
The Implicit Function Modeling System -
Comparison of C++ and C# Solutions

Uhlir Karel1

University of West Bohemia
Univerzitni 8

30614 Plzen, Czech Republic

kuhlir@kiv.zcu.cz

Skala Vaclav
University of West Bohemia

Univerzitni 8
30614 Plzen, Czech Republic

skala@kiv.zcu.cz

ABSTRACT
This paper compares possibilities of Visual .NET C# with other compiled programming environments (e.g.
Microsoft Visual C++, Borland C++ Builder) and interpreted languages like for example HyperFun. The study
focuses on the aspects of developing a system for direct interpretation of objects described by implicit functions.
The starting point of the comparison is based on a HyperFun system. The results show the speed-up reached by
compiling implicitly defined objects and illustrate possibilities of tested languages to create similar structures.

Keywords
Implicit function, C#, C++, modeling system, objects.

1. Introduction
This paper presents a system developed for direct
compiling of implicitly defined objects. There exist
many systems for modeling with implicitly defined
objects. One of them is the HyperFun (HF) system.
This system uses HyperFun language for a model
description. HF performs interpretation of a model to
its internal structures. The HyperFun language is very
similar to C programming language. The new
Compiled HyperFun (CHF) system is introduced in
this article. The CHF system performs direct
compilation of the model. There was a tendency to
have the same models for the CHF and the HF. The
CHF was designed to process identical programming
and data structures Therefore, overloaded operators
were used to accomplish it. The direct compilation of
the object offers significant speed-up. The speed-up
tests were created with programming languages
mentioned above. We have selected C++ and C#

languages for our experiments. The comparison of
speed-up for C++ using Borland C++ Builder and
Microsoft Visual C++, and C# programming
language using Microsoft Visual C# (Microsoft
Visual Studio .NET) made. The comparison of the
approaches (HP and CHF) languages is presented
using structures with an identical functionality. The
CHF system is written in C# without using any
special feature of C#.

2. Implicitly defined objects
The implicitly defined objects are objects described
by an implicit function. Implicit functions define an
implicit surface. An implicit function is a continuous
scalar-valued function over the domain R3. The
implicit surface of such a function is the locus of
points at which the function takes the zero value. For
example a unit sphere may be defined using the
implicit function f(x) = 1 - x2 - y2 - z2 . Locations of
points on the sphere are defined by the function f(x) =
0. Positive values are inside the object defined by the
implicit function and outside of it there are negative
values. This will be convention in this paper.

Basic operations used on implicitly defined objects
are the Boolean operations. Using these operations
can create a CSG tree. The CSG tree structure is one
of basic methods used for description of structured
models with primitives. In basic operations there
behoove: union, intersection, subtraction and
negation. The definition of these operators can be
different [Pasko95]. It depends on geometric

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

1st Int.Workshop on C# and .NET Technologies on
Algorithms, Computer Graphics, Visualization, Computer
Vision and Distributed Computing

February 6-8, 2003, Plzen, Czech Republic.
Copyright UNION Agency – Science Press
ISBN 80-903100-3-6

1 project supported by the Ministry of Education of The Czech Republic – Project MSM 235200005 and Microsoft Research Ltd.(U.K.)

continuity, which is to be achieved. The basic
expression of these operations that are continuous is
C0 (Fig.1) is used. This operator’s expression is very
convenient for calculation. It is just the comparison
of values.

Several methods for obtaining the surface from the
function definition exist [Cerm02a, Cerm02b,
Bloo94]. There is used a classic marching cubes
method (Fig.2). The HF uses different method of
iso-surface extraction but the evaluation part is
identical. For both methods it is necessary to evaluate
the function in each intersection of the regular grid.
The density of the grid defines the quality of a final
surface. Time required for the model evaluation in
each intersection of the regular grid was the basic
indicator of the method speed-up.

3. HyperFun
The HyperFun is a simple geometric modeling
language developed at the University of Hosei
[Adz99]. It is intended for modeling of geometric
objects described by an implicit function. This
software tool uses a high-level programming
language called HyperFun for description of models.
The HyperFun has got a library of models. This
library contains definitions of primitives, operations,

and relations used in HyperFun models. A HyperFun
model (Fig.2) is a text file, of a defined structure
(Fig.3). The HyperFun is a system with Symbolic
user interface (SUI) form modeling, parsing the
model to internal data structures, evaluating the
model and its visualization.

A HyperFun model can contain specifications of
several geometric objects. Each object is defined by a
function that is parametrized by input arrays of point
coordinates and free numerical parameters. A model
in HF can be more complex. There can be used
auxiliary local variables and arrays, conditional
sections (if-then-else), and iteratives (‘while-loop’).
Functional expressions are built using conventional
arithmetic and relational operators. It is possible to
use standard mathematical functions ('exp', 'log', 'sqrt',
'sin', etc.). Fundamental set-theoretic operations are
supported by special built-in operators with reserved
symbols ("|" - union, "&" - intersection, "\" -
subtraction, "~" - negation, "@" - Cartesian product)
[Pasko95, Rigau99].

The HF interpreter provides parsing with a syntax
and semantic analysis. For each object described in
the (HF) program, the function generates an internal
representation. Accordingly, the internal
representation can be considered as a tree structure
ready to evaluate effectively all expressions defining
the whole function. The internal representation of the
object serves as an input parameter for the function
that returns the value of the evaluated function at the
given point. Visualization of a final scene is
performed by the ray-marching algorithm [Pasko93].

4. Compiled HyperFun
The Evaluation is a computationally very expensive
part of the HF, so the Compiled HyperFun (CHF) is
used to speed-up this particular area. The idea of the
CHF was to make identical system, which can take
advantage of a classic compiler for a model
evaluation.

Figure 2. Union of two spheres.

my_model(x[3], a[1])
{
array center[3];
center = [5,5,0];
sp1=hfSphere(x,center,4.);

center[2] = -5;
sp2=hfSphere(x,center,4.);

my_model = sp1 | sp2;
}

Figure 3. Model structure.

Union))(),(max()(21 xfxfxF =

Intersection))(),(min()(21 xfxfxF =

Subtraction))(),(min()(21 xfxfxF −=

Negation)()(xfxF −=

Figure 1. Operations definition.

As we intended to have the same language
construction in both systems, the CHF had to be
developed with this restriction. It was important to
keep the same structure for the HF and the CHF,
because it guarantees usability for the HF users.

As it was already said, the basic functions are the
same. Now it is time to introduce which way of the
HF and the CHF are used for modeling. Where is the
power of these systems? The both systems have a
library of functions. This library can be divided into
two parts. The first part contains basic primitives and
the second one operations.

The library of primitives includes objects e.g. sphere,
torus, cylinder, ellipsoid, block, etc. All primitives
have parameters which must be defined before the
model evaluation is started. Each primitive returns
the value for given parameters (e.g. spatial
coordinates, diameter etc.) (Fig.4). As an example
consider a sphere model. The sphere primitive is then
calculated in the model evaluation. The primitive
returns the value in spatial coordinates (x[]) and
parameters are spatial coordinates of the center point
(ct[]) and radius of the sphere (Fig.4). Each model
contains input parameters. Model parameters are
spatial coordinates and free parameters. The free
parameters must not be defined (Fig.3). The model
returns the value of the model in spatial coordinates.

The library of operations contains e.g. operators
(union, intersection, subtraction, negation, etc.),
blending operations [Pasko95], rotation etc. The
operations are generally unary or binary. Their
parameters are primitives.

Object oriented programming languages C++ and C#
were used for implementation of the library. There
was implemented a class for primitives (CP on Fig.4)
and a class for operations (FD on Fig.6). The class
for operations was inherited from the class of
primitives (Fig.5). This inheritance of classes was
necessary for the construction of objects in C++
(Fig.6) and in C# (Fig.7), too. The implementation of
library elements is almost identical in the both
languages.

The main reason for the inheritance of the classes was
the possibility of overloading operators. If we look at
the model structure (Fig.3), it is clear, that characters
are used for the basic HF operations and they are also
operators in languages C++ or C#. Without the
overloading operator it would not be possible to
reach the same structure of model description like in
the CHF. The problem was the usage of non-standard
operators in the HF for some operations. These
operators cannot be overloaded in C++ or C#. In
particular, are speaking about the subtraction
operator. In HF, the backslash operator (‘\’) is used
for this operation. This operator cannot be
overloaded, in the CHF the operator ‘%’ is used for
this operation. In C# language, there is also another
problem. The equality operator (=) also cannot be
overloaded. It slightly increased complexity of the
model description.

Figure 5. Inheritance.

FD& FD::operator |(FD &pA)
{
if(this->m_dRes < pA.m_dRes)
return(pA);
else return(*this);
}

Figure 6. Union operator implementation in
C++.

double CP::fSphere (double x[],double
ct[],double r)
{
double mx = x[0] - ct[0];
double my = x[1] - ct[1];
double mz = x[2] - ct[2];
double x2 = mx*mx;
double y2 = my*my;
double z2 = mz*mz;
double r2 = r*r;

return (r2 - x2 - y2 - z2);
}

Figure 4. Sphere primitive implementation.

public static FD operator |(FD
first,FD second)
{
if(first.m_dRes < second.m_dRes)
return(second);
else return(first);
}

Figure 7 . Union operator implementation in
C#.

The paragraph above described main problems with
the library of primitives and the operations. Other
issues are clear from the model description in C++
(Fig.8) or C# (Fig.9) language. There are no
significant differences of the model description in the
C++ implementation and the model description in the
HF.

For the reason of C++ or C# language conventions,
there are some small differences in the model
description, namely in the definition of variables.
These differences cannot argue out potential users
from using the CHF if they know the HF convention.

All the important differences were defined and now
the evaluation of the model can start. Note, that the
main interest of this work is the evaluation part only.
Libraries and models together compose a project. The
project must be compiled and the final result of the
compilation is an executable file.

5. Results
The new method based on the direct compilation of
models is working and new questions are arising now.
Which compiler has got the best code optimization?
Does the setting of a compiler affect the final
evaluation time? These questions will be answered in
next paragraphs.

There exist many different C++ language compilers
and few C# compilers. As this work was oriented
towards Microsoft Windows environment, basic
testing was run with the most popular compilers for
this operating system. Testing was performed in
Microsoft Visual C++, Microsoft .NET C# and
Borland C++ Builder compilers. C++ programming
environments were selected for better idea about
compiler optimizations and C# language for
comparing with non-full object oriented language like
C++. Finally the changing of the compiler setting was
tested too but these changes did not have any
important effect.

As it was already mentioned, the testing was done
with the regular grid and the function was evaluated
at each intersection of this grid. The space dividing
was changed on the interval from 150 cells in one
axis (N3 cells) to 200 cells. All tests were run on the
two-processor computer Pentium III, 450MHz, 1GB
RAM, Windows XP.

All the graphs express the speed-up ratio of the tested
model in the defined environment and language
compared to the same model evaluated in the HF.
The calculate time of the model in the HF divided by

FD FD::sphere_union(double x[])
{
double center[]= {5.0,5.0,0.0};
FmodelDouble sp1,sp2;
sp1 = fSphere(x,center,4.0);

center[1]= -5.0;
sp2 = fSphere(x,center,4.0);

return(sp1 | sp2);
}

Figure 8. Model description in C++ language.

public FD sphere_union(double[] x)
{
double[] center = {5.0,5.0,0.0};
FD sp1 = new ClassOperator();
FD sp2 = new ClassOperator();

sp1.m_dRes = fSphere(x,center,4.0);

center[1] = -5.0;
sp2.m_dRes = fSphere(x,center,4.0);

return(sp1 | sp2);
}

Figure 9. Model in C# language.

0,00

4,00

8,00

12,00

16,00

20,00

150 160 170 180 190 200

Dividing [N]

R
at

io

Prison

Rabbit

Spirit

Tap

Mouse

Figure 10. Speed-up ratio (Microsoft Visual C++).

0,00

4,00

8,00

12,00

16,00

150 160 170 180 190 200

Dividing [N]

R
at

io

Prison

Rabbit

Spirit

Tap

Mouse

Figure 11. Speed-up ratio (Borland C++ Builder).

the calculate time of the identical model in defined
language and environment is the speed-up ratio. It
can be seen in graphs that the highest speed-up was
reached with Microsoft Visual C++ (Fig.10). The
evaluation in this environment was much faster than
in Borland C++ Builder each time (Fig.11). There
were no differences between sources in Microsoft
Visual C++ and Borland C++ Builder. The speed-up
ratio of the model implemented in C# lies between
both implementations in C++. The main reason is full
object oriented approach and its cost in terms of the
speed. Finally, it is clear that there is a considerable
speed-up of compiled models (Fig.13) in comparison
to the HF model.

6. Conclusion
This article showed a new method for the model
evaluation that is based on a classic compiler. The
method brought the speed-up for the model
evaluation (Table 1). The comparison of classical

compilers and the HF performed on the tested models
showed differences in terms of the speed-up.
Comparing C++ with C# shows what a user can
expect from the programming language changes. The
model rewritten in to the compiled programming
language allowed all possible programming structures
of the language like e.g. recursion. By using the
overloading of operators, the identical description of
the model as in the HF language was achieved.

7. References
[Adz99] Adzhiev, V., Cartwright, R., Fausett, E.,

Ossipov, A., Pasko, A., Savchenko, V.: HyperFun
project: Language and Software tools for F-rep
Shape Modeling. Computer Graphics &
Geometry, vol. 1, No. 10, 1999.

[Bloo94] Bloomenthal, J.: An implicit surface
polygonizer, in Graphics Gems IV, P. Heckbert,
ed., pp. 324-349, Academic Press, 1994.

[Cerm02a] Čermák, M., Skala, V.: Polygonization by
the Edge Spinning, Algoritmy 2002
Conf.proceedings, Univ.of Technology, Slovakia,
ISBN 80-227-1750-9, pp.245-252, 2002.

[Cerm02b] Čermák, M., Skala, V.:Edge Spinning
Algorithm for Implicit Surfaces, accepted for
publications in journal, Mathematics and
Computers in Simulation, Elsevier Science, B.V.,
Roma, Italy.

[Hyp03] HyperFun Project, http://www.hyperfun.org
[Pasko93] Pasko, A., Savchenko, V., Adzhiev, V.,

Sourin, A.: Multidimensional geometric modeling
and vizualization based on the function
representation of objects, Technical Report 93-1-
008, University of Aizu, Japan, 1993.

[Pasko95] Pasko, A., Adzhiev, V., Sourin, A.,
Savchenko, V.: Function representation in
geometric modeling: concepts, implementation
and applications, The Visual Computer, vol.11,
No.8, pp.429-446, 1995.

[Rigau99] Rigaudiere,D., Gesquiere,G., Faudot,D.:
New Implicit Primitives Used in Reconstruction
by Skeletons (France), WSCG, Czech Republic
1999.

0,00

2,00

4,00

6,00

8,00

10,00

12,00

14,00

150 160 170 180 190 200

Dividing [N]

R
at

io

Prison

Rabbit

Spirit

Tap

Mouse

Figure 12. Speed-up ratio (Microsoft .NET C#).

Compiler Min speed-up Max speed-up Average speed-up

B. C++ Builder 3,49 (Model 4) 11,92 (Model 1) 4,72

MS Visual C++ 4,44 (Model 3) 15,43 (Model 1) 6,41

MS .NET C# 3,86 (Model 4) 12,91 (Model 1) 5,26

Table 1. Speed-up table.

Figure 13. Tested models [Hyp03].

