GCC .NET—a feasibility study

Jeremy Singer
University of Cambridge Computer Laboratory,
William Gates Building, 15 JJ Thomson Avenue,
Cambridge, CB3 OFD, UK

jeremy.singer@cl.cam.ac.uk

ABSTRACT

We examine the issues involved in producing a back-
end for the GNU Compiler Collection (GCC) that tar-
gets the .NET Common Language Runtime. We de-
scribe a simple back-end that is written in standard
GCC style, which interfaces with the register transfer
language GCC intermediate representation.

We demonstrate that this simple .NET back-end is
able to compile an appreciable subset of the C lan-
guage. We then consider support for function call
handling, object-orientation and language interoper-
ability, amongst other things.

Problems arise because GCC discards much infor-
mation which could be used to enhance the .NET code
generation phase. We briefly describe several possible
alternative methods of creating a GCC .NET back-
end, which might produce more effective .NET byte-
code.

Keywords

Compiler, Back-end, Common Language Runtime

1. INTRODUCTION

In late 2002, Microsoft released the first version of
their .NET web services platform. At the heart of
this computing environment is the Common Language
Runtime (CLR) [2]. The CLR is an object-oriented,
type-safe, garbage-collected, secure virtual machine.
Many people have claimed that the CLR is a blatant
imitation of Sun’s Java Virtual Machine (JVM) [9].
There are certainly remarkable similarities between
the two. However, while the JVM was explicitly de-
signed to be the target platform for programs writ-
ten in Java, the CLR is designed to be a language
neutral runtime. Thus the CLR provides support for

Permission to make digital or hard copies of all or part of thiswork
for personal or classroom use is granted without fee provided that
copiesarenot made or distributed for profit or commercia advantage
and that copies bear this notice and the full citation on thefirst page.
To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or afee.

1st Int. Workshop on C# and .NET Technologies
on Algorithms, Computer Graphics, Visualization,
Computer Vision and Distributed Computing

Copyright UNION Agency — Science Press
ISBN 80-903100-3-6.

features found in functional programming languages
(e.g. tail calls), and in imperative programming lan-
guages (e.g. pointer manipulation), as well as all the
object-oriented primitive features.

The CLR supports language interoperability. Code
written in one .NET language should be able to use
data types and routines defined in another .NET lan-
guage. This feature has huge potential. Programmers
are now free to work in their own favourite language,
and they can be sure that their code will interoperate
with code written in other .NET languages. This also
means that there is a unified set of standard .NET li-
braries, which can be used from any .NET language.
This comprehensive set of libraries is invaluable to
users of special purpose languages, for whom previ-
ously there were few, if any, decent libraries available.

The main .NET compiler is Microsoft’s Visual Stu-
dio .NET. The major source languages supported are
Visual Basic .NET, Managed C++4, and C#. We
note that Visual Basic .NET and Managed C++ are
markedly different from standard Visual Basic and
C++. These differences are necessary to allow the
languages to target the CLR.

However, there is a wide variety of third-party .NET
compilers, for all kinds of programming languages,
ranging from old favourites such as COBOL, FOR-
TRAN and Pascal, to weird and wonderful languages
such as Haskell, Mercury and Standard ML. The most
well-documented .NET compiler is undoubtedly Gough’s
Component Pascal [4].

All of these .NET compilers transform high-level
source code into .NET bytecode, also known as Com-
mon Intermediate Language (CIL) [8]. This CIL is the
executable code distribution format. The bytecode is
translated into native code as required at runtime by
the CLR just-in-time (JIT) compiler.

There are currently only CLR implementations for
the Microsoft Windows platform, and a Microsoft-
sponsored BSD version. Various open-source efforts [17,
16] are underway to reimplement the CLR for Linux.
None of these is mature enough for everyday use, so
far as we have been able to ascertain. There are also
C+# compilers, which are not yet complete. There is
also one C .NET compiler [16] for Linux, which is also
in an unfinished state.

2. BACKGROUND

The GNU Compiler Collection (GCC) [12] is unde-
niably the world’s most popular free compiler. GCC

has been the backbone of the open-source movement
for the last twenty years. It is arguably the most ubiqg-
uitous piece of software in the world, running on every-
thing from mainframes to embedded systems. GCC
has been shown to be the best open-source compiler
available in terms of quality of executable code pro-
duced, in many benchmark tests. It is consistently
20% below the peak performance of Intel’s and Mi-
crosoft’s optimising compilers for x86/IA32, but GCC
is as good as, if not better than, everything else in the
field (both free and commercial).

GCC is a thoroughly modular compiler. It currently
boasts front-ends for C, C++, Objective C, Java and
FORTRAN, to name just five main-stream high-level
languages. GCC has been ported to all common hard-
ware platforms, and to many more esoteric platforms.

We define GCC .NET to mean a modified version of
GCC that is able to target the CLR, from its current
range of source language front-ends. In this paper, we
describe the design and implementation of a standard
GCC back-end, which targets the .NET CLR. This is
the conventional way of porting GCC to a new hard-
ware platform. As far as we are aware, this is the first
ever attempt at creating GCC .NET, as defined above.

The GCC compilation process [13] is shown in fig-
ure 1. The source-language-dependent front-end parses
high-level source code, and produces a collection of
GCC tree data structures. These are compiler ab-
stract syntax trees. GCC then performs various anal-
ysis and transformation passes on this tree intermedi-
ate representation, which is both independent of the
source language and the target platform. Next, GCC
generates register-transfer-language (RTL) code from
the trees. This is a low-level intermediate represen-
tation, which is now target-machine-dependent. GCC
does more optimisation passes on the RTL. Finally,
the assembly code is produced directly from the RTL
by the GCC back-end. This assembly code is then
assembled using a standard assembler. (We use the
Microsoft .NET IL assembler, ilasm [8].)

The usual way to port GCC to a new platform [13,
10] involves writing a set of “machine description”
files, which define how GCC’s RTL operations map
onto actual target machine instructions. We give ex-
amples later, in section 3. There are certain RTL op-
erations which must be defined. However, many are
optional, and should only be implemented if the tar-
get machine supports them natively. For example, if
the target machine has no direct support for a cer-
tain arithmetic operation, then GCC will automati-
cally generate RTL code that does not use such an
operation, but instead performs an equivalent opera-
tion using alternative instructions.

GCC is specifically aimed at CPUs with several 32-
bit registers and byte-addressable memory. Most mod-
ern instruction set architectures fit this description.
However, the .NET CLR is a radical departure from
this architectural paradigm. It is a stack-based ma-
chine, like the JVM.

eges-jvmn [15] is a port of GCC to the JVM. Wadding-
ton experienced many problems attempting to work
around the register machine assumptions in the GCC
code generator. He has said that it would be easier
to throw the JVM away and invent a register-based

register file runtime stack

r0

rl

r2

A
r3

fp sp

Figure 2: GCC expectations of runtime storage
locations

abstract machine than to try and make GCC generate
efficient stack machine code.

Our GCC back-end is quite similar to egecs-jvm.
However, we are able to make good use of the im-
perative language support features of the CLR, which
were not available to Waddington on the JVM. In this
way, our code is more efficient and more idiomatic.

3. IMPLEMENTATION

We decided that it would be best to support a simple
subset of the C language, in our first attempt at a GCC
NET compiler. We aimed at being able to compile the
following features:

e 32-bit integer arithmetic
e indirection and pointer arithmetic
e condition code tests

e intra-procedural jumps and structured control
flow

e direct function calls
e runtime stack
e stack allocated integer arrays

e statically allocated integers and integer arrays

We thought that these items would be enough to
compile small test programs, from suitable C bench-
mark suites.

According to Nilsson [10], the first task, when port-
ing GCQ, is to clearly define the fundamental machine
properties (endianness, number of registers, address-
ing modes, etc.) and the application binary interface
(function calling conventions).

We needed to somehow map the machine properties
expected by GCC onto the actual machine properties
of the CLR. GCC expects several 32-bit registers avail-
able to hold values which are currently in use. GCC
also expects a runtime stack which will be used to store
local variables, function arguments, and other values
which will not fit into registers (spilled values). This
is illustrated in figure 2

The CLR does not have any concept of registers.
Instead, there is an evaluation stack, which holds val-
ues that are currently in use. The evaluation stack is
not as flexible as a set of registers, since values can
only reside in certain fixed locations if we want to use
them at once. To put this another way, we can only

RTL asm
source —_ tree _— _—
code code code

Figure 1: Steps of GCC compilation process

D 1: ldc 4 // load constant 4
8 2: ldc 3 // load constant 3

3: add // 3+4

4: stloc 0 // store in local[0]
% 1 2: 3 4
95}

3
[«] : [- |

Figure 3: Example CLR code, and the evalua-
tion stack at each stage

address values that are on top of the evaluation stack.
Figure 3 gives an example of how the CLR execution
model works.

The CLR also has an activation record, for the cur-
rent routine. (This is similar to GCC’s concept of a
stack frame, but not entirely the same.) A new ac-
tivation record is created when we enter a new rou-
tine. The old activation record is automatically re-
stored when we return from that called routine to the
calling routine. Of course, in the case of recursive
calls, each activation of a particular routine has its
own individual activation record.

The activation record stores two vectors, args and
locals. The args vector contains the argument values
passed into the routine at the call-site. The locals
vector contains local variable values and temporary
values. The number and types of data in the activation
record (both args and locals) are fixed as part of the
routine definition.

We defined the first 32 local variables, locals[0..31],

to be 32-bit integer registers, for the purposes of GCC
code generation. We specified that two of these regis-
ters must be special purpose registers, for stack pointer
(SP) and frame pointer (FP). All the other registers are
general-purpose registers, and may be freely used by
the GCC register allocator.

We need to support memory references as well. These
come for free, since we can treat pointers as 32-bit in-
tegers. The CLR will complain about this abuse of
its type system, but we can force it to ignore such
problems by making our generated code “trusted”—
that is, our code is permitted to manipulate pointers
without any restrictions.

Below we give the RTL expansion pattern for a sim-
ple ADD instruction. We show the the RTL ADD in-
struction, and its corresponding CLR bytecode. (The
machine description files specify how all RTL instruc-
tions should be expanded into .NET bytecode.) Notice

that we are forced to use the CLR evaluation stack,
since this is the only place from where the CLR add
instruction can fetch its operands. Notice also that
a standard three-address arithmetic operation in RTL
normally turns into four CLR instructions.

RTL pattern

ADD r1 <- r2, r3

Corresponding CLR code

1dloc r1 // load local var ’rl’ onto stack
1ldloc r2 // load local var ’r2’ onto stack
add

stloc r3 // store the result in ’r3’

In general, GCC expects a “condition code” register
(cC), which stores the result of comparison operations.
The CC value is checked by conditional branch instruc-
tions, to determine whether or not the branch should
be taken.

The CLR does not have a “condition code” register.
Instead, two values are pushed onto the evaluation
stack and then the subsequent conditional branch in-
struction inspects these two values and decides whether
or not to branch. eges-jvm [15] gets into trouble han-
dling these kinds of instructions, it defines its own
special-purpose CC register, and checks the value when
required. This is not native behaviour for the JVM,
but egcs-jvm had no other option.

We handled this case by forcing GCC to place a con-
ditional branch instruction immediately after the cor-
responding comparison operation. In this way, we can
retain the idiomatic .NET compare-and-branch style,
as described above, and shown by the RTL to CLR
translation below.

RTL pattern

SET cc (CMP r1 r2) // compare rl and r2
BEQ label // if cc==EQ then branch

Corresponding CLR code

ldloc ri
ldloc r2
beq label // branch if top 2 stack items are equal

Direct jumps to labels within the same procedure
are expected by GCC, and supported by the CLR.

However, GCC also expects some mechanism for indi-
rect jumps, and the CLR, as far as we can see, does
not support this. (Nevertheless, indirect function calls
are supported.)

Function calling was the most difficult aspect of the
implementation. By default, GCC passes some of its
parameters in argument registers (if any are defined),
and the rest of the parameters are placed on the run-
time stack. The standard CLR function calling con-
vention requires the caller to push argument values
onto the evaluation stack. These are then transferred
into the args vector of the called function’s activation
record.

The simplest method would probably be to con-
strain GCC to pass all function arguments on the run-
time stack, however, this would most definitely be in-
efficient.

The best method would be to enable GCC to pass
all function arguments on the evaluation stack, and
these would then appear in the called function’s args
vector. The GCC code generator is not this flexible.
We cannot grab all the arguments and tell GCC where
to put them. GCC prefers to deal with the arguments
itself, before it gets to the function call instruction.
So, we cannot tell the difference between ordinary data
moves and argument passing, at the code generation
phase.

In the end, we decided that we would define eight
of our 32 pseudo-registers as outgoing argument regis-
ters, and then GCC would use these to store the first
eight arguments of a called function. (Any additional
arguments are still placed on the runtime stack, but
there are not many functions with more than eight
arguments.) When we encounter a call instruction,
we load the appropriate number of argument registers
from the locals vector onto the evaluation stack. We
then issue a CLR call instruction. This automatically
transfers the arguments into the called routine’s args
vector. We do not leave the arguments here. We de-
fined the function prologue code (inserted by GCC at
the entry point to every function) to move the argu-
ment values from the args vector into the appropriate
pseudo-registers in the locals vector (incoming argu-
ment registers). There is a good reason for this. GCC
expects all the argument registers to be available for
general usage after the argument values are no longer
needed. If we pass less than eight parameters, then
(unless we supply dummy values for the unused ar-
guments) we will not have eight entries in the args
vector, so some of the args vector will not be address-
able. If we call a function with say, three arguments,
then only args([0], args[1] and args[2] are valid.
If we then attempt to access args[3], the CLR code
will not be valid. It will fail to assemble with the ilasm
tool. So, we transfer as many values as there are ar-
guments from the args vector into the locals vector,
and we have arranged that the first 32 entries of the
locals vector are always addressable.

So, in this way, we have packaged up the CLR call-
ing convention within the GCC function calling mech-
anism. This means that we should still be able to
call other CLR functions which were not written us-
ing GCC. (We reconsider this topic in section 5. We
represent our parameter passing mechanism diagram-

matically in figure 4.

We dealt with function return values in a similar
way. The CLR returns values on top of the caller’s
evaluation stack. GCC expects return values in a reg-
ister. We defined the function epilogue code to pop
the return value from the evaluation stack into the
appropriate pseudo-register.

GCC definitely needs a runtime stack. The code
generation phase assumes that a runtime stack is avail-
able, and makes heavy use of it. (We have noticed that
the runtime stack is less intensively used when GCC
compiler optimisations are turned on. Then GCC
tends to leave as many values in the register file for as
long as possible. We might be able to take advantage
of this behaviour.) The CLR does not have a runtime
stack as such, although the activation record acts like
a runtime stack, as we noted earlier. However, we are
treating entries in the activation record as our register
file.

We create an integer array at the start of each pro-
gram, and set the FP and SP registers to point to the
end of this array. We have defined the runtime stack
to be a descending stack. Since all array indexing is
bounds-checked by the CLR, we know that stack over-
flow (underflow) will be signalled by an IndexOut0f
RangeException error thrown at runtime. The FP and
SP registers are adjusted as necessary at function calls,
whenever the function makes use of the runtime stack.
FP and SP are stored in pseudo-registers (really in the
locals vector). This means that we don’t actually
need to save FP and SP onto the runtime stack, since
they are automatically preserved on the caller func-
tion’s activation record. However, we do have a slight
difficulty transferring FP and SP values to the called
function, since we can’t access the caller’s activation
record from within the called function. To overcome
this difficulty we could possibly pass FP and SP as ad-
ditional hidden arguments to the function, but we de-
cided that this was too ugly. Instead, we write FP
and SP to two global variables just before the function
call, and read in FP and SP just after function entry, if
necessary.

Support for stack-allocated integer arrays comes nat-
urally from our implementation of the runtime stack,
and from our pointer arithmetic support. GCC knows
how to do the rest, and we encountered no problems
here.

We treat statically allocated data as static global
data fields in .NET. Because of our restriction on types,
we are only allowed integers and integer arrays. (Point-
ers count as integers too, remember.) The CLR ex-
pects all such static data to be well-typed, and given
initial values. We define static data as value types,
which basically means that we are able to do anything
we like to the data at these locations. The problem is
that value types of different sizes must have different
types. We give each item of statically allocated data
its own unique type, a subclass of the ValueType class.
This works fine, and, although it might be inefficient
in terms of the amount of metadata (type informa-
tion) stored, we noticed no considerable problems on
our (admittedly small) benchmark tests. We may re-
visit this area at a later stage. Suffice to say that it
works happily at present.

|
GCC view +f call

PR N

putgoing
hrgs

|
|
|
|
CLR vie% of call

N

efvaluatign
stack

R ——
incoming
args args
vector regs
R ——

I
|
|
|
I
|

\ . |

calling function

|

called function

Figure 4: How the CLR calling convention is wrapped up within the GCC calling convention

benchmark | description

ack ackermann’s function
bresenham | line drawing algorithm
mset mandelbrot calculation
qsort quick sort

sieve sieve of eratosthenes
takeuchi recursive function

Table 1: benchmarks

4. RESULTS

These results are only preliminary, since the GCC
.NET compiler is still in a highly experimental state.

We used a set of standard GCC benchmark pro-
grams [1] to test our GCC .NET compiler. We only
selected the programs that used the limited set of C
features which our compiler supports properly. These
programs are described in table 1.

We ran the benchmark tests through the standard
GCC C preprocessor, then passed the resulting pre-
processed C source code to our GCC .NET compiler.
The output was a single .NET CIL assembly file, in
each case. We ran each assembly language file through
a simple Perl script which generated the necessary
wrapper code for the Microsoft .NET CIL assembler
(ilasm) [8]. We then assembled the benchmarks using
ilasm, and obtained the resulting EXE files.

We ran these EXE files on the Microsoft CLR imple-
mentation. No Linux CLR was able to run the code,
which possibly reflects on the immature state of Linux
NET development.

We give details of execution times and code size be-
low. For the purposes of comparison, we also com-
piled the benchmark test C source code using Mi-
crosoft’s .NET C compiler (cl /clr) and the Linux-
based Portable .NET C compiler (pnetc). pnetc was
unable to compile all the benchmark tests, and none
of the pnetc executables would run. We reiterate that
Portable .NET is a long way away from release quality
code.

We also tried to run GCC .NET with optimisations

size (K)
benchmark | cl /clr | gece .net | pnetc
ack 40 4 3
bresenham 40 11
mset 40 5 3
qsort 36 7 3
sieve 40 49 3
takeuchi 40 3

Table 2: Executable file sizes for GCC bench-
marks

enabled. However, this failed to produce correct as-
sembly code. We need to spend some more time look-
ing into this problem.

Table 2 gives the sizes of the .NET portable exe-
cutable files generated by the different C .NET com-
pilers. We are slightly suspicious of these results. The
Microsoft cl /clr compiler consistently generates large
files. We suspect this may be due to security signa-
tures and similar non-essential data included in the
executable modules. We did have access to the il-
size program, which reports on how much of each ex-
ecutable comprises code, data, etc. However, ilsize is
a part of the Portable .NET distribution, and it failed
to work properly on our code. We are also uncertain
of the pnetc results. We were unable to get any of
the compiled pnetc code to run, under either Linux or
Windows CLRs.

Table 3 gives the execution times of the NET portable
executable files generated by the C .NET compilers.
The tests were all carried out using Win2K on a 1.4GHz
i686. We had to adapt the benchmark tests to make
them run for longer, as they were previously too short
to time properly. We added some extra loops to the
benchmark tests ack and takeuchi.

5. CHALLENGES

In this section, we give details about possible fu-
ture directions for our current implementation of GCC
.NET. Although Fred Brooks affirmed that the first

benchmark | cl /clr time (ms) | gcc .net time (ms)
ack2 8200 13700
takeuchi2 550 840

Table 3: Execution times for GCC benchmarks

attempt should always be thrown away [3], we feel
that there is still more that could be done to this sim-
ple GCC .NET back-end before it is abandoned as a
hopeless cause. Indeed, if all or most of the following
concerns can be addressed in a satisfactory manner,
then we confidently predict that GCC .NET will be
here to stay!

A NET bytecode analysis and optimisation tool
would be a great asset. At present, our back-end emits
long forms of all instructions. For example, 1dloc 1
loads the value of local[1] onto the evaluation stack.
This instruction occupies three bytes, one byte for the
ldloc opcode, and two bytes for the immediate con-
stant 1. However, there is an “abbreviated” version
of this instruction, namely 1ldloc.1, which is only a
single byte long. This kind of code size optimisation
could be done by GCC .NET, but it would be just
as easy to post-process the assembly code and com-
pact instructions where possible. This would reduce
the size of the .NET bytecode generated, but would
have no effect whatsoever on the speed of the program
execution.

A more complicated bytecode optimiser might be
able to spot occasions when values are unnecessarily
stored into pseudo-registers, then loaded out again im-
mediately onto the evaluation stack. Apart from con-
ditional branches and function calls, the evaluation
stack is always left empty between GCC RTL instruc-
tion expansions. Sometimes, this results in code like:

ldloc a
ldloc b
add

stloc a
ldloc a
ldloc c
add

stloc a

as the transformation of a high-level statement such
as a = atb+c.
An optimal version would look like

ldloc a
1ldloc b
add
1ldloc c
add
stloc a

which takes full advantage of the evaluation stack to
store the intermediate value (a+b). A clever optimiser
might be able to perform transformations like this on
the bytecode, which would result in improved code size
and speed.

Various Java bytecode optimisers have been devel-
oped, which work along these lines, such as BLOAT [11]
and Sable [6].

At present, GCC .NET only supports 32-bit inte-
gers. Realistically, we need to handle 8-bit bytes as

well as floating-point arithmetic. The difficulty is that
the CLR is strongly typed, which means that pseudo-
registers (really CLR locals) declared to hold 32-bit
integer values can only hold 32-bit integer values. We
would need another set of pseudo-registers to handle 8-
bit integer values, and further sets of pseudo-registers
for each flavour of floating-point types we care to sup-
port. We admit that this is not an impossibility, but
it does start to look a little untidy after a while. Then
consider the GCC runtime stack. This is also strongly
typed, so we would need a separate stack for each
primitive datatype. There doesn’t seem to be a sim-
pler solution to this problem.

By default, the CLR does garbage-collected memory
management. The C programming language is not
renowned for its amenity to garbage-collection. The
CLR does permit explicit memory management, and
we may investigate this avenue further.

GCC is far more than just a C compiler. (In the
olden days, we assumed GCC stood for GNU C Com-
piler, whereas now we are led to believe that GCC
stands for GNU Compiler Collection.) There are front-
ends for C++4, Objective C and Java, which are prob-
ably the most popular object-oriented programming
languages. However, source code from all these object-
oriented languages can be reduced to the standard
GCC RTL intermediate form. Therefore, we should be
able to compile C++, Objective C and Java into .NET
bytecode, if we implement enough of the GCC .NET
back-end. We have not conducted any comprehensive
tests, although initial investigations have shown that
extremely simple object-oriented C++ programs can
be compiled by GCC .NET.

This would be a neat way of producing Java .NET,
for instance. However, we are unable to make use of
the CLR object-oriented primitive instructions, since
all of the class information has been eliminated by the
RTL stage. Instead, we can only generate ugly .NET
bytecode that does all the object-orientation explicitly
and in an extremely low-level manner, using indirect
function calls and pointer arithmetic. This is bound to
be slower and less elegant than using the CLR object-
oriented primitives.

In our earlier discussion of parameter passing for
function calls, we showed that we only use the CLR
args vector as temporary storage, and move the argu-
ment values into pseudo-registers as soon as possible.
This is certainly a workable solution, but not the most
elegant.

Variable length argument lists are supported na-
tively by the CLR, with special primitive instructions
to handle them. GCC also has special support for
varargs. We need to match up the CLR and GCC
varargs code.

One of the most compelling points of .NET is its
language interoperability features. That is to say, rou-
tines written in one language can be called by other
routines written in a different language, provided both
compilers implement the .NET Common Language Spec-
ification. This allows us to make use of the extensive
.NET class libraries, as well as third-party .NET code.

At the moment, GCC .NET does not support the
Common Language Specification. There is no way of
calling external .NET functions from C source code.

We need to address this issue. In our test programs,
we manually inserted calls to .NET library routines
into the GCC .NET generated CIL assembly code,
to perform debugging print statements, and to time
program execution. This demonstrated that language
interoperability is not impossible, but we need to do
lots of work to make it happen automatically within
GCC .NET.

Another desirable goal is to be able to call native
routines from code executing within the CLR. This
is done on Microsoft’s .NET C compiler by using the
p/invoke (platform invocation) subsystem of the CLR.
We need to be able to handle this. pnetc also claims to
be able to call native code under Linux, but we have
not tested this out yet.

The .NET bytecode currently generated by GCC
.NET is unverifiable. That is, it cannot be shown to
be safe to execute. This is because we make liberal use
of pointer arithmetic, and casting between pointer and
integer types. It would be nice to be able to generate
verifiable code for source programs that do not do any
explicit pointer arithmetic. That would mean elimi-
nating all our unsafe pointer manipulations from the
GCC .NET generated code. We currently use unsafe
pointers for the runtime stack, and for static global
data.

6. ALTERNATIVE APPROACHES

GCC has the facility of using a set of stack-like reg-
isters. The 1386 (x86/IA32) back-end uses this for the
floating point register stack. We could possibly make
use of this mechanism to model the CLR evaluation
stack. At present, GCC .NET is unaware of the eval-
uation stack, in between RTL instructions.

Older versions of GCC have been ported to the
transputer architecture, which is a stack-based ma-
chine. The transputer back-end produces fairly stan-
dard pseudo-register machine code and then trans-
forms this into more stack-friendly code. It may be
possible to adapt some of the transputer back-end
ideas to work on the CLR.

The Portable .NET FAQ [16] suggests that a stack-
transfer-language (STL) should be created, to be used
instead of RTL for the GCC .NET back-end. This
would also be of benefit to GCC Java (GCJ). STL
would conceivably make code generation much more
straightforward for stack-based machines like the CLR
and the JVM.

Of course, the real issue is that GCC has thrown
away most of the useful information by the back-end
code generation phase. (Object-oriented information,
type information, etc. has almost completely disap-
peared.) Perhaps it would be better to begin trans-
formation to .NET bytecode at an earlier stage of the
compilation process. It is difficult to interface to the
GCC trees intermediate form. However, a new tool
called geexml [7] has recently been developed. This
uses the standard GCC front-ends, produces the GCC
parse trees and then dumps these out in XML format.
We give a simple example in figure 5.

In this example, lots of information about types and
objects is retained, which we could put to good use in
our code generation. Perhaps this high level view of

the program source code is a better thing than sim-
plistic RTL, and perhaps we should generate .NET
bytecode this way. It would require a lot more work
to generate code from an XML parse tree, and there is
little possibility of optimisation, (but perhaps we leave
that until the JIT compiler at runtime), however, the
executable bytecode produced could potentially be of
far purer quality.

7. RELATED WORK

Waddington [15] ported GCC to the JVM, for sub-
set of the C language (quite similar to our subset given
in section 3). egcs-jvm does not appear to be under
active development any longer.

The JVM Languages webpage [14] lists over 100 dif-
ferent compilers that target the JVM. Among these is
c2j, which apparently compiles C programs into JVM
bytecode. We have so far been unable to obtain the
source code for this compiler.

LCC is another popular C compiler. It is far simpler
than GCC, and does not do many optimisations. It
is much more straightforward to write a back-end for
LCC. Hanson [5] describes his experience of porting
LCC to .NET. LCC .NET supports all of Standard C
except setjmp and longjmp and some uses of pointers
to functions without prototypes.

pnetc is a C compiler for Portable .NET, a Linux-
based implementation of the CLR. We were unable to
get pnetc working properly, and assume that this is
because the code is still being developed. As far as we
can tell, pnetc is a completely new C compiler, rather
than an adaptation of an existing C compiler.

8. CONCLUSIONS

We have shown that GCC .NET is feasible, at least
for toy C benchmark programs. There remains a great
deal of work to be done before GCC .NET can sup-
port the whole of Standard C, not even mentioning
the other front-ends. We have given a detailed list of
the major problem areas which need to be addressed.

Our preliminary results show that GCC .NET pro-
duces executable code with acceptable size and speed.
Size is the most important factor for most .NET exe-
cutables. They need to be small so that they can be
transferred quickly across slow networks. Hopefully,
concerns over code efficiency will be vanquished by the
optimisations performed by the CLR JIT compiler, at
runtime.

To summarise, GCC .NET is our contribution to the
plethora of exciting Linux implementations of .NET
related programs—none of which appears to work per-
fectly, but all of which have some promise for the fu-
ture.

9. REFERENCES

[1] GCC Benchmarks.
http://savannah.gnu.org/cgi-bin/
viewcvs/gcc/benchmarks/.

[2] Standard ECMA-335 Common Language
Infrastructure.
http://www.ecma.ch/ecmal/STAND/ECMA-335.htm.

int
{
}

/...

a_function(float f, EmptyClass e)

becomes ...

<Function id="_3" name="a_function" returns="_5" context="_1" location="£f0:4">
<Argument name="f" type="_6"/>
<Argument name="e" type="_4"/>
</Function>

[3] Fred Brooks. The Mythical Man-Month: Essays

[7]

8]

[9]

Figure 5: gcexml output, for a simple C4++4 source program extract

on Software Engineering. Addison Wesley,
second edition, 1995.

John Gough. Compiling for the .NET Common

Language Runtime. Prentice Hall, 2002.
David R. Hanson. LCC.NET: Targeting the
.NET Common Intermediate Language from
Standard C. Technical Report
MSR-TR~2002-112, Microsoft Research, Nov
2002.
http://research.microsoft.com/“drh/
pubs/msr-tr-2002-112.pdf.

Laurie J. Hendren. Sable, 2001.
http://www.sable.mcgill.ca.

Brad King. GCC-XML, the XML output
extension to GCC, 2002.
http://www.gccxml.org.

Serge Lidin. Inside Microsoft .NET IL
Assembler. Microsoft Press, 2002.

Tim Lindholm and Frank Yellin. The Java

Virtual Machine Specification. Addison Wesley,

second edition, 1999.

[10]

[11]

Hans-Peter Nilsson. Porting GCC for Dunces,
2000.

ftp://ftp.axis.se/pub/users/hp/
pgccfd/pgectd.pdf.

Nathaniel Nystrom. BLOAT (Bytecode-Level
Optimizer and Analysis Tool), 1999.
http://www.cs.purdue.edu/s3/projects/bloat.
Richard M. Stallman. GNU Compiler Collection.
http://gcc.gnu.org.

Richard M. Stallman. GNU Compiler Collection
Internals. Free Software Foundation, 2002.
http://gcc.gnu.org/onlinedocs/gccint.
Robert Tolksdorf. Programming Languages for
the Java Virtual Machine.
http://grunge.cs.tu-berlin.de/vmlanguages.html.
Trent Waddington. egcs-jvm, 2001.
http://sourceforge.net/projects/egcs-jvm/.
Rhys Weatherley. Portable .NET, 2002.
http://www.southern-storm. com. au.

Ximian. Mono, 2002.

http://www.go-mono.com.

