2001.

[Wil02a] Williams, M., “Microsoft Visual C# .NET”,
Microsoft Press, Redmond, Washington, 2002.

[Woo95a] Wooldridge, M., Jennings, N.R.,
“Intelligent agents: Theory and practice”, The
Knowledge Engineering Review 10, 2,115-152,
1995.

[Woo99a] Wooldridge, M., “Multiagent Systems: A
Modern Approach to Distributed Artificial
Intelligence”, G. Weiss (Ed.), MIT Press,
Cambridge, MA, 1999.

