
Parallel Computing Runtime for Microsoft .NET
Framework

Alexander Chudinov

Program Systems Institute
of the Russian Academy of Sciences

st. Stroitely 24-43
 Russia 152140, Pereslavl-Zalesskiy, Yaroslavl

region

chudinov@strategypartner.com

Vladimir Roganov
Program Systems Institute

of the Russian Academy of Sciences
Research Center for Multiprocessor Systems
Russia 152140, Pereslavl-Zalesskiy, Yaroslavl

region

var@skif.botik.ru

ABSTRACT

The .NET Framework offers comprehensive and flexible thread APIs that allow the efficient implementation of
multithreaded applications. These APIs can, however, only be utilized within Symmetric Multiprocessors
(SMPs), which have a very limited scalability. For larger systems, which are in the PC world mostly represented
as clusters of SMPs, other paradigms like message passing or handcrafted hybrid systems have to be used. These
approaches are generally more difficult to program and require major code changes compared to sequential
codes. This paper presents an extension to the .NET Framework, which implements the concept of automatic
dynamic parallelization of programs. The extension provides both ease-of-use and scalability in development of
parallel programs. This drastically eases the use of clusters and opens cluster architectures to a whole range of
new potential users and applications.
The extension offers a new model of a computation process based on the following concepts:

• It uses functional programming paradigm, which perfectly fits for parallel computations. A program is
a set of functions. Each function can have several inputs and outputs.

• Functions body can be implemented using imperative programming style. The only constraint is that a
function must not have any side effects.

The joint of these two different programming concepts allows to combine global parallelism with local
efficiency and ease of implementation of separate functions.
These concepts are naturally integrated into .NET Framework by means of using templatized classes (introduced
in C# with generics) that encapsulate all low-level details such as threading, synchronization, scheduling, load
balancing, etc., which makes the extension a powerful tool for implementing high-performance parallel
programs.

Keywords
Automatic dynamic parallelization of programs, parallel computations, .NET Framework, .NET Remoting, .NET
Threading

1. INTRODUCTION
The paper is based on the principles developed in the
existing T-system [Tsy02a],[Abr00a] and will use
them to develop tools for parallel computing in the
Microsoft .NET framework.
The T-system is a parallel computing framework that
includes operating runtime for parallel applications
execution and relevant programming tools. The goal
of the T-System is organization of parallel
computation process that effectively uses
computation resources of all cluster nodes.
The T-system represents computation process as a
computational network that includes data (ready and

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

1st Int.Workshop on C# and .NET Technologies on
Algorithms, Computer Graphics, Visualization, Computer
Vision and Distributed Computing

February 6-8, 2003, Plzen, Czech Republic.
Copyright UNION Agency – Science Press
ISBN 80-903100-3-6

non-ready variables) and T-processes – elementary
subroutines (granules of parallelism). It uses external
scheduling algorithms for effective use of resources
of each cluster node.
We will use the C# with generics language
[Ken02ba] to implement parallel programming tools
for the Microsoft .NET Framework.
The T-system for .NET Framework should possess
the following characteristics:

• Compatibility with regular .NET code –
semantics should be the same – the parallel
.NET program and regular .NET program
should give the same results.

• Easy to modify – adaptation for different
operating systems and hardware
configurations.

• Modularity – allows conduct simultaneous
work on different systems parts and to
easily customize/optimize the system for
different hardware platforms and operating
systems.

• High performance and ability to tune the
system for different operating systems and
hardware platforms.

2. WHAT IS T-EXTENSION?
We will call a base programming system a tuple {a
language, a compiler, an execution runtime} that
allows to create and execute programs on a regular
sequential computer. By a language we understand a
universal programming language with support for
variables and functions, e.g. C, C++, C#,
FORTRAN.
The T-system is a tuple {language T-extension (T-
superstructure), compiler T-extension, execution
runtime T-extension} that implements a automatic
dynamic parallelization concept for programs that
use functional programming concept on a high level
(functions interoperation) and have bodies written in
imperative style.
Modern programming systems include debugging
tools, data structures and basic algorithms libraries,
etc. So the fully developed T-system should have
support for such components.
We will call a T-extension a T-specific constituent of
the T-system over the base programming system X:
T:X -> TX.
This paper will consider C# as a base language X and
deal with its T-extension T#. Nevertheless, the most
of the conclusions of this paper can be extrapolated
to other programming systems.
It is important that a T-extension be as much as
possible orthogonal to the base programming system.

The T-extension is orthogonal to the base system if
the properties of the base system and new properties
of the extended system are independent. In other
words: using T-constructions should not alter
semantics of the C# language.

This characteristic puts strict requirements to the
implementation of non-ready variables and work
with those variable during program parallel
execution. Since a user should, where possible, not to
see these restrictions, the main burden for supporting
this requirement should be on the T-system itself.

Also a special attention should be paid to the
“smooth” syntax extension that can be obtained by
using .NET attributes. This allows:

- Easily adapt already written systems.

- Compile and debug applications first in
non-parallel environments using standard
compilers.

3. SUPPORT FOR T-LANGUAGES
SEMANTICS
The idea to use functional programming features for
parallel computations is old enough. The most
important of these features is the fact that functions
without side effects can be computed in arbitrary
order, so a programmer is freed of a number of
problems connected to computations
synchronization. However, there is no program
architecture that is generic enough, and the
advantages of functional approach are compensated
by programming style limitations which often are
hardly compatible with traditional imperative
programming languages. That is why a pure parallel
graph reduction is primarily used for implementation
of functional programming languages [Gph00a].
The T-system has variables, more over the body of
each T-function can be written using imperative
programming paradigm (this is one of the main
advantages of the T-system that allows to combine a
global parallelism with a local performance and ease
of implementation of separate functions). On the T-
functions level we have pure functional paradigm.
Since these different programming styles (one of
which has immutable data and in the other data can
change) join on the T-functions interaction level, it is
logical to suppose that the data that exist on the joint
of these two styles will change for one of them and
will look immutable (be implicitly fixed) for the
other.

The properties of T-variables are as follows:

- A variable holds a reference to a value that
can be either ready or non-ready.

- Non-ready variable can have one or more
suppliers (T-functions) during its lifecycle.
When the last supplier is lost it becomes
ready and cannot change its value.

- At each time a non-ready T-variable has a
value that is accessible only for its supplier.
Other T-functions stop when they try to
access this variable until it becomes ready.

4. IMPLEMENTATION
TVar, TVal, TPtr
The semantics described in the previous section can
be implemented by the following templatized classes:

4.1.1 TVar
Templatized class for T-variables. A T# programmer
deals only with TVar objects and TPtr pointers, but
never directly with TVal values.
The lifecycle of a T-variable is limited by the time of
execution of the function that created it. TVar can be
either “hot” or “frozen”.

- “Hot” TVar contains either a non-ready
value or a value itself and can be modified.

- “Frozen” TVar contains a reference to TVal
object and cannot be modified.

“Hot-frozen” transition can take place when a
variable is passed as an out parameter to the T-
function.
“Frozen-hot” transition takes place during second
assignment operation.
Since T-variables exist only inside the functions,
they won’t need to think about synchronization of
access to their values and/or pass it between cluster
nodes.

4.1.2 TVal
Templatized class for T-values.
A T-value can be either ready or non-ready. If during
program execution one accesses a non-ready value,
thread execution stops until a value is computed
(becomes ready).
A value has a counter of its consumers. When one
tries to change a ready value, a consumers counter is
checked. If it has only one reader a value becomes
non-ready and a reader becomes a writer. If there are
several consumers then readers have the same
instance of TVal and writers get a newly created
copy of TVal. If TVal does not have consumers it is
destroyed.
TVal can contain either a value or a reference to
another TVal (with real value). This additional
reference level is necessary for fast copy of TVal.

TVal implementation takes care of data copying
between cluster nodes. During copying the TVal
values are blocked for reading.

4.1.3 TPtr
Templatized class for T-pointers. The pointers also
can be either “hot” or “frozen”. ”Hot” pointers
reference TVar objects. “Frozen” pointers reference
TVal objects. This implements the semantics of
copying a value by pointer.
A pointer becomes “Frozen” when it is passed as an
out argument of a T-function.

T-Functions
T-functions are implemented as templatized classes
parameterized by function body and its arguments.
To implement function body one needs to override
method body() of the base T-function class and
define a custom constructor to pass necessary
arguments. An example of T-function is shown
below:
class Tfib<int>: TFun<T>
{
 private int n;
 public TFib(int _n) {n = _n;}
 protected override void body()
 {
 if(n < 2) TOut.assign(n);
 else
 {
 TFib fib1 = new TFib(n-2);
 fib1.run();
 TFib fib2 = new TFib(n-1);
 fib2.run();
 TOut.assign(
 fib1.TOut.value() +
 fib2.TOut.value()
);
 }
 }
}

5. T-SYSTEM ARCHITECTURE
As it was described above the T-system consists of
three main components: T-Superstructure (T-
semantics), T-compiler (or more general T-
development environment) and T-runtime (Mobile
Threads Objects and References, or shortly
MoTOR).

T-Superstructure (T-semantics)
The semantics is as described in the previous section.
It is implemented via TVar, TVal, TPtr classes and
T-functions. All changes in the semantics should not
touch T-runtime.

T-Development environment
Will include t-converter T#->C# and in future may
include debugging tools.

MoTOR (Mobile Threads Objects and
References)
5.1.1 Threads
Threads should provide functionality for running
threads on different cluster nodes.

5.1.2 GRIS
This module implements parallel graph reductions
algorithm and tasks scheduler. The scheduler can
give different priorities to threads as well as start new
threads on other cluster nodes. It will use
functionality of the Treads module to create new
threads.

5.1.2.1 Resource Monitoring
To fulfill its duties the scheduler needs to know the
data about available resources of cluster nodes. So it
is necessary to have remote resources monitoring
module that will allow get such parameters as CPU

usage percent, available physical memory, etc.

5.1.2.2 Migration Advices
This module will process the data received from the
remote resources monitoring module, analyze the
code waiting for execution and give advices for most
optimal tasks distribution between cluster nodes. In
the simplest case the scheduler should create a new
thread on the node with most free resources.

Figure 1. T-system Architecture.

5.1.3 Mobile Objects & References
The implementation of this module is nearly
completely independent from other parts of the T-
system. This includes synchronization of access to
the T-values and sending T-values between cluster
nodes.

6. CONCLUSION
This paper has described the design and
implementation of Parallel Computing Runtime for
Microsoft .NET Framework based on the principles
developed in the existing version of the T-system.
Currently we have developed T-semantics (T-
superstructure) module. T-development environment
and MoTOR modules currently are in the
development process.

7. REFERENCES
[Abr00a] Abramov, S.M., Vasenin V.A., Mamchits

E.E., Roganov V.A., Slepuhin A.F. Dynamic
Program Parallelization Based on Parallel Graph
Reduction. The Architecture of New Version of
T-System Software (In Russian). In Proc of High
Performance Computations and Their
Applications, Chernogolovka, Russia, pp.261-
265.

[Gph00a] Glasgow Parallel Haskell.
http://www.cee..hw.ac.uk/~dsg/gph

[Ken02ba] Kennedy, A., Syme D. Design and
Implementation of Generics for the .NET
Common Language Runtime, Microsoft
Research, Cambridge, U.K., 2002

[Tsy02a] T-system. http://skif.pereslavl.ru

